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ABSTRACT

Magnetic resonance diffusion imaging provides a unique insight into the white matter architecture of the brain
in vivo. Applications include neurosurgical planning and fundamental neuroscience. Contrary to diffusion tensor
imaging (DTI), high angular resolution diffusion imaging (HARDI) is able to characterize complex intra-voxel
diffusion distributions and hence provides more accurate information about the true diffusion profile. Anisotropy
indices aim to reduce the information of the diffusion probability function to a meaningful scalar representation
that classifies the underlying diffusion and thereby the neuronal fiber configuration within a voxel. These indices
can be used to answer clinical questions such as the integrity of certain neuronal pathways. Information about
the underlying fiber distribution can be beneficial in tractography approaches, reconstructing neuronal pathways
using local diffusion orientations. Therefore, an accurate classification of diffusion profiles is of great interest.
However, the differentiation between multiple fiber orientations and isotropic diffusion is still a challenging task.
In this work, we introduce ISMI, an index which successfully differentiates isotropic diffusion and single and
multiple fiber populations. The classifier is based on the orientation distribution function (ODF) resulting from
Q-ball imaging. We compare our results with the well-known general fractional anisotropy (GFA) index using a
fiber phantom comprising challenging diffusion profiles such as crossing, fanning and kissing fiber configurations
and a human brain dataset considering the centrum semiovale. Additionally, we visualize the results directly on
the fibers represented by streamtubes using a heat color map.
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1. INTRODUCTION

Diffusion tensor imaging (DTI) is a method which measures the diffusion of water molecules. In fibrous tissue such
as muscles or brain white matter the movement of water molecules is restricted, resulting in anisotropic diffusion.
Based on the local diffusion profile, it allows for the identification of neuronal pathways and the approximation of
the course of fibers in vivo. However, DTI is limited in terms of identifying multiple diffusion maxima within one
voxel, caused by the Gaussian assumption of the tensor model. To overcome the limitations of DTI, high angular
resolution diffusion imaging (HARDI) was introduced. HARDI techniques such as Q-ball imaging are able to
resolve more than one diffusion orientation within one voxel. Hence, the differentiation between challenging
intra-voxel fiber configurations such as fiber crossings, kissings or fannings and single fiber configurations is
feasible. This information is especially needed in tractography approaches to guide the reconstruction of fiber
pathways. For example, if challenging intra-voxel diffusion profiles are present, different heuristics are applied
to determine the next step than in voxels containing single diffusion maxima. In neurosurgery, knowledge about
the integrity of neuronal pathways is essential for pre-operative planning. Hence, it is important to differentiate
diffusion profiles into the following three classes: voxels containing isotropic diffusion profiles, characterizing gray
matter regions and voxels containing single or multiple fiber orientations, which are white matter regions.

However, existing diffusion classifiers are oftentimes not able to distinguish between gray and white matter
and especially in white matter differentiate complex fiber distributions properly. In addition, classifiers are often
of complex nature, not intuitive and easy to adjust for clinicians, since they need a detailed understanding of
acquisition or reconstruction parameters. Therefore, in this paper we present an isotropic, single and multiple
fiber classification index (ISMI) based on characteristics of the orientation distribution function (ODF), the local
probability density function (PDF) describing the probability of a water molecule diffusing into a specific spatial



direction. We enable the classification of the diffusion profiles which is beneficial in tractography approaches to
improve propagation as well as in neurological questions and neurosurgical planning concerning integrity and
local fiber distributions. Furthermore, since we provide direct visual feedback within the proposed classification
pipeline, the usability of our approach is very intuitive and easy to handle by clinicians.

2. RELATED WORK

In the following, a short literature study is presented, which aims to provide an overview on existing diffusion
classifiers. In general, diffusion classification indices can be categorized into DTI- or HARDI-based, whereas in
the latter case classifiers which aim to differentiate linear and more complex distributions, such as the ISMI,
exist.

