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ABSTRACT: Microscopy images of progenitor cells prepared with a specific epigenetic mark show its massive
relocation during differentiation. We propose an image processing pipeline for the automated quantification of
this relocation. A novel set of features which are extracted from polar representations of the microscopy images
are used to construct a strong classifier via an adaptive boosting algorithm. In addition to the classification a
measurement of the relocation in each nucleus is performed.
Keywords: biomedical image processing, feature extraction, image classification

1 INTRODUCTION
The last step during differentiation of mammalian
tissues is the maturation phase when cell type spe-
cific gene expression are switched on to differenti-
ate the progenitor cells into a specific cell type (Zim-
mer, Kuegler, Baudis, Genewsky, Tanavde, Koh, Tan,
Waldmann, Kadereit, and Leist 2011). This switch is
not only regulated by linear DNA sequence informa-
tion, but also by the structural organization of DNA,
called chromatin (Khorasanizadeh 2004). In this work
we propose an image processing pipeline to quantify
the chromatin structural changes during the matura-
tion phase of the differentiation.

The microscopy images under consideration show
immunostained progenitor cells at different days of
differentiation with a well described repressive his-
tone epigenetic mark (Kouzarides 2007). This mark is
massively relocated during differentiation, from a rel-
ative homogenous and regular pattern toward a clear
concentration at the nuclear periphery. To show that
this relocation is not only occurring in a subset of
cells, we quantify the amount of cells with ring struc-
ture at the nuclear periphery during differentiation for
a large number of microscopy images, see Figure 1
for two exemplary images.

Our image processing pipeline automatically clas-
sifies the microscopy images using a novel set of
rotation-invariant features and an adaptive boosting
algorithm. Moreover, for comparison the histone re-
location is measured using an additional fluorescent
marker. The methods are presented in detail in Sec-
tion 2, the results of the automated classification and
the measurement are summarized in Section 3, and fi-
nally in Section 4 conclusions are drawn and future
research directions are given.

Figure 1: Cell nuclei after two days (left) and after
seven days (right) of differentiation. The cells show a
clear ring structure after seven days.
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2 METHODS
In this section we present the technical details of the
proposed image processing pipeline for the automated
classification of microscopy images. In particular, we
explain which features are extracted and used for the
adaptive boosting algorithm.

2.1 Feature extraction
The features are extracted from polar representa-
tions (Kvarnström, Logg, Diez, Bodvard, and Käll
2008) created from the original microscopy image.
These so-called polar images are determined by
choosing a center point, a radius and a number of
angles. Then rays originating at the center point and
having the length of the chosen radius are collected
and stacked for the chosen number of angles, see Fig-
ure 2 for an example. The polar images we use here
are centered at seeding points that are distributed on
a rectangular grid on the microscopy image. The dis-
tance between neighboured seeding points is chosen
to be r/5, where r denotes the average nucleus ra-
dius in our test images. We use 4r angles and a radius
of 6r/5 for the construction of the polar images, thus
each polar image has the width W = 6r/5 and the
height H = 4r. Using our specific set of features on
polar images yields rotational invariance, but not nec-
essarily scaling invariance.

The features explained below are not only extracted
from the complete polar image, but also from subwin-
dows of the polar image. These subwindows cover the
whole range of angles, meaning that their height is H .
Hence, the rotational invariance of the features is pre-
served. We choose subwindows of width W/2 cen-
tered at x-positions W/4, W/2 and 3W/4 within the
polar image to extract the features. Note that the total
number of features is proportional to the number of
subwindows. In the following detailed explanation of
the extracted features, let w and h denote the width
and the height of the considered subwindow.

Figure 2: Polar image for a single cell nucleus. The
microscopy image (left) is converted to a polar image
(right). The center of the polar image is chosen close
to the center of the nucleus.

Histogram features

The histogram of the subwindow is computed and the
following statistical values are used as features: mean,
median, 20%-quantile, 80%-quantile, standard devia-
tion and kurtosis. Histogram features describe global
statistics of the pixel intensities.

