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Abstract

Diffusion tensor imaging can be used to localize major white matter tracts within the
human brain. For surgery of tumors near eloquent brain areas such as the pyramidal
tract this information is of importance to achieve an optimal resection while avoiding
post-operative neurological deficits. However, due to the small bandwidth of echo
planar imaging, diffusion tensor images suffer from susceptibility artifacts resulting
in positional shifts and distortion. As a consequence, the fiber tracts computed from
echo planar imaging data are spatially distorted. We present an approach based on
non-linear registration using Bézier functions to efficiently correct distortions due to
susceptibility artifacts. The approach makes extensive use of graphics hardware to
accelerate the non-linear registration procedure. An improvement presented in this
paper is a more robust and efficient optimization strategy based on simultaneous
perturbation stochastic approximation (SPSA).

Since the accuracy of non-linear registration is crucial for the value of the pre-
sented correction method, two techniques were applied in order to prove the quality
of the proposed framework. First, the registration accuracy was evaluated by recov-
ering a known transformation with non-linear registration. Second, landmark-based
evaluation of the registration method for anatomical and diffusion tensor data was
performed. The registration was then applied to patients with lesions adjacent to
the pyramidal tract in order to compensate for susceptibility artifacts. The effect of
the correction on the pyramidal tract was then quantified by measuring the position
of the tract before and after registration. As a result, the distortions observed in
phase encoding direction were most prominent at the cortex and the brainstem.
The presented approach allows correcting fiber tract distortions which is an impor-
tant prerequisite when tractography data are integrated into a stereotactic setup
for intra-operative guidance.
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1 Introduction

Diffusion tensor imaging (DTI) is a non-invasive in vivo imaging modality
which is able to differentiate between white and grey matter within the hu-
man brain. It is based on the phenomenon of water diffusion which is as-
sociated with Brownian motion. Major white matter tracts consist of areas
of a strongly aligned microstructure. The diffusion behavior within those ar-
eas is anisotropic since the aligned microstructure restricts the diffusion to
a preferred direction. DTI measures this effect and thus reflects both tissue
structure and architecture at the microscopic level (Basser et al., 1994). For
this purpose, at least seven images are acquired: A reference image measured
without diffusion sensitization, and six diffusion-weighted (DW) images ac-
quired with diffusion gradients in non-collinear directions. Based on this se-
ries of directional diffusion images, the location of major white matter tracts
is obtained by computing tensors which are either visualized using scalar met-
rics (Basser and Pierpaoli, 1996; LeBihan et al., 2001; Westin et al., 2002),
glyph representations (Kindlmann, 2004) or techniques commonly referred to
as tractography (Mori et al., 1999; Basser et al., 2000; Mori and van Zijl,
2002).

As a drawback, DTI measurements based on single-shot echo planar imaging
(EPI) suffer from image distortions, primarily eddy current induced image
distortions, chemical shift, and susceptibility artifacts. These artifacts are a
severe problem if fiber tracts reconstructed from EPI data are integrated into
anatomical data, e.g. acquired by a 3D gradient echo sequence, for functional
neuro-navigation. In recent years, integration of pre-operative functional data
from functional MRI (fMRI) or magnetoencephalography (MEG) into anatom-
ical data, known as functional neuro-navigation, has become routine in surgery
of lesions adjacent to eloquent cortical brain areas, such as the motor strip
or language-related areas, avoiding post-operative neurological deficits (Gans-
landt et al., 2004; Kober et al., 2001; Nimsky et al., 1999). Besides eloquent
cortical brain areas also deep seated structures, such as major white matter
tracts, have to be preserved during surgery. Integration of fiber tracts into
anatomical data used for stereotactic guidance, allows visualizing the spatial
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relation of a tumor and adjacent white matter tracts for neurosurgical plan-
ning (Clark et al., 2003; Coenen et al., 2001; Kamada et al., 2005; Kinoshita
et al., 2005). However, an important prerequisite for the use of fiber tract infor-
mation in a stereotactic coordinate system is to correct the distortions of the
DTI data. Otherwise, the spatial relation between anatomy depicted by stan-
dard MR such as T1- or T2-weighted data and the fiber tract data would be
incorrect. In contrast to EPI, the distortion of anatomical data is negligible in a
clinical setting and accordingly they are routinely used for neuro-navigational
guidance (Ganslandt et al., 2004; Nimsky et al., 2004a; Nimsky et al., 1999).
Correcting the different types of EPI distortions has been partly addressed
either by enhanced acquisition schemes or by post-processing steps.

