Wissenschaftlicher Mitarbeiter, Lehrstuhl für Bildverarbeitung, RWTH Aachen
2020 – 2021
Forschungspraktikant, MILA/NeuroPoly (Google brain), deep learning for medical imaging research group, Montreal, Kanada,
Thema: Intervertebral Disc Labeling using Deep Learning
2019 – 2020
Forschungspraktikant, École de technologie supérieure (ETS), Montreal, Kanada,
Thema: Few-shot learning
2017 – 2020
Forschungsassistent, Image Processing Laboratory (IPL), Sharif University of Technology, Tehran, Iran
2015 – 2017
M. Sc. Computer engineering, Artificial Intelligence and Robotics, Sharif University of Technology, Tehran, Iran, Topic: Human Action Recognition,
Thesis: 4D Hand Gesture Recognition on RGB-D Videos
2015 – 2017
B. Sc. Computer software engineering, Shahid Rajaee Teacher Training University, Tehran, Iran,
Thesis: Automatic License Plate Recognition on Videos
2009 – 2011
Associate Degree Computer software engineering, Islamic Azad University, Ardabil, Iran
Azad, Reza, Al-Antary, Mohammad T, Heidari, Moein and Merhof, Dorit Transnorm: Transformer provides a strong spatial normalization mechanism for a deep segmentation model In: IEEE Access 10
Reza Azad, Moein Heidary, Kadir Yilmaz, Michael Hüttemann, Sanaz Karimijafarbigloo, Yuli Wu, Anke Schmeink and Dorit Merhof Loss Functions in the Era of Semantic Segmentation: A Survey and Outlook In: arXiv preprint arXiv:2312.05391
2023
Abin Jose, Rijo Roy, Dennis Eschweiler, Ina Laube, Reza Azad, Daniel Moreno-Andres and Johannes Stegmaier End-to-end classification of cell-cycle stages with center-cell focus tracker using recurrent neural networks In: International Conference on Acoustics, Speech and Signal Processing (ICASSP)
2022
Heidari, Moein, Kazerouni, Amirhossein, Soltany, Milad, Azad, Reza, Aghdam, Ehsan Khodapanah, Cohen-Adad, Julien and Merhof, Dorit HiFormer: Hierarchical Multi-scale Representations Using Transformers for Medical Image Segmentation In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision
2022
Reza Azad, Moein Heidari, Moein Shariatnia, Ehsan Khodapanah Aghdam, Sanaz Karimijafarbigloo, Ehsan Adeli and Dorit Merhof TransDeepLab: Convolution-Free Transformer-based DeepLab v3+ for Medical Image Segmentation In: MICCAI Workshop on PRedictive Intelligence in Medicine (PRIME 2022)
2022
Reza Azad, Moein Heidari, Julien Cohen-Adad, Ehsan Adeli and Dorit Merhof Intervertebral Disc Labeling With Learning Shape Information, A Look Once Approach In: MICCAI Workshop on PRedictive Intelligence in Medicine (PRIME 2022)
2022
Reza Azad, Moein Heidari, Yuli Wu and Dorit Merhof Contextual Attention Network: Transformer Meets U-Net In: MICCAI Workshop on Machine Learning in Medical Imaging (MLMI 2022)
2022
Reza Azad, Nika Khosravi and Dorit Merhof SMU-Net: Style matching U-Net for brain tumor segmentation with missing modalities In: 5th International Conference on Medical Imaging with Deep Learning (MIDL)
2021
Reza Azad, Afshin Bozorgpour, Maryam Asadi-Aghbolaghi, Dorit Merhof and Sergio Escalera Deep Frequency Re-Calibration U-Net for Medical Image Segmentation In: ICCV Workshop on Computer Vision for Automated Medical Diagnosis (CVAMD)
By continuing to use the site, you agree to the use of cookies. more information
English translation below.
Die Cookie-Einstellungen auf dieser Website sind so eingestellt, dass sie "Cookies zulassen" sollten, um das bestmögliche Surferlebnis zu erhalten. Sie können diese Website weiterhin nutzen, ohne Ihre Cookie-Einstellungen zu ändern, oder Sie klicken unten auf "Accept" und stimmen der Nutzung der Cookies zu.
In den Cookies werden lediglich die von Ihnen gewählten Spracheinstellungen gespeichert. Bitte lesen Sie auch unsere Datenschutzerklärung.
The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.
Only your chosen language settings are stored in the cookies. Please also read our privacy policy.