Haar-like features

The response of a Haar-like feature (Lienhart, Kura-
nov, and Pisarevsky 2003) measures the difference of
pixel intensities in distinct rectangles. Recall that the
considered subwindow of the polar image is w pixels
wide and h pixels high. Let (a, b, c, d) denote a rect-
angle that is defined by its upper left corner (a, b) and
its lower right corner (c, d).

The first set of values are computed using two rect-
angles (0, y,w/2 − 1, y) and (w/2, y,w − 1, y) for
0 ≤ y < h. This means that the pixel intensity of the
right half of each row y in the subwindow is sub-
tracted from the pixel intensity of the left half, see
Figure 3 (left) for a sketch.

The second set of values are computed using a rect-
angle (0, y,w−1, y+h/2) for 0≤ y < h/2. The pixel
intensity within this rectangle is compared to the pixel
intensity of the remaining area of the subwindow, see
Figure 3 (right) for a sketch.

For both sets of computed values, we again use
mean, median, 20%-quantile, 80%-quantile, standard
deviation and kurtosis as the actual features. Both of
these feature sets are a measure for how likely the
seeding point is inside a cell nucleus, and how close
this point is to the center of the nucleus. In particu-
lar, the second Haar-like feature is a measure for the
symmetry.

Figure 3: Sketch of the used rectangles for the Haar-
like features. The left panel illustrates the per-row
comparison of the left half and the right half, the right
panel shows the comparison of a rectangle with full
width and half height versus the remaining part.
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Shape features

In order to extract the shape features, first a Gaussian
filter with radius 3 is applied to the polar image. Then
a Haar-like filter is applied to this image in the follow-
ing manner: The value of the pixel at position (x, y)
is computed as the difference of the pixel intensity of
rectangle (x− 4, y, x− 1, y) and the pixel intensity of
rectangle (x, y, x+3, y). This value is then divided by
lnx. Afterwards, a dynamic programming approach
is used to detect a vertical contour of maximum re-
sponses in this filtered image. The advantage of this
contour detection algorithm over a standard gradient
filter is that it is much more robust to noise. Moreover,
it is possible to take the direction of the transition into
account. Figure 4 shows a Haar-like filtered polar im-
age and the resulting contour.

Let c(y) denote the x-coordinate of the contour in
the polar image. The response of a Haar-like feature
comparing two rectangles (c(y) − 4, y, c(y) − 1, y)
and (c(y), y, c(y) + 3) is computed for each row y
in the original polar image. Similarly, the pixel inten-
sity, its median, mean, sum, maximum and minimum
within the rectangle (c(y)− 4, y, c(y) + 3, y) is com-
puted in the original polar image.

The actual extracted features are again the sta-
tistical values mean, median, 20%-quantile, 80%-
quantile, standard deviation and kurtosis of the com-
puted values. These features are measures for the
shape and the intensity of the contour.

Figure 4: Haar-like filtered polar image (left), the
computed contour is overlaid in red. The middle panel
shows the original polar image overlaid with a sketch
of the contour and the rectangles used for the Haar-
like feature response in each row. The right panel
shows a sketch of the rectangle used for the intensity
measurements.

2.2 Boosting
We use an adaptive boosting algorithm Ada-
Boost (Freund and Schapire 1999) to classify the po-
lar images. The main idea of the AdaBoost algorithm
is to use a linear combination of many weak classi-
fiers in order to construct a strong classifier, where

the weak classifiers are simple decision stumps us-
ing the extracted feature values, see (Smith, Carleton,
and Lepetit 2009; He, Wang, Metaxas, Mathew, and
White 2007; Viola and Jones 2004) for similar ap-
proaches. At the beginning of the boosting process,
all weak classifiers are equally weighted. The boost-
ing algorithm uses training data to adjust the weights
of the weak classifiers according to the distinctiveness
for the class membership. This weight adjustment
process is repeated iteratively until either a maximum
number of iterations is reached, or the global clas-
sification error of the training data is below a given
threshold.

For our classification of polar images, we use this
algorithm twice. In a first boosting step, we construct
a strong classifier for the decision between the two
classes “nucleus” and “background”, which distin-
guish if the seeding point of the polar image is inside
or outside a cell nucleus. Only for some of the po-
lar images classified as “nucleus”, a second boosting
step is performed, which constructs a strong classifier
for the distinction of the classes “ring” and “no ring”.
This classifier determines if the seeding point belongs
to a nucleus with or without a visible ring structure
which is due to the histone relocation. To further im-
prove the performance in the first boosting step “nu-
cleus” versus “background”, we also use features ex-
tracted from a second channel of the microscopy im-
ages, which only shows the DAPI stained nuclei.