Eddy currents are induced by the switching of the diffusion gradients in DW
pulse sequences. They cause a spatial misalignment of the DW volumes and are
a common problem in clinical DW image acquisitions. For this reason, gradi-
ent preemphasis schemes are currently implemented in most MRI scanners to
effectively reduce the impact of eddy currents. Alternatively, post-acquisition
strategies (Rohde et al., 2004; Shen et al., 2004; Mangin et al., 2003; Bo-
dammer et al., 2004) have been presented which do not depend on a properly
calibrated gradient preemphasis.

Chemical shift and susceptibility artifacts can be attributed to the small band-
width of the EPI sequence in phase encoding direction. Differences in chemical
shift or susceptibility cause slight differences of the proton resonant frequency
resulting in positional shifts and distortions when the positions of the signal
are mapped onto the image by frequency. To minimize the image distortions
originating from chemical shift, the EPI scans are usually acquired with lipid
suppression. For this purpose, a saturating pulse is commonly applied to the
fat resonance prior to data acquisition (Weisskoff, 1990). Another promising
approach is to combine chemical shift and slice selective excitation (Meyer
et al., 1990).

Susceptibility artifacts (Jezzard and Clare, 1999) resulting from microscopic
gradients or variations in the magnetic field strength are observed at the in-
terface of tissues with different magnetic susceptibility. They appear at the
proximity of the skull base and near other air-filled spaces such as the brain-
stem and the frontal lobe and cause severe distortions implying a displacement
of anatomical structures. First attempts to account for susceptibility artifacts
inherent to EPI use non-linear registration schemes. A hierarchical multigrid
algorithm estimating a deformation field by minimizing a cost function based
on mutual information using Powell’s optimization scheme (Press et al., 2002)
is proposed by Hellier et al (Hellier and Barillot, 2000). Another approach for
correcting EPI distortions uses a higher-order spline model for warping and a
similarity measure based on squared differences (Kybic et al., 2000). In their
work, Kybicet al encounter the problem of local minima, which they identified
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as a potential source of error in their approach. With Powell’s optimization
strategy we employed in our previous work, we also encountered this problem
resulting in an unsatisfying registration result. For this reason, we present an
implementation taking advantage of the SPSA optimization strategy which is
explicitly designed to better overcome the problem of local minima.

In this paper, an approach accounting for susceptibility artifacts based on a
non-linear registration strategy is proposed which is built on top of our previ-
ous work: We introduced hardware accelerated 3D texture mapping for rigid
registration (Hastreiter and Ertl, 1998) which is an extension to pure software
based approaches (Wells et al., 1995; Collignon et al., 1995; Studholme et al.,
1996; Studholme et al., 1999). This technique became more robust and effi-
cient by using pre-segmented brain volumes (Hastreiter et al., 2000) and by
the use of hardware-based 3D Bézier functions (Soza et al., 2002). Thereby,
graphics hardware is extensively used in order to considerably accelerate the
registration procedure. Further improvements were achieved by adaptive re-
finement of the underlying control point grid (Hastreiter et al., 2004). The
registration strategy also proved to be adequate for parameter estimation in
brain shift simulation (Soza et al., 2004). Extending our previous results and
based on initial experience with non-linear registration of DTI data (Mer-
hof et al., 2004), an improved registration scheme is presented in this work.
Essentially, this paper comprises two major contributions: From a technical
point of view, the approach for non-linear registration became more robust
and was accelerated by using the simultaneous perturbation stochastic approx-
imation (SPSA) (Spall, 1992) optimization strategy. With respect to medical
relevance and application, a clinical evaluation is presented where the ex-
tent of image distortion was investigated with respect to patients with lesions
adjacent to the pyramidal tract. Overall, this work addresses an important
prerequisite for the integration of DTI into neuro-navigation and suggests an
efficient and robust solution.

The general outline of the paper is as follows: In Section 2, important com-
ponents of the registration algorithm are presented comprising the similar-
ity measure (2.1), the deformation model (2.2) and the optimization strat-
egy (2.3). The setup of the registration framework based on these components
is resumed in Section 2.4. Subsequently, the experimental setup and all eval-
uation techniques are described in Section 3 including the acquired image se-
quences (3.1), the approach for evaluating the registration accuracy (3.2) and
the experimental setup for distortion correction (3.3). The results presented in
Section 4 comprise an evaluation investigating the quality of registration (4.1)
as well as the measurement results of the experimental setup (4.1). Finally, the
registration approach and its relevance for clinical application are discussed
in Section 5.
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2 Registration

