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Abstract—With increasing life expectancy in developed coun-
tries, there is a corresponding increase in the frequency of
diseases typically associated with old age, in particular dementia.
In recent research, multivariate analysis of Positron Emission
Tomography (PET) datasets has shown potential for classification
between Alzheimer’s disease (AD) patients and asymptomatic
controls. In this work, the feasibility of multivariate analysis
using Principal Component Analysis (PCA) and Fisher Dis-
criminant Analysis (FDA) of Single Photon Emission Computed
Tomography (SPECT) data is investigated. In order to obtain
robust and reliable results, bootstrap resampling is applied
and the robustness and classification accuracy of PCA/FDA
are investigated. The robustness of the analysis is assessed
by estimating the distribution of the angle between PCA/FDA
discriminative vectors generated by bootstrap resampling, and
the classification predictive accuracy is assessed using the .632
bootstrap estimator. The results indicate that PCA/FDA on
SPECT data enables a robust differentiation between AD patients
and asymptomatic controls based on three principal components,
with a classification accuracy of 89%.

Index Terms—Single photon emission computed tomography
(SPECT), Alzheimer’s disease (AD), Multivariate Analysis, Prin-
cipal Component Analysis (PCA), Classification Accuracy.

I. INTRODUCTION

ALZHEIMER’S DISEASE (AD) is the most common
cause of dementia. The socioeconomic impact of de-

mentia is extraordinarily large, with considerable effort being
made to understand the pathophysiologic mechanisms of AD
in order to further the development of effective treatment
strategies for the disease.

According to pathologic studies, neurodegeneration in AD
begins in the entorhinal cortex, progresses to the hippocampus,
the limbic system and neocortical regions. It is characterized
by accumulations of amyloid plaques and neurofibrillary tan-
gles, which exert direct and indirect neurotoxic effects leading
to neuronal loss. As a result, the affected cortical regions
show reduced glucose metabolism on 2-fluoro-2-deoxy-D-
glucose (FDG) Positron Emission Tomography (PET), and
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decreased brain perfusion as observed in technetium-99m-
ethylcysteinatedimer (99mTc-ECD) Single Photon Emission
Computed Tomography (SPECT).

In recent research, multivariate analysis has successfully
been applied for classification between PET datasets of asymp-
tomatic controls and AD patients [3], [4], [5]. Multivariate
analyisis takes into account statistical relationships between
all voxels simultaneously, and therefore has a greater statisti-
cal power and superior diagnostic performance compared to
univariate analysis [4]. Multivariate analysis is therefore much
better suited for applying group analysis results to new datasets
for diagnostic evaluation.

In this work, multivariate analysis of Single Photon Emis-
sion Computed Tomography (SPECT) datasets of AD patients
and asymptomatic controls is performed. The goals of this
work are to assess whether multivariate analysis techniques are
feasible in SPECT datasets, and to investigate the classification
accuracy and robustness in asymptomatic controls and AD
patients.

II. IMAGE DATA

A. Patient population

The 99mTc-ECD SPECT datasets used in this work com-
prise 28 patients with mild to medium AD (mixed population
of female and male) with an age between 52 and 81 years
(mean ± standard deviation: 67.4 ± 7.5), as well as 28
asymptomatic controls (mixed population of female and male)
with an age between 50 and 78 years (mean ± standard
deviation: 61.6 ± 8.0). The datasets were acquired between
2003 and 2008 at the Clinic of Nuclear Medicine, University
of Erlangen-Nuremberg, Erlangen, Germany.

B. Acquisition parameters

Injection of 20mCi (740 MBq) of 99mTc labeled ECD was
performed on subjects under rest conditions. The patients were
lying with eyes closed in a quiet, dark or dimly lit environment
from at least 10 minutes prior until 5 minutes post injection.
For image acquisition, the patients were lying down supine
in the scanner, with their arms down. The head was placed
naturally so that the patients felt comfortable and motion could
be minimized during the acquisition. The image data was
acquired on a Siemens MultiSPECT3 scanner 30 minutes after
injection of the tracer, with a scan duration of 30 minutes at



most. The field of view of the image contained the entire brain
and the cerebellum. The projection data was processed with
filtered back projection, and Chang attenuation correction was
applied.

C. Criteria for asymptomatic controls and AD patients

The asymptomatic datasets originate from patients who
were referred to the Clinic of Nuclear Medicine for brain
perfusion SPECT for diagnostic purposes other than dementia,
but the results of the scans were normal. Further clinical
investigations showed no evidence of any diseases which
would lead to an altered brain perfusion pattern. A CT or
MR was performed between four weeks before and four weeks
after the SPECT examination and there were no clinical events
between MR/CT and SPECT.

The AD datasets originate from daily clinical routine and
were not collected as part of a prospective dementia study. For
this reason, no neuropsychologic measures are available for
these patients. All dementia patients were referred to the Clinic
of Nuclear Medicine with questions related to diagnostic
findings. The patients included in the AD population comprise
mild and medium AD cases with uptake patterns typical for
dementia of AD type.