2.3 Classification

Using the strong classifiers constructed by the boost-
ing phase explained above, unlabelled microscopy
images can be classified. Prior to the classification, all
features of all polar images are extracted. Similar to
the two steps of the boosting algorithm, the classifica-
tion consists of two stages: First, the classification of
“background” versus “nucleus” is performed, which
also uses the DAPI channel as mentioned above. The
seeding points classified as “nucleus” are then pruned
by keeping only those that have maximum response
within a circle of radius r (this means that only one
seeding point per nucleus is kept). The polar images
corresponding to those seeding points are then clas-
sified into the two classes “ring” and “no ring”. Note
that the whole process does not involve any segmen-
tation, it is a pure classification of polar images cre-
ated from the original microscopy image. In order to
improve the classification performance, we use ad-
ditional images: The images are acquired via confo-
cal microscopy, thus there is a complete image stack
available. Using a combination of the classification
results of the three images in the middle of the stack
yields our final classification result.
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2.4 Direct measurement of the histone relocation
In addition to the classification explained above, the
histone relocation per nucleus can be measured di-
rectly. For this measurement, an additional fluorescent
marker (lamin) is applied to the experiment, which
marks the periphery of the cell nuclei. This informa-
tion is then extracted from a third channel in the mi-
croscopy images, see Figures 5, 6 and 7 for the three
channels of an example image. The image processing
pipeline for the measurement then consists of the fol-
lowing steps:

Figure 5: The histone channel of an example image
(here: after 4 days of differentiation). The intensities
are measured (per nucleus) in this channel.

Figure 6: The DAPI channel of an example image.
This channel is used to segment the nuclei.

Figure 7: The lamin channel of an example image.
This channel is used to segment the periphery of the
nuclei.

Nucleus segmentation

On the DAPI channel, single cell nuclei are seg-
mented using a standard thresholding algorithms in
conjunction with a connected components algorithm
and basic morphological operations (erode, dilate).
See Figure 6 for the DAPI channel of an example im-
age.

Periphery segmentation

On the lamin channel, again standard thresholding,
connected components and morphological operations
are used to segment the periphery of the cell nucleus.
See Figure 7 for the lamin channel of an example im-
age and Figure 8 and Figure 9 for the resulting seg-
mentations of the periphery and the inner part.

Intensity measurement

On the histone channel, the actual intensity on a ring
along the periphery and in the inner part of each nu-
cleus is measured. The ratio of the intensity of the in-
ner part of each nucleus and the periphery is recorded.
See Figure 5 for the histone channel of an example
image.

Figure 8: Segmentation of the nucleus periphery from
the lamin channel of the example image, see Figure 7.
The intensity along this periphery is measured in the
histone channel, see Figure 5.

Figure 9: Segmentation of inner part from the lamin
channel, see Figure 7. The intensity in the inner part
is measured in the histone channel, see Figure 5.
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2.5 Implementation
Both image processing pipelines, for classification of
histone relocation and for the direct measurement, are
implemented in the data processing framework KN-
IME (Berthold, Cebron, Dill, Gabriel, Kötter, Meinl,
Ohl, Sieb, Thiel, and Wiswedel 2008), which is a gen-
eral tool to algorithmically process data in a very con-
venient way. A KNIME-workflow consists of inter-
connected nodes, each of which can either load data,
process data or output data, while the data is passed
from one node to another via interactively defined
connections. Recent extensions provide all necessary
image processing algorithms that can readily be ap-
plied to microscopy images as presented in this work.

3 RESULTS
We use a set of 46 images with a total of 1990 clas-
sified seeding points as ground truth (1150 “back-
ground”, 840 “nucleus” — 250 “ring”, 590 “no ring”).
For the first boosting “nucleus” versus “background”,
we use 300 random seeding points for each class
as training data, for the second boosting “ring” ver-
sus “no ring”, we use 250 random seeding points for
each class. The linear combination of weak classifiers
is slightly biased towards “background” in order to
avoid too many false positives in the first boosting
step, and it is slightly biased towards “ring” in the sec-
ond boosting step to improve the recognition rate for
weak rings.