In order to correct for image distortions due to susceptibility artifacts inherent
to EPI data, an intensity-based registration approach was developed. Within
this context, a non-linear transformation has to be determined that maps the
DTI reference image (B0) onto the anatomical MR image. This kind of regis-
tration problem is still a challenge due to the high computational expenses and
due to the low resolution of DTI data. The presented approach aims at clinical
application which implies rigorous requirements with respect to computation
times. To guarantee an alignment of high quality, we employed normalized
mutual information as similarity measure (Section 2.1). Concerning the com-
putational costs, an important issue is the choice of the optimization strategy
since the number of optimization iterations as well as computation times to
determine the global optimum in each iteration are crucial for the overall per-
formance of the registration. For this reason, we applied a highly efficient op-
timization strategy using simultaneous perturbation stochastic approximation
(Section 2.3), which ensures high convergence rates. Another limiting factor
for the performance of intensity-based non-linear registration algorithms is
the huge amount of interpolation operations needed for repeatedly computing
the similarity measure during optimization. This consideration has motivated
the application of graphics hardware for registration purposes. A powerful
model for 3D free-form deformation (FFD) based on Bézier functions as well
as hardware-based techniques enabling an efficient implementation are pre-
sented in Section 2.2.

2.1 Similarity measure

Although there exists a number of measures potentially suitable to the context
of registration, in practice recent image registration algorithms mainly use two
similarity measures: the normalized mutual information (NMI) (Studholme
et al., 1999) or the correlation ratio (Roche et al., 1998). However, correlation-
based methods require a linear dependence between the intensities, which re-
stricts their application with respect to multimodal registration. Since suscep-
tibility distortions are accompanied by a shift of grey values, correlation-based
methods are not adequate for this application. Additionally, an appropriate
choice for the underlying similarity measure is essential since this measure has
to be calculated many times during a registration. Therefore, the computa-
tional costs of evaluating this function including the time complexity of one
function calculation and the total evaluation time related to the convergence
rate achieved with a given similarity measure should be as low as possible.

Currently, the most generally formulated similarity measure is NMI (Studholme
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et al., 1999). This information theoretic function is based on the Shannon en-
tropy (Shannon and Weaver, 1949) H(I) which, in reference to an image, is
a measure of the diversity of the intensity distribution. However, the classical
image registration problem considers two images involving two intensities at
each voxel position which is depicted by the joint entropy H(Is, It) where Is

denotes the source image and It the target image. If the joint entropy is consid-
ered only, this similarity measure would make the registration very dependent
on the overlapping volume of the images. Thus, mutual information (MI) (Col-
lignon et al., 1995; Wells et al., 1997) also incorporates the marginal entropies
related to the intensity probability distribution in the overlapping region for
each image separately.

However, mutual information is not entirely independent of the overlapping
region of two images. Changes in some regions can disproportionately influ-
ence the value of the similarity measure. Circumventing this effect, NMI was
proposed as

NMI(Is, It) =
MI(Is, It)

H(Is, It)
+ 1 =

H(Is) + H(It)

H(Is, It)
(1)

where MI is normalized with respect to the joint entropy. This normalized
version of MI proved to be considerably better than standard MI and was
therefore used in our registration framework.

2.2 3D free-form deformation

To accomplish non-linear registration, a FFD model based on 3D Bézier
functions is used and graphics hardware is employed to accelerate the ap-
proach (Soza et al., 2002; Soza, 2005). The main idea of FFD is to warp the
space surrounding an object which will be warped implicitly. This type of
FFD has a number of advantages: It contains inherent smoothness as well as
elasticity, which makes it very suitable for describing the deformation of soft
tissue. Moreover, Bézier functions are equipped with a simple mechanism for
their modification and are characterized by intuitive behavior on alteration.

As a drawback, high computational cost is necessary for the evaluation of 3D
Bézier functions. Especially in the context of registration, many calculations of
Bézier functions have to be performed. Therefore, in order to make the method
more efficient, graphics hardware was used to accelerate the FFD approach.
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2.2.1 Deformation model

In order to describe a deformation utilizing Bézier functions in mathematical
terms, the object space OS is associated with the transformed B0 dataset and
is parameterized with the function P : PS 7→ OS leading from parameter
space PS being [0, 1]3 to object space. For the purpose of deformation, the
function D : PS 7→ T S is introduced which is parameterized over the defined
parameter space and leads to the texture space T S. A lattice consisting of
control points bi,j,k (i = 0, . . . , l, j = 0, . . . , m, k = 0, . . . , n) is placed in the
texture space and defines the shape of function

