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ABSTRACT
Methods to assess neurite growth in populations of neu-
ronal cells are required for many applications in biological
image analysis. In response to the need for efficient meth-
ods to assess neurite growth, we have previously proposed
an image processing framework to quantify the number of
viable cells and the extent of neurite growth [1]. The ap-
proach is based on region growing and uses cost penal-
ties and an upper cost limit to ensure that neurite out-
growth is not overestimated. However, these thresholds
need to be defined manually and are set to a fixed value
for the entire image. Also, the approach is not able to ac-
count for overlapping neurites in dense cell populations.
For this reason, we propose two extensions to overcome
the aforementioned shortcomings: By growing all regions
originating from individual cell nuclei simultaneously, the
approach adapts to the underlying microscopy image and
doesn’t require manually defined cost limits. An overlap
handling is introduced, which is particularly valuable in
dense cell populations with overlapping neurites. The re-
sults demonstrate that our advanced image processing ap-
proach generates results which are even closer to the man-
ual ground truth.

1. INTRODUCTION

The quantitative and rapid analysis of large numbers of
image data is one major bottleneck of high-throughput flu-
orescence microscopy assays. Existing tools provided by
the manufacturers of automated microscopes and of inte-
grated high content imaging systems usually do not de-
liver satisfying results due to the large variability of the
tested biological systems. For this reason, there is a need
for custom tools optimized for the analysis of specific mi-
croscopy endpoints.

Neurite outgrowth is a hallmark phenotype for de- and
regeneration in the nervous system. Due to its robustness
and sensitivity it is an endpoint of choice for the in vitro
testing of toxic chemicals, in particular those suspected to
affect neuronal development. For example, of the 3000

high production volume chemicals (chemicals produced
or imported into the United States at or above one million
pounds per year), nearly half have no basic toxicity data
available [2], and only 7% have a complete set of toxic-
ity data, including developmental toxicity. In the absence
of data, the risk of developmental neurotoxicity for these
chemicals is unknown, but it is estimated to be high [3].
Accordingly, there is an increased public concern that ex-
posure to chemicals in the environment may be partially
responsible for the increased number of cases of neuro-
logical disorders in children and adults.

Lund human mesencephalic (LUHMES) cells are a fe-
tal human mesencephalic cell line which has been estab-
lished as a general human neuronal cell model [4]. They
are easy to handle and differentiate in vitro into highly ho-
mogenous cultures of mature dopaminergic neurons. LUH-
MES cells are thus particularly well suited for large scale
testing of neurotoxicants in single-cell based assays.

In previous work, we have established a high-through-
put live cell imaging system for identifying neurotoxic
agents [5], which enables quantifying the overall neurite
mass as well as cell viability in differentiated LUHMES
cultures. We presented an image processing framework to
compute the number of viable cells with and without neu-
rite growth in these images [1]. This approach is based on
region growing performed for one cell at a time. In order
to make sure that neurite outgrowth is not overestimated
as shown in Figure 1 (left), cost penalties and an upper
cost limit are employed to ensure that the region growing
maintains a minimum distance to other cell nuclei. How-
ever, these thresholds need to be defined manually and are
set to a fixed value for the entire image. Also, the approach
was not able to account for overlapping neurites.

In this work, we propose an advanced approach which
comprises two extensions to overcome the aforementioned
shortcomings. By growing all regions originating from in-
dividual cell nuclei simultaneously, as shown in Figure 1
(right), the approach adapts to the underlying microscopy
image and doesn’t require manually defined cost limits.



Figure 1. Red: Grown region. Green: Path with maxi-
mum length. Left: Neurite growth according to [1] grows
one region at a time. Cost penalties stop growth when ap-
proaching other nuclei. Right: Proposed algorithm, grows
all nuclei simultaneously, no cost penalties needed.

Furthermore, an overlap handling is introduced, which is
particularly valuable in dense cell populations with over-
lapping neurites.

The microscopy images used in this work were ac-
quired in a toxicity study of U0126, which has previously
been shown to influence neurite outgrowth: U0126 is a
potent inhibitor of the mitogen-activated protein kinase
(MAPK) pathway, which is involved in regulating neu-
rite growth. MAPKs have been implicated in a variety of
cellular functions, including neuronal differentiation [6].

In this work, only non-invasive labelling and detection
methods are applied. The neuronal cells are grown at high
density to allow extensive networking, which results in
microscopy images that are challenging to process from
an image analysis point of view. In order to investigate if
the considered compound affects neurite outgrowth at the
single cell level, an image processing system is needed
that counts viable cells with and without neurite growth.