D. Data preprocessing

The datasets were further processed in order to enable com-
parison on a voxel-by-voxel basis, as required by multivariate
analysis. In a first step, all datasets were spatially registered
to a common brain template. In order to account for intra-
patient variations in gyri, injected dose, the resolution of the
reconstruction of scans, and other factors, all of which cannot
be compensated for by registration alone, the images were
smoothed with a standard isotropic Gaussian filter with full
width half maximum (FWHM) of 12 mm. Finally, intensity
normalization according to the whole brain region was applied,
which is required in order to allow for direct comparison of
voxel values across the population. Since intensity values of
the datasets may vary arbitrarily depending on factors such as
injected dose and systemic tracer elimination, intensity nor-
malization is needed in order to obtain meaningful statistics.

III. METHODS

In this section, multivariate image analysis based on Prin-
cipal Component Analysis (PCA) and Fisher Discriminant
Analysis (FDA) is outlined (Sections III-A and III-B). In
order to assess the robustness and predictive accuracy of
the approach, bootstrap resampling is applied (Section III-C),
and the classification accuracy (Section III-D) as well as the
robusness of classification (Section III-E) are investigated.

A. Principal Component Analysis (PCA)

Principal Component Analysis (PCA) [6] is a multivariate
analysis method that allows identifying the orthogonal direc-
tions of dominant variation in the data. The first principal
component (PC) accounts for as much of the variability
in the data as possible by a single component, and each

succeeding component accounts for as much as possible of the
remaining uncorrelated variability. PCA can thus project high-
dimensional data onto a lower dimensional space represented
by a subset of PCs, which can be more easily explored in
order to analyze the underlying structure of the data. Even
though each dataset can exactly be represented as a linear
combination of all PCs, data analysis usually only retains a
few PCs in order to focus on the main variations of the data
and to take advantage of the dimensionality reduction effect
obtained by PCA, considering the remaining PCs as noise or
atypical variations.

The PCs are computed as the eigenvalues of the covariance
matrix of the data matrix X, which comprises all m datasets.
Each column of X represents one dataset (i.e., contains the
n voxels of the whole-brain region of this particular dataset).
The PCs are computed using Singular Value Decomposition
(SVD). However, since an individual dataset may be used
multiple times in a bootstrap sample (Section III-C), the SVD
may become numerically unstable. In these cases, a more
stable but slightly slower method for calculating the PCs called
Non-Linear Iterative Partial Least Squares (NIPALS) [7], [8]
is used.

B. Fisher Discriminant Analysis (FDA)

Since the PCs represent variation within the whole popu-
lation (i.e., asymptomatic controls and AD patients), a Fisher
Discriminant Analysis (FDA) is performed in a second step
in order to identify the direction of best separation between
the two groups. The FDA provides a linear combination of the
PCs so that both groups are well separated.

The goal of FDA is to identify a discrimination vector w
such that projecting each dataset onto this vector provides
the best possible separation between both groups. In order to
obtain a good separation of the projected data, it is desirable
that the difference between the means of each class is large
relative to some measure of the variation in each class. For this
reason, the criterion function J that is maximized in FDA [1]

J(w) =
wtSBw

wtSWw
, (1)

is based on the between-class scatter matrix SB and the within-
class scatter matrix SW

SB =
∑
c

(mc − x̄)(mc − x̄)T , (2)

SW =
∑
c

∑
i∈c

(xi − mc)(xi − mc)
T , (3)

where x̄ is the mean image vector across subjects, c represents
the classes to be separated, and mc are the class means.

In mathematical physics, Equation 1 is well known as
the generalized Rayleigh quotient. It can be shown that the
solution w that optimizes J is [1]

w = S−1W (m1 − m2), (4)

whereas m1 and m2 indicate the n-dimensional sample means
of the two populations.



The resulting discriminant image (or discriminant vector) is
used for projecting individual images (vectors) onto it, yielding
a scalar value that discriminates between the two groups.

C. Bootstrap resampling

In order to evaluate the predictive accuracy of the PCA/FDA
model trained on a limited sample, .632 bootstrap resampling
is applied. In statistics, resampling techniques are commonly
used to validate models and to assess their statistical accuracy
by using random subsets (bootstrapping, cross validation) [2].

For a total number of 500 replications, 28 asymptomatic
controls and 28 AD patients are randomly drawn from each
group, resulting in a new bootstrap sample per replication. For
each bootstrap sample, PCA is performed, as well as FDA for
different numbers of PCs. Bootstrap resampling followed by
PCA and FDA is performed for different numbers of PCs, and
the classification accuracy is calculated (see Section III-D) in
order to evaluate the different data preprocessing methods.

D. Classification Accuracy

Since the bootstrap samples are drawn with replacement,
the probability of any given instance not being part of the n
instances in the sample is

lim
n→∞

(
1− 1

n

)n

≈ e−1 ≈ 0.368 . (5)

The expected number of instances from the original dataset
appearing in each training sample is thus 0.632.