D(s, t, u) =
l∑

i=0

m∑

j=0

n∑

k=0

Bl
i(s) Bm

j (t) Bn
k (u) bi,j,k (2)

in a unique way. This function D is a trivariate tensor product of 1D Bézier
functions where the basis functions Bl

i, B
m
j , Bn

k are Bernstein polynomials of
order l, m and n, respectively (Figure 1). Changes in the form of the deforma-
tion represented by function D can be achieved with movements of the lattice
points bi,j,k.
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Fig. 1. Bernstein polynomials of order 4

In the context of registration, an important property of any Bézier func-
tion is the fact that it lies within the convex hull of the control points:
D (s, t, u) ∈ {

∑
i,j,k ci,j,k · bi,j,k }, where

∑
i,j,k ci,j,k = 1 and i = 0, . . . , l,

j = 0, . . . , m, k = 0, . . . , n. This property ensures that the Bézier function
smoothly follows the control points without erratic oscillations. This is uti-
lized in the registration algorithm by setting the border control points to be
fixed. Therefore, we can prevent the deformation function from taking values
from outside of the registered image volume.
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2.2.2 Hardware-accelerated free-form deformation

In order to make the FFD model efficient in spite of the high computational
cost of evaluating 3D Bézier functions, graphics hardware was used for speed-
up. For this purpose, the image data is initially loaded into 3D texture memory
of the graphics adapter to employ the texture processing unit for performing
the most expensive computations. The texture space T S being [0, 1]3 is asso-
ciated with the texture memory in order to perform texture mapping.

The calculation of a single FFD consists of three steps. In the first step, the
object is embedded in the lattice of control points. The control points lie in the
texture space, while the object undergoing deformation is physically placed in
the texture memory and in a logical sense in the object space. Initially, the
control points in the lattice are uniformly displaced in the texture space.

To produce a deformation, in the second step control points are shifted to
their new locations. This changes the structure of the control lattice which is
expressed by the function

M : T S 7→ T S ,

M(bx, by, bz) = (tx, ty, tz) . (3)

In our method, the changes in the control lattice are not directly based on the
absolute coordinates of the control points. Instead, offset vectors (tx, ty, tz)
from the initial control points positions (bx, by, bz) are chosen as the free pa-
rameters of the Bézier transformation. This strategy allows treating the occur-
ring free-form deformation as a change of a vector field containing an object
which is deformed. Such a treatment is closely related to the physical nature
of the phenomenon. In the initial stage, the vector field is set to 0 at each
control point. In order to prevent illegal values of the deformation function,
the offset vectors at the border are set to 0 during the whole registration
procedure. Thus, only the inner control points of the Bézier function are free
parameters of the optimization. This assumption is well motivated in practice
since the interesting image information is usually contained in the interior
of a 3D medical dataset and no deformation occurs at the boundaries of the
volume.

In classical FFD approaches (Rueckert et al., 1999), after performing these
two steps the new coordinates for every object point are explicitly calculated
in the third and the final step based on the shifted coordinates of the control
points. To circumvent this computation expense in our algorithm a discrete
and uniform grid is considered in parameter space. The function

D(s, t, u) =
l∑

i=0

m∑

j=0

n∑

k=0

Bl
i(s) Bm

j (t) Bn
k (u) (bi,j,k + M(bi,j,k)) (4)
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incorporating the displacement function M is evaluated only on this sparse
grid, defining the respective texture coordinates. In order to achieve a better
approximation of the original shape of the deformation function the discrete
grid can be set denser than the control lattice. After sampling the function
D, the resulting texture coordinates on the sparse grid are used to propagate
the deformation onto the whole volume using trilinear interpolation. For this
purpose, the 3D Bézier function is approximated with a 3D piecewise linear
model (Soza, 2005; Hastreiter et al., 2004). This approach is computationally
less expensive since there is no need to process the whole 3D image voxel by
voxel to obtain new intensity values which is necessary in software approaches.
Instead, graphics hardware is employed to reduce the execution time of these
expensive operations. A 2D example presenting an approximation of FFD with
piecewise linear patches is shown in Figure 2.
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Fig. 2. Subdivision of a slice into 2D piecewise linear patches. a) The Bézier function
is defined over a 3×3 lattice. b) Control point b1,1 was moved from its initial position
(0.5, 0.5) to (0.1, 0.1). This resulted in D(0.5, 0.5) = (0.4, 0.4). c) Values of the image
of function D on a uniform discrete grid 3 × 3. d) Resulting 2D piecewise linear
subdivision of the slice. e) Values of the image of function D on a uniform 5 × 5
grid. f) Piecewise linear subdivision of the slice based on the values from e)
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2.3 Optimization

A very efficient optimization strategy is the simultaneous perturbation stochas-
tic approximation (SPSA) (Spall, 1992) method for multivariate optimization
problems which was adapted to considerably improve the optimization pro-
cess. It is an excellent technique for both local and global optimization and is
of equal or greater efficiency in terms of overall cost compared to other opti-
mization approaches (Maryak and Chin, 2001; Spall, 2000; Spall et al., 1999).
In comparison to Powell’s optimization scheme (Press et al., 2002), SPSA fur-
ther contributes to robustness and efficiency of the registration process due to
simultaneous perturbation of the optimized parameters and due to estimated
gradient information of the similarity measure.