The presented image processing framework allows
quantifying the number of cells with extensions longer
than one cell diameter (defined here as neurites) and out-
puts the counts of neuronal cells with and without neu-
rites. Compared to [1], this advanced approach doesn’t
require manually defined cost limits for region growing
and is also able to account for cells with overlapping neu-
rites, which is particularly important for cell populations
grown at high density. Results show that the proposed ad-
vanced approach follows the manual ground-truth more
closely and is therefore preferred by the biologists.

2. MATERIAL AND METHODS

2.1. Image data

Microscopy images of LUHMES cells were acquired on
an Assay-Scan II High Content Screening (HCS) System,
Cellomics. In order to clearly identify the nuclei, neuronal
cells were stained with the DNA dye H-33342. Imaging of
the cell shape region (cytoplasm), including the cell body
(soma) and its extensions (neurites), was performed using
the vital dye calcein-AM. Since dead cells cannot accu-
mulate and retain this dye in their cytoplasm, the calcein

channel is also used to exclude dead cells from further
analysis.

Microscopy images were acquired for cell populations
which had been treated with control medium or increasing
concentrations of the test compound. Partly visible neu-
ronal cells at the border of the microscopy image are au-
tomatically detected and labelled by the screening system
and excluded from subsequent analysis.

2.2. Software framework

The presented approach was developed using the software
platform KNIME (The Konstanz Information Miner [7]),
which is an open-source tool for data integration, process-
ing, analysis and exploration. Essentially, KNIME work-
flows consist of interacting nodes which exchange data via
data tables which are passed from one node to another ac-
cording to their connections. The graphical user interface
makes it possible to construct workflows consisting of dif-
ferent nodes and their interconnection via a simple drag-
and-drop mechanism.

The advanced image processing workflow presented
in this work consists of several custom KNIME nodes that
extend the workflow presented in [1].

2.3. Quantification of neurite growth

The approach for quantifying the number of cells with
neurites presented in [1] as well as the advanced method
introduced in this work comprise two general steps: First,
the nuclei of the neuronal cells are segmented from the
H-33342 images, and for each neuronal cell all pixels be-
longing to the nucleus are classified as seedpoints. Sec-
ondly, the cytoplasm region of viable cells is then grown
from these seed points to expand the initial contour of the
nucleus outwards. For each pixel added to the expanding
volume, the length of the path to the initial boundary of
the nucleus is computed and stored.

The approach presented in this work has two major
extensions, which are outlined in the following:

Parallel growth: The approach operates in the style of
the Dijsktra algorithm [8], which is commonly used in
computer science for different types of search problems.
It builds up a graph with nodes (corresponding to pixels)
and edges, where the edges are assigned a local cost cor-
responding to the Euclidean distance between pixel cen-
ters plus the normalized inverted intensity. For performing
the search, the algorithm maintains two lists, an open list
comprising all pixels currently under consideration and a
closed list containing pixels that have already been vis-
ited. In the beginning, the open list comprises all pixels
at the border of every cell nucleus and the closed list is
empty. Each node c stores the accumulated cost required
to travel along the path to the respective node, the accumu-
lated path length, the previous node and the nucleus from
which the node was reached. In each iteration, the algo-
rithm selects the node with lowest accumulated cost from
the open list, adds all neighbor pixels n with an intensity
value above the cytoplasm intensity threshold tcyto to the
open list and moves the selected node to the closed list. If



the path length exceeds the length threshold lmin, the cor-
responding nucleus is marked as grown. These processing
steps continue until the open list is empty.
Overlap handling: Although parallel growth eliminates
the need of a cost penalty, it is too restrictive in case of cell
clusters with overlapping neurites. The proposed overlap
handling softens the region border and introduces a per-
meable area were regions from multiple nuclei can over-
lap. Algorithm 1 shows the pseudocode of the overlap
handling. The algorithm maintains a global open list O.
Each individual node c on the open list keeps track of the
accumulated distance, cost and which nuclei reached and
closed the node. In each iteration, the algorithm selects
the node with lowest accumulated cost from the open list,
adds all neighbor pixels n with an intensity value above
tcyto to the open list and marks the current node as partly
closed. If a node is only partly closed it can be reopened
for another nucleus. The permeable area is updated by
backtracking and completely closing all nodes with a dis-
tance to the open list greater than loffset. This permeable
area makes it possible for neurites to overlap to a certain,
user-defined extent.

