Oliver Christoph Johannes Rippel Vision-based open set recognition for industrial inspection systems
2022
Oliver Rippel, Corinna Zwinge and Dorit Merhof Increasing the Generalization of Supervised Fabric Anomaly Detection Methods to Unseen Fabrics In: Sensors 22 (13)
2022
Oliver Rippel, Nikolaj Schönfelder, Khosrow Rahimi, Juliana Kurniadi, Andreas Herrmann and Dorit Merhof Panoptic Segmentation of Animal Fibers In: 2022 IEEE International Instrumentation and Measurement Technology Conference (I2MTC)
2022
Oliver Rippel, Arnav Chavan, Chucai Lei and Dorit Merhof Transfer Learning Gaussian Anomaly Detection by Fine-tuning Representations In: Proceedings of the 2nd International Conference on Image Processing and Vision Engineering - IMPROVE
2022
Sergen Gülçelik Oliver Rippel and Dorit Merhof Animal Fiber Identification under the Open Set Condition In: 17th Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISAPP)
2021
Oliver Rippel, Patrick Mertens, Eike König and Dorit Merhof Gaussian Anomaly Detection by Modeling the Distribution of Normal Data in Pre-Trained Deep Features In: IEEE Transactions on Instrumentation and Measurement
2021
Oliver Rippel and Dorit Merhof Leveraging pre-trained Segmentation Networks for Anomaly Segmentation In: IEEE 26th International Conference on Emerging Technologies and Factory Automation (ETFA)
2021
Oliver Rippel, Peter Haumering, Johannes Brauers and Dorit Merhof Anomaly Detection for the Automated Visual Inspection of PET Preform Closures In: IEEE 26th International Conference on Emerging Technologies and Factory Automation (ETFA)
2021
Oliver Rippel, Niclas Bilitewski, Khosrow Rahimi, Juliana Kurniadi, Andreas Herrmann and Dorit Merhof Identifying Pristine and Processed Animal Fibers using Machine Learning In: IEEE International Instrumentation and Measurement Technology Conference (I2MTC)
2021
Oliver Rippel, Maximilian Müller, Andreas Münkel, Thomas Gries and Dorit Merhof Estimating the Probability Density Function of new Fabrics for Fabric Anomaly Detection In: 10th International Conference on Pattern Recognition Applications and Methods (ICPRAM)
2021
Oliver Rippel, Patrick Mertens and Dorit Merhof Modeling the Distribution of Normal Data in Pre-Trained Deep Features for Anomaly Detection In: 25th International Conference on Pattern Recognition (ICPR)
2020
Tarek Stiebel Dieter Geller and Dorit Merhof Accurate Stitch Position Identification of Sewn Threads in Textiles In: IEEE 25th International Conference on Emerging Technologies and Factory Automation (ETFA)
2020
Oliver Rippel, Maximilian Müller and Dorit Merhof GAN-based Defect Synthesis for Anomaly Detection in Fabrics In: IEEE 25th International Conference on Emerging Technologies and Factory Automation (ETFA)
2020
Johannes Thüring, Oliver Rippel, Christoph Haarburger, Dorit Merhof, Philipp Schad, Philipp Bruners, Christiane K. Kuhl and Daniel Truhn Multiphase CT-based prediction of Child-Pugh classification: a machine learning approach In: European Radiology Experimental 4 (1)
2020
Oliver Rippel, Maximilian Schnabel, Georg-Philipp Paar, Thomas Gries and Dorit Merhof Automated Segmentation of Profiled Fibers in cross-sectional Micrographs for Quality Control In: IEEE International Instrumentation and Measurement Technology Conference (I2MTC)
2019
Oliver Rippel, Daniel Truhn, Johannes Thüring, Christoph Haarburger, Christiane K. Kuhl and Dorit Merhof Prediction of Liver Function based on DCE-CT In: Bildverarbeitung für die Medizin (BVM)
2019
Christoph Haarburger, Justus Schock, Michael Baumgartner, Oliver Rippel and Dorit Merhof Delira: A High-Level Framework for Deep Learning in Medical Image Analysis In: Journal of Open Source Software
2019
Christoph Haarburger, Philippe Weitz, Oliver Rippel and Dorit Merhof Image-based Survival Prediction for Lung Cancer Patients using CNNs In: IEEE International Symposium on Biomedical Imaging (ISBI)
2018
Leon Weninger, Oliver Rippel, Simon Koppers and Dorit Merhof Segmentation of Brain Tumors in 3D-MRI Data and Patient Survival Prediction: Methods for the BraTS 2018 Challenge In: MICCAI Brainlesion Workshop (BrainLes)
Preprints
2018
Rippel, Oliver, Weninger, Leon and Merhof, Dorit AutoML Segmentation for 3D Medical Image Data: Contribution to the MSD Challenge 2018 In: arXiv preprint arXiv:2005.09978
By continuing to use the site, you agree to the use of cookies. more information
English translation below.
Die Cookie-Einstellungen auf dieser Website sind so eingestellt, dass sie "Cookies zulassen" sollten, um das bestmögliche Surferlebnis zu erhalten. Sie können diese Website weiterhin nutzen, ohne Ihre Cookie-Einstellungen zu ändern, oder Sie klicken unten auf "Accept" und stimmen der Nutzung der Cookies zu.
In den Cookies werden lediglich die von Ihnen gewählten Spracheinstellungen gespeichert. Bitte lesen Sie auch unsere Datenschutzerklärung.
The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.
Only your chosen language settings are stored in the cookies. Please also read our privacy policy.