Let us denote the vectors of the translations ti of the control points in the free-
form deformation control lattice by tk. At iteration k+1, the SPSA procedure
updates these free parameters according to:

tk+1 = tk − akgk(tk) . (5)

Here, ak is a scalar sequence defined later in Equation 7 and gk(tk) is the
estimate of the gradient of the optimized NMI function for the parameter
vector tk.

The gradient approximation involves two measurements of the NMI at the
perturbed parameter vector tk. Specifically, the component i of this gradient
is given by

gi
k(tk) =

NMI(tk + ck∆k) − NMI(tk − ck∆k)

2ck∆
i
k

. (6)

In this equation, ∆i
k, i = 1, . . . , n are elements of the user-specified perturba-

tion vector ∆. For this perturbation a Bernoulli distribution is used consisting
of +1 and −1 both being generated with the same probability of 0.5, as sug-
gested in (Spall, 1992). ak and ck are sequences depending on the constants
a, A, c, α and γ and are defined as

ak =
a

(A + k)α
, (7)

ck =
c

kγ
. (8)

Additionally, these sequences have to fulfill the following conditions to ensure
convergence of the iterative procedure:

α − 2γ > 0, 3γ −
α

2
≥ 0, 0 < γ < α < 1 , (9)
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with a > 0, c > 0, A ≥ 0. The essential strength of this iterative method is
the underlying gradient approximation which requires only two measurements
of the objective function independent of the dimension of the parameter do-
main. In comparison to other optimization approaches such as Powell’s direc-
tion search method (Press et al., 2002), this leads to a significantly reduced
number of iterations during the optimization process. In Figure 3, the con-
vergence processes for Powell and SPSA optimization are compared. In order
to obtain a similar value for NMI, i.e. a similar registration quality, SPSA
needs significantly less iterations. In comparison to Powell optimization, the
number of iterations is reduced to about 15 % (Soza, 2005), resulting in less
computational cost.

N
M

I

N
M

I

Number of iterations Number of iterations

Powell optimization SPSA optimization

Fig. 3. Comparison of SPSA and Powell optimization. In each plot, the value of the
similarity measure in dependence on the iteration number is shown. The different
levels of the multiresolution hierarchy are separated by vertical lines.

Moreover, direct measurements of the function are taken for the estimation
of the gradients and no explicit gradient information has to be provided for
the algorithm. This enables efficient application of this technique to the opti-
mization of normalized mutual information which is dependent on a discrete
histogram. Thus, it has an analytically and computationally complex deriva-
tive. Since the optimal parameters do not necessarily have to be obtained in
the last iteration of the SPSA procedure, an additional third function measure-
ment can be optionally taken in each iteration to obtain the current optimal
parameters. However, choosing appropriate configuration parameters for the
registration problem results in an almost certain convergence. Therefore, after
initial experiments, we performed only two evaluations of the NMI in each
iteration which further reduces the computational expense.
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2.4 Registration framework

Before performing the non-linear registration of the source and the target
dataset using Bézier functions, a rigid registration is computed which is used as
an initial estimate (Hastreiter and Ertl, 1998). Thereafter, the source dataset
is loaded into texture memory and is embedded in a lattice of control points.
At the beginning of the registration, this lattice has the form of a uniform
parallelepiped (see Figure 4).

a) b)

Fig. 4. 3D free-form deformation. A dataset is initially embedded in a uniform lattice
of control points: a) 3D view b) Parallel projection

Then, during an iterative procedure, free control points in the lattice are ma-
nipulated in such a way that the deformed volume aligns with the target vol-
ume. The optimal positions of the control points are estimated with the SPSA
algorithm (Section 2.3). The quality of the registration is measured using NMI
according to Section 2.1. Thereby, the degrees of freedom are the translation
vectors from the initial positions of the inner control points in the lattice. In
each iteration, the coordinates of all control points are stochastically perturbed
and the new deformed volume is recalculated based on a piecewise linear ap-
proximation of the Bézier function. The algorithm optimizes the similarity
measure between the recalculated and the target volume until convergence is
reached, i.e. the similarity measure does not change significantly over time, or
a maximum number of iterations is reached.