The global classification error in the boosting phase
is shown in Figure 10. The boosting “nucleus” ver-
sus “background” only uses 17 features and reaches a
global error of 0.01, while the boosting “ring” versus
“no ring” uses 50 features and reaches a global classi-
fication error of 0.054. Table 1 shows which features
are actually used in each boosting.
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Figure 10: Number of used features N versus global
classification error e in the boosting phase. The stop
criterion is e < 0.01 or N > 50.

Boosting # hst # Haar-l. # cont.
Nucleus/background 1 8 8
Ring/no ring 11 12 27

Table 1: Number of histogram (hst), Haar-like and
contour features used in the two boosting steps.

The final classification result of 29 microscopy im-
ages of progenitor cells and at different days of differ-
entiation are shown in Table 2, Figure 11 shows an ex-
emplary image. The first classification step (nucleus
detection) has a total detection rate of 97.0%. The
classification results are as expected, the ring struc-
ture is detected in almost all cells after 7 days. Note
that the poor classification result on day 4 is due to the
fact that at this stage the histone relocation is not yet
completed, which yields a very difficult classification.

# day 2 day 4 day 7
no r. 467 (95.7%) 134 (67.3%) 13 (8.0%)
ring 21 (4.3%) 65 (32.7%) 149 (92.0%)
fp n.r. 2 (0.4%) 20 (14.9%) 2 (15.4%)
fp r. 12 (57.1%) 19 (29.2%) 1 (0.7%)

Table 2: Results for images of progenitor cells. Shown
are the number of nuclei classified as “ring” and “no
ring” on the days of differentiation, and the number
of false positives (fp) for both classes.

Figure 11: Example classification result. Nuclei clas-
sified as “ring” are marked by “X”, nuclei classified
as “no ring” are marked by “+”. Note that the algo-
rithm misses one nucleus and there is one false posi-
tive “ring” in this image.

For comparison, the direct measurement results are
presented in Figure 12. Shown are the mean of the ra-
tios of the intensities of the histone signal along the
periphery and in the inner part of the nucleus along
with the standard error bars. Note that the measure-
ment are very sensitive to the image quality, and in the
presented experiments the degradation of the lamin
marker was an issue, hence the measurement results
for day 7 only use a subset of the original image set
in which the marker is still present (but this decreases
the measurement accuracy).

4 CONCLUSIONS
We presented an image processing pipeline for an au-
tomated classification of cell nuclei in microscopy im-
ages. The classification is based on features extracted
from polar images that are weighted using an adaptive
boosting algorithm. In addition to the classification,
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Figure 12: Direct measurement results using the ring
segmentation and intensity measurement per cell. The
day of the experiment is plotted versus the mean of the
intensity ration r (the intensity of the inner part of the
nucleus divided by the intensity along the periphery
per cell). Shown are the results for histone and for a
control marker, which is known not to accumulate at
the nucleus periphery. Note that for the histone mea-
surement of day 7 only a small subset of the images
were usable due to degrading of the marker.

we presented a second image processing pipeline for
direct measurement of the histone relocation per cell
nucleus. Both approaches have clear advantages and
disadvantages: The classification works very well for
clearly visible relocation or non-relocation, for exam-
ple at the beginning or at the end of the experiment,
and it is relatively robust to poor image quality. How-
ever, it does not perform optimal in the middle of the
experiment, where the relocation is not yet distinct.
On the other hand, the direct measurement works well
in each stage of the experiment, but it is very de-
pendent on the correct segmentation and on the im-
age quality, in particular the degrading of the lamin
marker decreases the percentage of correct measure-
ments.

Future research directions involve a reduction of
the number of labelled training images necessary for a
robust classification, and the usage of extended Ada-
Boost variants for multi-class classification, in par-
ticular to improve the classification results of images
showing cells without a clearly visible ring structure.
Moreover, an improvement of the direct measurement
method using more advanced segmentation methods
is desirable.
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