To rate the degree of linear diffusion of a distribution function within a voxel in DTI, the fractional anisotropy
(FA)1 is a well-known index, describing the degree of linearity of a diffusion distribution and is defined as follows:
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where λ are the tensor eigenvalues and λ̂ is the trace of the diffusion tensor. The generalized fractional anisotropy
(GFA), introduced by Tuch,2 is the adaption of the FA index to HARDI,

GFA =
std(Ψ)

rms(Ψ)
=

√

n
∑n

i=1
(Ψ (ui)− 〈Ψ〉)2

(n− 1)
∑n

i=1
Ψ(ui)

2
. (2)

Here, Ψ(u) is the ODF value for a diffusion direction of interest u, 〈Ψ〉 is the mean of the ODF and n is the
number of samplings on a sphere, used to evaluate the ODF. A well-defined and rotationally invariant version
of the GFA was defined by Landgraf et al.3

Since HARDI arose in diffusion imaging, indices aiming to delineate the true intra-voxel fiber population were
developed. Frank et al.4 introduced the fractional multifiber index (FMI) for determining the best describing
model order, l, of the current diffusion probability function. The authors use spherical harmonic (SH) basis
functions, to map the diffusion signal and determine the degree of complexity by analyzing the spherical harmonics
coefficients of the current ODF,
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where, c are the SH coefficients for order l. Chen et al.5 and Descoteaux et al.6 both introduced a similar
diffusion index based on SH coefficients as well. The introduced indices are defined by
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The underlying diffusion profile is considered to be isotropic if R0 is large. However, if R2 is large, a one-fiber
distribution is present in the current voxel, whereas a large Rmulti-value indicates more diffusion directions. We
previously introduced an index called Morphological Fiber Classification (MFC)7 which is not affected directly
by acquisition parameters. The classifier detects multiple diffusion fiber directions using a white matter mask,
resulting from ODF analysis. Within a global approach, the white matter mask is morphologically thinned out
in a way that only clusters remain. Therefore, the classifier is only dependent on a proper white matter mask.
These clusters occur at regions with complex morphology and are considered to represent voxels containing
multiple diffusion orientations.

Despite the MFC, the presented classifiers lead to insufficient results in differentiating isotropic from anisotropic
diffusion and in terms of anisotropic diffusion in single and multiple fiber orientation when using datasets with a
low b-value and less diffusion gradient directions. Therefore, we developed ISMI, which consists of a classification
pipeline and comprises a detailed analysis of the local diffusion distribution function.



3. METHODS

In the following, material and methods for ISMI computation and visualization will be introduced.

3.1 HARDI Datasets

Phantom We evaluated our classifier using a phantom dataset.8–10 This phantom was originally provided by
the Laboratoire de Neuroimagerie Assistée par Ordinateur (LNAO, France) in the course of the Fiber Cup, a
tractography contest at the MICCAI conference in 2009. Data was acquired with two repetitions and 64 image
encoding gradients. We averaged the two repetitions for further processing. The size was 64× 64 voxels with a
uniform voxel size of 3 mm and a b-value of 2000 s/mm2.

Human Brain Furthermore, we applied ISMI to a human brain dataset of size 128× 128× 60, acquired with
a voxel size of 1.875 × 1.875 × 2 mm.11 The applied gradient direction scheme included 200 directions and a
b-value of 3000 s/mm2.

3.2 Reconstruction

Popular HARDI reconstruction methods are, amongst others, diffusion spectrum imaging (DSI),12 spherical de-
convolution (SD)13 and Q-ball imaging.2 DSI requires particular acquisition parameters (whole-sphere sampling),
which leads to a detailed diffusion signal on the one hand, but on the other hand is, due to the acquisition time,
not applicable in clinical routine examinations. SD is a HARDI-technique including previous knowledge about
the underlying diffusion signal and therefore leads to sharper diffusion distributions. However, its susceptibility
to noise leads to false positives and the integration of a single basic model, restricting the underlying diffusion
shape, is problematic, since information is potentially lost. Q-ball imaging uses a single-sell acquisition scheme,
which results in a shorter acquisition time. Furthermore, it does not make severe assumptions concerning the
underlying diffusion profile as in SD and therefore, provides an appropriate balance for HARDI reconstruction
and was chosen as the basis for our classifier. In the following, the implemented HARDI reconstruction using
Q-ball imaging will be introduced.

Spherical harmonics form a complete orthogonal system, so an arbitrary real function Ψ (θ, φ) can be expanded
to comply spherical harmonics
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where Y m
l (θ, φ) represents a spherical harmonic of order l and phase factor m. Further, aml denotes the SH

coefficient and lmax the truncation order of the spherical harmonics series. An analytical scheme to calculate
appropriate SH coefficients for diffusion signal fitting was introduced by Descoteaux et al.14 The authors addi-
tionally included a Laplace-Beltrami regularization term. They used a modified symmetric, real and orthonormal
SH basis Y with elements Yj as

Yj =
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where Re (Y m
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k ) denote the real and imaginary parts of Y m
l and index j = j(k,m) =
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/2 + m and k = 0, 2, 4, . . . , l and m = −k, . . . , 0, . . . , k. Reformulating Equation 5 according to
Equation 6 results in
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for N gradient direction pairs θi, φi with R = (lmax + 1) (lmax + 2) /2 is the number of terms in the modifies
SH basis. The proposed diffusion signal mapping for a chosen maximal model order results in a number of SH
coefficients assigned to each term in the introduced modified SH basis, Equation 6.