3 Experimental setup

In this section, an overview of the image data used for the experiments is given
(Section 3.1). Furthermore, the setup for evaluating the registration framework
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with respect to quality and accuracy is described in Section 3.2. Finally, the
data processing and evaluation techniques that are applied for correcting and
evaluating susceptibility artifacts in DTI data are provided in Section 3.3.
This includes information about the patient population, reconstruction of the
pyramidal tract, brain extraction and rigid registration in preparation for non-
linear registration.

3.1 Image data

For the reconstruction of fiber tract systems such as the pyramidal tract, DTI
data was acquired. For the DTI measurements, a single-shot spin-echo dif-
fusion weighted EPI sequence was used (parameters: TR = 9200, TE = 86
ms, bhigh = 1000 s/mm2, blow = 0 s/mm2, field of view 240 mm, 1500 Hz/Px
bandwidth, average time for 5 measurements: 5 min and 31 sec). For each
slice, one reference image without diffusion sensitization (B0) as well as six
images with diffusion sensitization in non-collinear directions (B1 - B6) were
gathered (gradient directions: (±1,1,0), (±1,0,1), and (0,1,±1)). With respect
to anatomical information, the B0 reference image provides the best repre-
sentation though in poor detail. The other images show diffusion properties.
The acquired DTI datasets had a resolution of 128 × 128 × 60 voxels with a
respective voxel size of 1.875 × 1.875 × 1.9 mm3.

Additionally, an anatomical dataset was acquired for planning and navigation
in neurosurgery. Since anatomical MR data shows negligible distortions, it
was also used as reference data for compensating susceptibility artifacts of
EPI data using non-linear registration. For data acquisition, a 3D gradient
echo sequence such as MPRAGE (Magnetization Prepared Rapid Acquisition
Gradient Echo) was used (parameters: TR = 2020 ms, TE = 4.38 ms, field of
view 250 mm, 130 Hz/Px bandwidth, measurement time 8 min 39 sec). The
acquired MPRAGE datasets had a resolution of 512 × 512 × 160 voxels with
a respective voxel size of 0.488281× 0.488281 × 1.0 mm3.

All MR imaging was performed using a Magnetom Sonata Maestro Class 1.5
Tesla scanner (Siemens Medical Solutions, Erlangen, Germany) equipped with
a gradient system with a field strength of up to 40 mT/m (effective 69 mT/m)
and a slew rate of up to 200 T/m/s (effective 346 T/m/s).

3.2 Setup for evaluation of registration framework

The registration framework described in this work was applied to DTI and
anatomical MR data in order to correct for the susceptibility artifacts inherent
to DTI-EPI data. Since the accuracy of the registration framework is crucial
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for the quality of the correction, a number of initial experiments was performed
in order to prove the value of the framework.

In a first experiment, the entire registration framework was evaluated by recov-
ering a known ground truth transformation. For this purpose, an anatomical
dataset was warped with a predefined non-linear transformation. The known
transformation modeled expansion of the brain in the frontal lobe in order to
simulate correction of susceptibility artifacts, which impress the frontal lobe.
The original dataset was then registered to the deformed dataset and the
resulting transformation was compared to the known transformation.

In addition to numerically comparing the calculated transformation obtained
from non-linear registration with the ground truth, difference images between
the deformed and the registered dataset were investigated.

Since the registration of DTI data is more delicate due to a limited image
resolution, the quality of registration between DTI and anatomical MR data
was assessed in a second experiment. For this purpose, distinct landmarks were
identified in both the DTI and MPRAGE dataset after non-linear registration
and statistical values for the distances between the landmarks were measured.

A supplementary strategy to assess the quality of registration of DTI with
anatomical MR data, was visual inspection by a medical expert. For this
purpose, a semi-transparent overlay of a DTI data window onto MR slices
was used as well as overlays of contours from the anatomical MR scan over
the corresponding DTI slice, before and after registration, respectively.

3.3 Setup for distortion correction and evaluation techniques

The presented registration approach was used to evaluate the impact of sus-
ceptibility distortions on the location of the pyramidal tract (motor tract sys-
tem) which is monitored during brain surgery by means of functional neuro-
navigation. This motor tract system has to be spared during surgery in order
to avoid post-operative motor deficits. In this context, the potential misalign-
ment due to susceptibility artifacts is of high interest for the surgeon.

