M.Sc.

Sanaz Karimijafarbigloo

Guest Researcher

 
 +49 241 80 27860
 Sanaz.Karimijafarbigloo@informatik.uni-regensburg.de



Curriculum Vitae

 

Mar 2023 – present Research Scientist, Institute of Imaging and Computer Vision, University
of Regensburg
Aug 2022 ‑ Mar 2023 Research Scientist, Institute of Imaging and Computer Vision, RWTH
Aachen
Sep 2016 ‑ Mar 2019 M. Sc. Electrical Engineering, Shiraz University of Technology

Research Field

Addressing data scarcity in medical domain using deep learning


Publications

 

Journal Publications

 
2023

Sanaz Karimijafarbigloo, Reza Azad, Amirhossein Kazerouni, Yury Velichko, Ulas Bagci and Dorit Merhof
Self-supervised Semantic Segmentation: Consistency over Transformation
In: arXiv preprint arXiv:2309.00143

 
2023

Sanaz Karimijafarbigloo, Reza Azad and Dorit Merhof
Self-supervised few-shot learning for semantic segmentation: An annotation-free approach
In: arXiv preprint arXiv:2307.14446

 
2023

Amirhossein Kazerouni, Sanaz Karimijafarbigloo, Reza Azad, Yury Velichko, Ulas Bagci and Dorit Merhof
FuseNet: Self-Supervised Dual-Path Network for Medical Image Segmentation
In: arXiv preprint arXiv:2311.13069

 
2023

Reza Azad, Moein Heidary, Kadir Ylmaz, Michael Hüttemann, Sanaz Karimijafarbigloo, Yuli Wu, Anke Schmeink and Dorit Merhof
Loss functions in the era of semantic segmentation: A survey and outlook
In: arXiv preprint arXiv:2312.05391

 
2022

Reza Azad, Ehsan Khodapanah Aghdam, Amelie Rauland, Yiwei Jia, Atlas Haddadi Avval, Afshin Bozorgpour, Sanaz Karimijafarbigloo, Joseph Paul Cohen, Ehsan Adeli and Dorit Merhof
Medical image segmentation review: The success of u-net
In: arXiv preprint arXiv:2211.14830

Conference Publications

 
2024

Sanaz Karimijafarbigloo, Reza Azad, Amirhossein Kazerouni and Dorit Merhof
Reducing Uncertainty in 3D Medical Image Segmentation under Limited Annotations through Contrastive Learning
In: Medical Imaging with Deep Learning

 
2024

Sanaz Karimijafarbigloo, Reza Azad and Dorit Merhof
Self-Supervised Contrastive Learning for Consistent Few-Shot Image Representations
In: International Workshop on PRedictive Intelligence In MEdicine

 
2024

Sanaz Karimijafarbigloo, Reza Azad, Yury Velichko, Ulas Bagci and Dorit Merhof
Leveraging unlabeled data for 3d medical image segmentation through self-supervised contrastive learning
In: 2024 IEEE International Symposium on Biomedical Imaging (ISBI)

2024

Reza Azad, Moein Heidary, Kadir Ylmaz, Michael Hüttemann, Sanaz Karimijafarbigloo, Yuli Wu, Anke Schmeink and Dorit Merhof
Loss Functions in the Era of Semantic Segmentation: A Survey and Outlook
In: arXiv preprint arXiv:2312.05391

 
2023

Sanaz Karimijafarbigloo, Reza Azad, Amirhossein Kazerouni and Dorit Merhof
MS-Former: Multi-Scale Self-Guided Transformer for Medical Image Segmentation
In: Medical Imaging with Deep Learning

 
2023

Sanaz Karimijafarbigloo, Reza Azad, Amirhossein Kazerouni, Saeed Ebadollahi and Dorit Merhof
MMCFormer: Missing Modality Compensation Transformer for Brain Tumor Segmentation
In: Medical Imaging with Deep Learning

2022

Reza Azad, Moein Heidari, Moein Shariatnia, Ehsan Khodapanah Aghdam, Sanaz Karimijafarbigloo, Ehsan Adeli and Dorit Merhof
TransDeepLab: Convolution-Free Transformer-based DeepLab v3+ for Medical Image Segmentation
In: MICCAI Workshop on PRedictive Intelligence in Medicine (PRIME 2022)