4. DIFFUSION CLASSIFICATION

With previously defined HARDI reconstruction, evaluating the ODF is now simply solving Equation 7 for
arbitrary diffusion directions of interest using the computed coefficients and corresponding basis functions. We
evaluated the ODF for each voxel using a tessellation order 3 for a sphere. This results in 162 points, uniformly
distributed over a sphere.

ISMI computation is illustrated schematically in Figure 1 and includes two major steps: first, the classification
of white and gray matter and, secondly, the classification into single or multiple fiber populations. For the first
step, we define a fiber mask identifying all voxels including white matter. Both, single and multiple fiber
distributions belong to the same classification group. To differentiate between white and gray matter, the scaled
sum of the min-max normalized ODF is calculated: We compute the ratio between the spherical function and
the sphere, which is given by the maximal radius of the local ODF. Therefore, the white matter mask is defined
by

1−
∑n

i=1
Ψ(ui)

n ·maxRad
, (8)

where n is the number of samples on a sphere resulting from the icosahedron tessellation order and Ψ (u) is the
local ODF with diffusion directions of interest u = (θ, φ) with θ ∈ [0, π] , φ ∈ [0, 2π]. The maximum radius of the
current ODF is indicated by maxRad.

The next step aims to differentiate between single and multiple intra-voxel fiber distributions and is considered
in the following only for voxels already classified to belong to white matter. Therefore, we can successfully classify
between isotropic diffusion and multiple fiber orientations. To identify multiple diffusion directions, we compute
the number of local maxima of the min-max normalized ODF above a certain threshold. For the phantom
dataset, we chose a value of 0.5 and for the human brain 0.6. However, within the ISMI computation pipeline,
the user can adjust the parameter with immediate visual feedback to control the impact of this classification
stage and adjust the threshold for each diffusion dataset.

In a last step, we combine both classification results to form the ISMI, which finally differentiates between
isotropic, single and multiple fiber configurations, as shown in Figure 1.

5. VISUALIZATION

This section aims to present the visualization of the ISMI index. We choose to enable a tract-specific visualization
using a heat color map and texturing within a shader approach.

5.1 Color Map

To indicate the three different compartments, isotropic diffusion and single and multiple fiber distribution, we
use a heat colormap. As visualized in Figures 2b, 3 and 4, isotropic diffusion profiles are indicated by white,
single fiber distributions by yellow and more complex fiber configurations by red.

5.2 Fiber Tracts

To visualize the index with an anatomical and clinical meaning, we applied texture mapping to GPU-generated
streamtubes. For tract generation, we used our distance-based HARDI tractography algorithm proposed in.15

The deterministic approach bases on the local ODF and includes an evaluation of diffusion distributions in
the seed voxel evaluation of distances to white matter boundaries in which vectors orthogonal to the current
orientation are generated. In the proposed algorithm, curvature thresholds, local anisotropy information and
the position of the current tract within the bundle are used to determine the direction for the next step in each
voxel using the ODF.

The presented streamtubes are computed using a geometry shader-based pipeline, in which view vector
oriented triangle strips are generated and tube-like colored in the fragment shader. More precisely, the distance
of a fragment to the tube centerline is transferred from the geometry shader to the fragment shader and used
to fade the fragment’s color to black. Hence, a tube-like appearance is achieved without the computational



complexity of real tubes. The ISMI classification volume is an input for the shader pipeline and used in the
fragment shader through texture lookup. In case the fragment is not faded to black, the previous color mapping
is applied.