These extensions narrow down the parameter set to the
neurite length threshold lmin, the intensity threshold tcyto

and the permeable area offset loffset.

while O 6= ∅ do
c← removeBest(O)
if c.dist > lmin then State[c.nuc]← “grown”
foreach n ∈ neighbors(c) do

if c.nuc ∈ n.Closed then continue
if n.intensity < tcyto then

backtrackCloseCompletely(c, 0)
continue

if isClosedCompletely(n.nuc) then
continue

cost← c.cost+ | #   ‰c, n|+ γ(c.intensity)
dist← c.dist+ | #   ‰c, n|
if n.Closed 6= ∅ then

if dist+ n.dist > lmin then
State[c.nuc]← “grown”
State[n.nuc]← “grown”

if n ∈ O then
if n.cost > cost then

n.cost, n.dist← cost, dist
n.nuc, n.Path[c.nuc]← c.nuc, c

else
n.cost, n.dist← cost, dist
n.nuc, n.Path[c.nuc]← c.nuc, c

O ← O ∪ {n}
backtrackCloseCompletely(c, loffset)
c.Closed← c.Closed ∪ {c.nuc}

Algorithm 1: A node c holds intensity c.intensity, nu-
cleus c.nuc, cost c.cost, distance c.dist, parent nodes
c.Path. The function γ computes the normalized in-
verted intensity and loffset controls the local offset of the
permeable area. Lower case variables hold scalar val-
ues, upper case variables refer to lists.

Figure 2. Decreasing neurite outgrowth for U0126. Pur-
ple: Manual ground truth. Blue: Automated method [1].
Black: Proposed advanced method.

3. RESULTS

The image processing framework was applied to micros-
copy images (two-channel images, 512×512 pixels per
channel) of LUHMES human neuronal precursor cells
treated with U0126. On a PC with an Intel Xeon W5130,
2 GHz, 4 GB RAM, image analysis took 2 minutes, 27 sec-
onds for ten concentration levels and three microscopy im-
ages per level.

In Figure 2, a direct comparison of the automated ap-
proach proposed in [1] (blue) and the advanced method
presented in this work (black) is provided. Both approaches
are compared against a manual groud truth (purple), for
the chemical U0126. The x-axis denotes an increasing
concentration of the chemical, the y-axis the decrease of
neurite outgrowth. The curve obtained from the advanced
method follows the manual ground truth more closely. This
is also reflected by computing the difference between man-
ual evaluation and either method for the measured con-
centrations for each of the ten concentration levels. The
difference between mean values of the manual evaluation
and the automated analysis [1] amounts to an average value
of 0.185, compared to 0.081 in case of the proposed ad-
vanced approach versus manual ground truth, respectively.

In Figure 3, a visual result of the implemented method
is provided. Red nuclei indicate dead cells according to
the calcein staining. Green corresponds to cell nuclei with
neurite growth, and grey to nuclei without neurite growth
according to the analysis. For each cell with neurite growth,
the maximum path length between the border of the nu-
cleus and the border of the cytoplasm is indicated by a
green line. Pixels that have been visited by the algorithm
during front propagation are denoted by dark green. The
maximum extension of each region grown from the out-
line of its nucleus is outlined by a red rim, which may
disappear in case of overlapping neurites, though.

4. DISCUSSION

The development of automated methods to assess the ef-
fects of treatment with toxic substances is challenging,
particularly at low concentrations which defines the sen-



Figure 3. Neuronal cells without (left) and with (right) neurite growth. Original images (upper row) and image analysis
result (lower row). Red nuclei correspond to dead cells, green nuclei to cells with neurite growth, and grey nuclei to
viable cells without neurite growth. In case of neurite growth, the maximum distance between nucleus and boundary
of the cytoplasm is indicated by a green line. Pixels that have been visited by the algorithm are denoted by dark green.
The red rim delineates the boundary of the maximally dilated regions after growing from individual nuclei. In case of
overlapping neurites this boundary disappears.

sitivity of the toxicity test. The neurons naturally tend to
form clusters, which makes it difficult to detect the length
of single neurites.

The result obtained by the proposed algorithm is a bi-
nary decision whether a cell exhibits neurite growth or not.
According to Figure 2, the result is very close to the hu-
man ground truth, even for low concentrations of the neu-
rotoxicant, and also reaches the same absolute extent of
neurite growth inhibition for the maximum concentration
of U0126.

5. CONCLUSION

In this work, an advanced system is presented that out-
puts the counts of neuronal cells with and without neurites
in LUHMES human neuronal precursor cells. The results
demonstrate that our advanced image processing approach
can reliably quantify chemical effects on initial neurite
outgrowth. Compared to the manual ground truth, im-
proved results were obtained with the advanced approach
presented in this work. Identifying chemicals that act as
developmental neurotoxicants is a major challenge in cur-
rent research. Computational tools that facilitate the ex-
traction of quantitative data from respective experiments
are therefore of great interest to the biology community.
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