In a retrospective study, datasets of 14 patients (8 female, 6 male, age range
19-74 years, mean age 44.2 years) were investigated. Among them, 12 pa-
tients suffered from gliomas (WHO (World Health Organization) grade I: 1,
grade II: 3, grade III: 6, grade IV: 2) and 2 patients from cavernoma. In each
patient, pre-operative anatomical MR as well as DTI based on EPI was mea-
sured. During EPI acquisition, gradient emphasis was enabled to leverage the
impact of eddy currents as well as lipid suppression for eliminating chemical
shift. To compensate for the remaining susceptibility artifacts, the presented
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non-linear registration approach was applied. The distortion-corrected EPI
datasets were then used for integration into the MPRAGE data to make fiber
tract data available for surgical planning and neuro-navigation.

For each patient, the spatial distortion of the pyramidal tract was analyzed
on the hemisphere where the lesion was located. The respective fiber tract
bundle was reconstructed using the DTI task card version 1.66 (Magnetic Res-
onance Center, Massachusetts General Hospital, Boston) on a Siemens work-
station using the MR software MRease N4 VA21B under syngo VB10I. This
was accomplished using a knowledge-based multiple-ROI (region of interest)
approach whereas the tracking algorithm was initiated from user-defined seed
regions. Tracking was thereby performed in both retrograde and orthograde
direction. A vector step length of 0.5 mm, an angular threshold of 35 degree
and a fractional anisotropy threshold of 0.3 were used.

The fiber information was then used to determine all voxels containing fibers
within the B0 dataset. Those voxels were marked by setting the respective
grey value to a predefined, unambiguous value. After non-linear registration
of B0 and MPRAGE data, the derived transformation field was applied to the
marked B0 dataset to compensate the susceptibility artifacts. This resulted
in a shift of marked voxels in areas where distortions were present in the B0
data.

To prepare the datasets for registration, a segmentation of the brain was per-
formed which in this case was automatically accomplished using the Brain Ex-
traction Tool (Smith, 2002). This is of special importance for intra-operative
datasets where the intra-operative head frame is visible as well as artifacts
from the metal screws. The fractional intensity threshold, which is an extrac-
tion parameter for controling the size of the segmented area, was set to 0.5
(default value) in case of the MPRAGE datasets and was in the range of 0.1
in case of the BO datasets. The quality of the segmentation result was verified
for each dataset.

First, the B0 dataset together with the MPRAGE imaging data were rigidly
registered. Then, the proposed approach for non-linear registration employing
SPSA for optimization was applied. According to the suggestions in (Spall,
1998), the configuration parameters for SPSA optimization were set to α =
0.101 and γ = 0.606. However, experiments showed that small variations of
these values have no influence on the quality of the registration result. Fur-
thermore, our own investigations resulted in values of 100.0, 10.0 and 0.5 for
the constants A, a and c, respectively.

For each pair of the brain images, the FFD registration was performed in
a three-stage multiresolution approach. A non-linear registration at a coarse
resolution level was performed first. The resulting transformation served as
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input for the second stage at a higher resolution level, and so on. The third
stage of the multiresolution approach corresponded to the original resolution
of the datasets. With increasing resolution, the registration result is gradually
improved on each hierarchy level.

All experiments were conducted with a control lattice consisting of 9 × 9 × 9
control points which has been assessed as adequate for the registration of
DTI/MPRAGE data in a series of experiments. In order to better approximate
the corresponding Bézier function, the function was sampled on a denser grid
of 17 × 17 × 17 points.

All calculations were performed on a PC equipped with an Intel Pentium
4 (2.4 GHz) and a NVIDIA Quadro4 graphics card (NVIDIA, Santa Clara,
CA, USA) with 128 MB graphics memory. The average computation time was
1.5 h. Thereby, 40 min were required for data conversion, brain extraction,
computation of fibers and extraction of voxels containing fibers. The rigid
registration providing an initial estimate for the non-linear registration process
was in the range of 1-2 minutes. For non-linear registration using hardware-
acceleration, a single resampling step and evaluation of NMI for a dataset
comprising 512×512×160 voxels required 0.96 seconds. The overall computing
time for non-linear registration was in the range of 50 minutes.

Before non-linear registration, the distortions inherent to DTI data due to
susceptibility artifacts result in a displacement of fibers. Since EPI distortions
occur in phase-encoding direction (which is the anterior-posterior direction
in our case), the measurement of anterior-posterior distortions is of major
interest. Accordingly, the distortions in left-right direction are expected to be
low. Since MR acquisition is typically performed in slice selection mode, no
distortions in z direction occur.