The classification accuracy based on .632 bootstrap resam-
pling is estimated as follows: (1) The subjects not included in
a given bootstrap sample are used to estimate the predictive
accuracy of the PCA/FDA discrimination analysis determined
for the bootstrap sample. Since on average only 63.2% subjects
are used for training, the resulting estimation of the predictive
accuracy is biased downward and hence has to be (2) ’cor-
rected’ by a term which is found based on the whole sample
treated as a training and testing set. Thus according to the
.632 bootstrap, the predictive accuracy of the discrimination
analysis is estimated as:

accboot =
1

b

b∑
i=1

(0.632 · acci + 0.368 · acctraining) , (6)

where b is the number of bootstrap replications, acci is the
accuracy of the individual bootstrap sample that corresponds
to replication i, and acctraining is the accuracy of the training
set [2]. In order to provide a more accurate estimate of
acctraining, again bootstrap resampling based on 200 iter-
ations is applied, whereas the same instances used in the
bootstrap sample are also used for calculating the accuracy,
which is averaged across all samples.

E. Angle between FDA vectors

The robustness of classification is indicated by the sampling
distribution of the angle between FDA vectors. For each boot-
strap replication, the angle between the FDA vector based on

Fig. 1. Classification accuracy of the training set (red, dashed), for individual
bootstrap samples (averaged) (green, dotted) and for the bootstrap .632
estimator (corrected, averaged) (blue, solid), depending on the number of
PCs included into the analysis.

the whole sample and the FDA vector based on the bootstrap
sample is calculated for different numbers of PCs. A small
angle and a narrow distribution of angles are signs for a robust
classification. For an increasing number of PCs, the angle is
expected to increase, since the PCA and FDA analysis adapts
to features specific of the sample, rather than features that
differentiate between both classes, which indicates a decrease
of robustness.

IV. RESULTS

According to the classification accuracy (average for all
bootstrap replications) in Figure 1, the discriminant image
obtained from PCA/FDA allows differentiating between AD

Fig. 2. Angle between the discriminant vectors resulting from 500 boostrap
replications, for different numbers of PCs.



Fig. 3. Discriminant image based on one (left), three (middle) and six (right) PCs and FDA.

patients and asymptomatic controls with an accuracy between
87% and 94%.

Although the classification accuracy increases with increas-
ing number of PCs included into the analysis, only a limited
number of PCs contribute to a robust classification. This is
shown in Figure 2, where the angle between the discrimi-
nant vectors resulting from the 500 bootstrap replications is
displayed for different numbers of PCs included into the anal-
ysis. For an increasing number of PCs, this angle increases,
indicating that the model adapts to noise and features specific
to the individual sample, rather than features characteristic of
the two populations (AD patients and asymptomatic controls).
It can therefore be concluded that the increase of accuracy for
an increasing number of PCs occurs at the cost of robustness.
For this reason, it can be assumed that a small number of PCs
provides a good trade-off between robust analysis and high
accuracy. More precisely, three PCs seems to be a particularly
good choice, which is consistent with previous investigations
based on FDG PET data [5].

Figure 3 shows the discrimination image for one, three
and six PCs, with more intense colors (blue, red) indicating
a higher contribution to the discrimination. It should be
noted that areas of high hypo-metabolism (red) are located
in the temporal, parietal and frontal lobes, as expected in AD
patients. The central region is not affected and only shows
very small values (white, and light blue and red), which is
according to expectations.

V. DISCUSSION

In this work, the feasibility of multivariate analysis applied
to SPECT data is investigated. In order to obtain robust and re-
liable results, bootstrap resampling is used and the robustness
and classification accuracy of PCA/FDA are assessed.

A limitation of the results relates to the fact that no
neuropsychologic measure is available as the datasets originate
from daily clinical routine and were not collected as part
of a prospective dementia study. As a result, the accuracy
and robustness measures reported in this work are based on
visual reading by an expert nuclear medicine physician as
ground truth, i.e. the system has been optimized to achieve
classification results which are comparable to visual reading
by a medical expert.

The classification accuracy provides evidence that multi-
variate analysis of SPECT data is feasible. A good trade-off
between accuracy and robustness can be achieved for a low
number of PCs (e.g., three PCs seem to be a good choice).
The results are very promising and are actually comparable to
the results based on multivariate analysis is PET datasets [5].
Due to the substantially less cost of SPECT compared to FDG
PET, it is worthwhile to optimise the analysis of SPECT for
broader clinical use.

The visualization of axial slices of the discriminant image
shows patterns typically expected in dementia of AD type,
with high values in the temporal, parietal and frontal lobes
indicating a higher contribution to the discrimination. In a
way, these visualizations confirm that PCA/FDA is a viable
approach in SPECT datasets.

VI. CONCLUSION

The accuracy results show that multivariate analysis of
SPECT data is feasible, with a predictive accuracy of 89% if
three PCs are used. According to the results, high classification
accuracy is already obtained with a low number of PCs, which
indicates the discriminative power of the approach.
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