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ABSTRACT

In order to improve classification of neurological diseases in-
volving cortical thinning, this work proposes an approach for sepa-
rating gyral and sulcal regions of the human cortex. Using data from
magnetic resonance imaging, the skeleton of the brain’s white mat-
ter was reconstructed and a geodesic distance measure was applied
to separate gyri and sulci. Cortical thickness per subregion was mea-
sured for the entire cortex and for gyri and sulci individually in 21
patients with Alzheimer’s disease, 10 patients with frontotemporal
lobar degeneration composed of two subgroups and 13 control sub-
jects. For discrimination using logistic regressions, which was as-
sessed using leave-one-out cross-validation, improved results were
obtained in five out of six group comparisons when cortical thick-
ness measurements were constrained to gyral or sulcal regions.

Index Terms— Voxel-based gyri sulci separation, cortical thick-
ness, dementia, magnetic resonance imaging.

1. INTRODUCTION

Neuropsychiatric diseases affecting the human cortex involve among
others schizophrenia, mood disorders, autism, and dementia. To
observe temporal changes per subject and to identify characteristic
disease patterns in populations, valuable information is provided by
structural measurements such as cortical thickness, gray matter vol-
ume or cortical folding patterns.

For classification in population studies, the datasets are usually
spatially normalized to a common space either by voxel- or surface-
based registration. In the case of high-resolution magnetic resonance
imaging (MRI), both registration types offer the required accuracy
to apply voxel- or vertexwise statistical analysis. Since these meth-
ods usually require a large amount of datasets to reduce the effect
of noise, it is common practice to apply regional statistical analysis
using mean values for predefined anatomical regions.

For this purpose, anatomical atlases are mapped to the anatomy
of the subject’s brain. Common registration methods comprise re-
gions which include the entire cortex foldings. However, this might
be insufficient due to differences in the cytoarchitecture of gyri and
sulci. For this reason, a separate consideration of gyri and sulci is
expected to improve statistical accuracy of cortical thickness analy-
sis.

In this work, a voxel-based method for separating gyri and
sulci and for assessing cortical thickness is presented and applied
to datasets of dementia patients. As an advantage, voxel-based
methods are generally faster than surface-based methods, and offer
comparable accuracy.

2. MATERIAL AND METHODS

2.1. Subjects

The methods in this study were applied to structural MRI datasets of
13 control subjects (C), 21 patients with Alzheimer’s disease (AD)
and 10 patients with frontotemporal lobar degeneration (FTLD).
The FTLD group comprised patients of two FTLD subtypes, six
with semantic dementia (SD) and four with frontotemporal demen-
tia (FTD). Probable AD was diagnosed according to the original
and revised NINCDS-ADRDA criteria [1], FTLD according to the
criteria suggested by Neary et al. [2]. The control group consisted of
subjects with cognitive complaints that could not be verified in neu-
ropsychological testing. The demographics are provided in Table 1
including scores of Mini Mental State Examination (MMSE) and
Clinical Dementia Rating (CDR). MMSE scores for group C were
not available.

The research protocol was approved by the ethics committee of
the University of Leipzig, and was in accordance with the latest ver-
sion of the Declaration of Helsinki. Informed consent was obtained
from all subjects.

Category C AD FTD SD

Gender 6/7 12/9 1/3 3/3
Age 53.9±6.0 61.1±6.7 58.3±7.6 64.2±3.4
MMSE n.a. 23.2±3.9 24.5±5.8 24.5±4.7
CDR 0.23±0.26 0.71±0.25 0.88±0.25 0.83±0.61

Table 1: Participant characteristics: number of female/male sub-
jects, mean values and standard deviations of age (in years), MMSE
and CDR scores.
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Fig. 1: Processing of MRI images.

2.2. Data acquisition

High-resolution T1-weighted MRI images were acquired on two dif-
ferent 3T scanners (MedSpec 30/100, Bruker Biospin, Ettlingen,
Germany, and Magnetom Trio, Siemens, Erlangen, Germany) with
two different sequences (MDEFT or MP-RAGE with TR =1300 ms,
TI = 650 ms, TE = 3.93 ms or TE = 10 ms, FOV 25x25 cm2, matrix
= 256x256 voxels). Each scan comprised 128 sagittal slices adjusted
to the AC-PC line, a slice thickness of 1.5 mm, and a pixel size of
1x1 mm2. On the MedSpec scanner, only the MDEFT-sequence was
used, whilst on the Magnetom Trio scanner, either MDEFT or MP-
RAGE sequences were used. The distribution of scanner types and
sequences used to obtain the MRI data was random across subjects
and did not differ significantly in its distribution between the groups
nor for scanner type nor for sequence.

2.3. Preprocessing

MRI images were preprocessed using the FMRIB Software Library
(FSL, www.fmrib.ox.ac.uk/fsl) as depicted in Figure 1. At first, the
skull was stripped with the Brain Extraction Tool [3] and the qual-
ity of each subject’s brain mask was visually assessed for each slice
by overlaying the mask on the original T1-weighted MRI. In case
of missing tissue or included skull, the mask was manually cor-
rected. Subsequently, the skullstripped brain tissue was segmented
into white matter (WM), gray matter (GM) and cerebrospinal fluid
by fitting a hidden Markov random field model including correction
of the bias field [4]. The Gaussian mixture model provided the prob-
abilistic voxel-wise membership values for each of the classes.