6. RESULTS

To evaluate the ISMI classifier, we compared our results with a well-known diffusion index, the GFA, introduced
in Section 2. To identify challenging regions, and evaluate our method, we applied a tractography approach to
the Fiber Cup phantom dataset, which comprises very challenging diffusion profiles such as crossing, kissing and
fanning fiber configurations. Figure 2a shows the result using the GFA anisotropy index. Yellow indicates a high
GFA-value and hence, high anisotropy, whereas red reveals isotropic regions with a low GFA-value. Using this
index, regions with complex intra-voxel diffusion profiles such as crossings and fannings lead to a low anisotropy
value. Considering regions where trajectories leak into gray matter, as one can see in Figure 2a in the left of
the crossing at the bottom, leakings are not differentiated from crossings. As a consequence, GFA is not able
to distinguish between regions with isotropic diffusion (gray matter) and multiple diffusion orientations (white
matter). On the other hand, the ISMI classification results of the same fiber representation is shown in Figure 2b.
The presented index successfully classifies into the three intra-voxel configurations: isotropic diffusion (white)
single fiber population (yellow) and multiple fiber population (red). In crossing and fanning areas ISMI has a
high value indicating multiple fiber configurations, whereas the leaking of the trajectory leads to a low value. If
we compare both results, we can see that GFA indicates false-positives in terms of multiple fiber orientations,
such as leakings of the fiberpathway into gray matter or in regions with high curvature. Contrary, ISMI is able
to differentiate between isotropic diffusion and multiple fiber populations.

Figure 3 shows fibers belonging to the corpus callosum and running in the centrum semiovale, a region in the
brain where fibers of the corticospinal tract, the superior longitudinal fasciculus and the corpus callosum meet.
For better spatial orientation, the anatomical volume is visualized as well. This leads to challenging crossing
configurations of all three tracts within voxels. In addition, the corpus callosum fans into the whole hemisphere,
which cannot be reconstructed using simple tractography approaches. The parts of the reconstructed callosal
fibers, crossed by other neuronal pathways, can be identified in Figure 3, since they are colored in red: In the
right and the left part of the illustrated fibers, red parts belong to the centrum semiovale. However, red parts in
the center of the corpus callosum reveal regions where the cingulum and the corpus callosum meet. The cingulum
is a pathway running on top of the corpus callosum in the opposite direction.

In order to illustrate the classification power in terms of isotropic diffusion, Figure 4 shows parts of the corpus
callosum but reconstructed with a tractography approach which only takes the maximum value of the ODF as
a tracking direction. Hence, this simple algorithm is not able to reconstruct challenging fiber configurations
properly, the fanning of the corpus callosum in this case. Additionally, a seed region within gray matter was
placed to indicate false positives, as can be seen below the center of the corpus callosum. Fibers in this region
are displayed in white. We can observe that fibers running inferiorly are white as well and thus isotropic. These
parts of the reconstructed neuronal pathways therefore run into gray matter areas or show a very low anisotropy,
which corresponds with knowledge about diffusion imaging in fibers close to the head’s surface.

7. DISCUSSION AND CONCLUSION

The novelty of the presented work consists of the ISMI index which successfully classifies diffusion into the
following three compartments: isotropic diffusion profiles and anisotropic diffusion into single and multiple fiber
populations. Contrary to known classifiers, such as the GFA, the presented index additionally provides the ability
to control the extent of multiple fiber configurations by adjusting the threshold for the number of maxima of the
ODF. Therefore, the user can directly determine and explore challenging fiber configurations of interest with a
visual feedback. The introduced computation pipeline and the immediate visual feedback facilitates an intuitive
handling and control of the classification result. In addition, a following fiber integrity examination considering
only single fiber distributions is feasible. To our knowledge, no index based on Q-ball imaging revealing this
detailed information about the true underlying diffusion profile exists.



For this work Q-ball imaging was chosen as a reconstruction method. However, any HARDI-technique,
resulting in an ODF, can act as an input for our classifier.

The presented index ISMI proved to be beneficial in terms of the intra-voxel diffusion classification problem.
It is able to identify isotropic diffusion from multiple orientations within one voxel. Therefore, tractography
approaches or fiber integrity examinations can be improved for neurological examinations or neurosurgical plan-
ning.
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Figure 1: Computation pipeline for ISMI calculation using a phantom dataset.

(a) (b)

Figure 2: (2a) Visualization of GFA index results. Red parts indicate regions with low anisotropy, yellow parts
indicate high anisotropy. Evidently, using GFA is not an option for clear differentiations between multiple fiber
populations and isotropic regions, both result in similar color values. (2b) Classification results of ISMI. Accurate
classification of isotropic diffusion (white), single fiber (yellow) and multiple fiber distribution (red) is achieved.



Figure 3: ISMI classification results for callosal fibers of a human brain, visualized with an anatomical volume.

Figure 4: ISMI classification results for callosal fibers of a human brain, visualized with an antomical volume
and tractography results using a simple tracking algorithm.