The common space for all subjects was provided by atlas regis-
tration to the MNI152 space by affine multi-resolution registrations
using normalized correlation as cost function [5] and non-linear free-
form deformations [6]. With the inverted warp fields, the labels of
the Harvard-Oxford probabilistic atlas (distributed with FSL), which
comprises 48 cortical regions of interest (ROIs) for each hemisphere,
were transformed to the image space.

2.4. Gyri sulci cortical thickness estimation

The method for separating gyral and sulcal foldings proposed in this
work is based on an approach for robust skeletonization of genus 0
objects in discrete volumetric images [7]. When applied to brain
images, the WM is used for skeletonization since WM voxels of
neighboring gyri do not touch (as opposed to GM voxels). Based
on this skeletonization, a continuous function of the object’s bound-
ary is defined that is directly related to the curvature of the object’s
surface. While curvature-based surface classifiers are susceptible to
noise, which is common for medical image segmentations, this ap-
proach provides a mechanism to detect noisy features on the object
boundaries and to include them in the segmentation.

The skeleton approach is based on a distance map F (p) 7→ qi
that assigns to each point p inside the object Ω the closest points qi
on the boundary ∂Ω according to the Euclidean distance. Points p
with |F (p)| > 1 are identified as skeleton points ps, while an exten-
sion for discrete image data prevents holes in the skeleton. Then, for
each skeleton point ps the geodesic surface paths γ(qi, qj) between
all its associated boundary points are determined using a shortest
path algorithm. The geodesic distance function ρ(ps) is then de-
fined as the length of the longest path γ(qi, qj), and a threshold τe
is applied to separate gyri G′ from sulci with G′(ps, τe) = {qi =
F (ps)|ρ(ps) < τe}.

Since boundaries of GM segmentations are not smooth, the
above separation would not only identify true gyri, but also detect
noisy features (little bumps) inside sulci as gyri. Therefore, an
additional geodesic distance function δ(qi, R) is introduced in [7]
which measures the distance to the remaining boundary points
R = ∂Ω \ G′. With a noise threshold τn, those boundary points
with δ(qi, R) < τn/2 are removed from G′. The final segmentation
of gyri G without noisy features is then defined as

G(ps, τe, τn) = {qi = F (ps)|ρ(ps) < τe + τn ∧ δ(qi, R) <
τn
2
}.

A threshold of τn = 10 mm provides a good surface classifier for
segmentations of brain images. The skeleton, associated boundary
points and a geodesic path are depicted in Figure 2.

Fig. 2: Gyri sulci separation and projection of WM skeleton and
associated boundary points to the GM medial layer.

Using the above separation of gyri and sulci, labels of the
Harvard-Oxford probabilistic atlas are subdivided and the mean cor-
tical thickness is measured for both gyri and sulci using minimum
line integrals (MLI) with the parameters suggested in [8]. In order
to measure cortical thickness robustly with the MLI approach, the
sample points need to be restricted to the medial layer of the GM
segmentation. For this purpose, the geometric relation between
skeleton and boundary points is employed by extending their con-
necting line towards the GM layer and by determining the GM entry



and exit points as follows: As soon as a minimum number Nb of
consecutive sample points Sgm classified as GM is detected, the
entry point is identified as the first one of Sgm. Similarly, for the
detection of the exit point, there must be Nb consecutive sample
points without GM membership. Nb depends on the step width and
the GM class membership is determined at each sample point using
tri-linear interpolation of the GM segmentation.

After computing the GM entry and exit points, the point in the
middle is defined as part of the GM medial layer where cortical
thickness is measured with MLI. Due to the low resolution of the
discrete image data and in favor of a smooth surface sampling, the
projection to the GM medial layer is additionally applied for lines
inside a cone with an opening angle of 5◦ that surrounds psqi as
illustrated in Figure 2.

2.5. Statistical analysis

To evaluate the gain in statistical power by applying the gyri/sulci
separation for cortical thickness analysis, a discrimination model is
applied. For this purpose, the cortical thickness data of each seg-
mented brain is parcellated with seven different geodesic distance
thresholds τe ∈ [8, 20] mm resulting in gyri and sulci separated
at different depths. Each of these parcellations is overlayed on the
ROIs defined by the atlas registration, resulting in the datasets Gτe

and Sτe . Additionally, dataset W contains the mean cortical thick-
ness of the combined gyri and sulci. For each of the newly created
subregions, the mean cortical thickness is computed.

The discriminatory power is assessed for each dataset and each
of the 96 regions with single variable logistic regression (LR) [9].
Subject age and gender are not included as covariates since no sub-
stantial differences were observed in previous studies [10]. Accord-
ing to the goodness-of-fit evaluated by the log-likelihood (LL), the
best eight ROIs per dataset are selected and permuted to determine
an optimal subset for a multivariate version of LR. The optimal com-
bination CR is found by maximizing the area under the receiver op-
erator characteristic (AUROC) [11].
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Fig. 4: Boxplots of AUROC values for each group pair for all gyri
(red) and sulci (blue) datasets (Gτe /Sτe ) indicating significant differ-
ences in discriminatory power for C-AD, AD-FTD and AD-SD
(see Table 2).

3. RESULTS AND DISCUSSION

In Figure 3, the result of the gyri/sulci separation is illustrated by a
projection on the outer cortical surface of the left hemisphere of one

of the subjects. As compared to surface-based approaches such as
Freesurfer [12], which took between 16 and 24 hours on a 3.07 GHz
8 core i7 Pentium CPU with 12 GB RAM for all processing steps,
the performance of the presented approach amounted to 68 minutes
for one sample, including preprocessing, gyri/sulci separation and
cortical thickness measurement.

In order to assess whether different discrimination results are ob-
tained when gyri or sulci are considered separately, Figure 4 shows
boxplots of AUROC values of multivariate LR for Gτe and Sτe

datasets of each group pair. For C-AD, AD-FTD and AD-SD,
AUROC values differed significantly between Gτe and Sτe which
was tested with non-parametric tests of Mann-Whitney at a signifi-
cance level of α < 0.05 (H0(G = S) in Table 2).

The optimal datasets for each group pair are summarized in Ta-
ble 2. The discrimination results determined by leave-one-out cross-
validation are provided, i.e. accuracy, sensitivity, specificity and
AUROC along with the indices of the optimal combination of ROIs
CR in the multivariate LR. In five out of the six group pairs, dis-
crimination on either a Gτe or a Sτe dataset performed better than
on the combined dataset W according to AUROC (C-AD: 1.16%,
C-FTD: 4.29%, C-SD: 4.35%, AD-FTD: 7.00%, AD-SD:
0.85%). In FTD-SD, the performances on datasets W and G8

were equally good.
The best discriminating regions are stated in Table 2. Frontal

operculum cortex left and planum polare right discriminated best
for C-AD, Heschl’s gyrus right for C-FTD, and inferior tempo-
ral gyrus left for C-SD. AD-FTD were separated with anterior
cingulate gyrus left and posterior parahippocampal gyrus left, AD-
SD with anterior middle temporal gyrus left, and FTD-SD with
superior parietal lobule right.

Figure 5 highlights the LL values of single variable LR for the
group pairs C-AD, C-FTD and C-SD. Similar results, both in
discriminatory power and observed regions, were obtained in a study
on cortical thickness measured with Freesurfer and a discriminatory
approach with LR [10]. The identified regions correspond also to a
meta-analysis of AD and FTLD with the exception of disease unspe-
cific occipital regions [13]. Their dominance can be explained by the
small group sizes.

According to the achieved accuracy and AUROC values, a clear
discrimination between controls and Alzheimer’s disease subjects,
and between Alzheimer’s disease and the two subtypes of fron-
totemporal lobar degeneration could be observed. Discrimination
between the clinical groups, especially between FTD and SD
suffered mainly from the small number of subjects.

4. CONCLUSION

In this work an approach was proposed for separating gyri and sulci
on discrete neuromedical data to improve the discriminative power
of the applied statistical model. The separation was accomplished by
applying a robust skeletonization approach that defines a continuous
pruning function using geodesic distances. With the help of corti-
cal thickness data acquired for dementia patients, the discriminative
power could be improved when gyri and sulci were considered sep-
arately in the logistic regression framework.
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Fig. 3: Subdivision of gyri (red)
and sulci (white) with τe = 8 mm
projected on the pial surface.

Group Pair Dataset Accuracy Sensitivity Specificity AUROC CR H0(G = S) G ≶ S

C-AD S20 85.3 85.7 84.6 95.6 41,92 5.83× 10−4 S
C-FTD G8 88.2 75.0 92.3 92.3 93 0.59 -
C-SD G10 78.9 66.7 84.6 93.6 14 0.39 -
AD-FTD G12 88.0 50.0 95.2 91.7 29,35 0.02 G
AD-SD S14 85.2 66.7 90.5 95.2 11 2.33× 10−3 S
FTD-SD W 80.0 83.3 75.0 83.3 66 0.07 -

Table 2: Classification results of best discriminating datasets after multivariate LR for each group pair.
Accuracy, sensitivity, specificity and AUROC are provided in %. CR lists the ROI indices of the Harvard-
Oxford atlas that discriminate best in multivariate LR. H(G=S): p-value of Mann-Whitney test for equal
distribution of AUROC values for Gτe and Sτe . G ≶ S states whether LR performed better on gyri (G)
or sulci (S).
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Fig. 5: ROIs highlighted according to log-likelihood of single variable logistic regression on pial surfaces of left and right hemisphere for
groups C-AD (left), C-FTD (middle) and C-SD (right). Red colors indicate regions of best, yellow and white of no model fit.
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