For each patient, the extent of distortions was evaluated by analyzing corre-
sponding axial slices within the unregistered and the registered B0 dataset. For
every second slice containing fibers, the maximum displacement of the fibers
was determined, i.e. the offset of the marked voxels. For this purpose, we
measured the maximum distance between two corresponding boundary points
in left-right and anterior-posterior direction. In Figure 5 the approach for
measuring the displacement in axial slices in left-right and anterior-posterior
direction is illustrated.

In order to roughly summarize the extent of distortion in the different patients,
the numbering of axial slices was adjusted in each dataset providing a cross-
alignment between different patients. For this purpose, the slice containing the
upper boundary of the lateral ventricles was assigned a common slice number
in all patients, all other slices in each dataset were renumbered accordingly.
As a result, anatomical structures as well as areas of major distortions are
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located in slices with common number allowing averaging of measured results
per slice number. In a second test series, we aligned the skull base in each
dataset. As a result, most distinct distortions occurred near the cortex and
the brainstem.

Fig. 5. Evaluation scheme of susceptibility distortions affecting the pyramidal tract
in a 68-years-old male patient with a right temporo-mesial WHO grade III anaplastic
astrocytoma. The Marked voxels represent the right pyramidal tract within a B0
image before (left) and after (middle) non-linear registration. Transparent overlay
analysis (see arrows) was applied in order to measure the maximal displacement in
left-right and anterior-posterior direction (right).

4 Results

In a first step, the presented algorithm for non-linear registration was evalu-
ated with respect to the obtained registration accuracy using different tech-
niques (Section 4.1). Subsequently, the results of the experimental setup for
distortion correction are presented where the extent of distortion encountered
for the pyramidal tract due to susceptibility artifacts is evaluated (Section 4.2).

4.1 Registration accuracy

In order to verify the quality and accuracy of registration, different techniques
were applied. In the first experiment, a known transformation was defined.
Since the susceptibility artifacts result in a compression of the frontal lobe,
which requires an expansion during non-linear registration, a known transfor-
mation expanding the frontal lobe was chosen. The maximum displacement
of the parameter values associated to the control points was 50 mm for the
pre-defined deformation. This known transformation was applied to each of
the 14 MPRAGE patient datasets. For each patient, the original dataset was
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then non-linearly registered to the deformed one and the resulting transfor-
mation was compared to the known transformation. A comparison between
the parameter values of the known transformation and the values obtained af-
ter non-rigid registration is shown in Table 1. The average deviation is in the
range of 0,18 mm, which indicates a high quality of registration. The maximum
deviation from the predefined values is 2,26 mm (Patient 03), even though the
registration result for this patient shows good quality. This can be attributed
to a control point that lies outside the region occupied by brain tissue within
the volume dataset, having only a small effect on the brain deformation.

max mean ± sd
[mm] [mm] [mm]

Patient 01 0.10775 0.09239 0.01145

Patient 02 0.35325 0.09083 0.10974

Patient 03 2.25950 0.29429 0.55781

Patient 04 2.06150 0.21863 0.45028

Patient 05 0.28850 0.07693 0.10544

Patient 06 1.18525 0.18813 0.29220

Patient 07 1.09575 0.16912 0.28390

Patient 08 0.29925 0.07813 0.10441

Patient 09 1.37000 0.19794 0.32393

Patient 10 1.72000 0.18451 0.35378

Patient 11 1.87650 0.23788 0.43763

Patient 12 2.02675 0.23096 0.43299

Patient 13 1.40675 0.19684 0.32726

Patient 14 0.40675 0.11390 0.12648

All patients 2.25950 0.17813 0.31448

Table 1
Absolute difference between the parameter values obtained from non-linear regis-
tration and the parameter values of the known transformation. For each patient,
the maximum and the mean value as well as the standard deviation (sd) is given in
[mm].
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The results of the first experiment were visualized using difference images.
Figure 6 shows an axial view of dataset 03. The upper row shows the data
warped with the known transformation, where the frontal lobe is expanded.
The lower row provides a comparison between the dataset warped with the
known transformation (left) and the dataset after non-rigid registration (mid-
dle). According to the difference image before and after registration (right in
both rows), the registration result shows good alignment with the deformed
dataset using the known transformation.

a) b)

b)

b)

d) e)

c)

Fig. 6. Corresponding axial slices of an anatomical dataset. Upper row: Original
dataset before (a) and after application of known transformation (b) and respective
difference image (c). Lower row: Dataset after non-rigid registration (d) in compar-
ison to known transformation (b) and corresponding difference image (e).
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In a second experiment, the quality of registration between DTI and anatom-
ical MR data was investigated. Obviously, since the distortion of the DTI
data is not known, it is not possible to investigate the accuracy using a known
transformation as before. Instead, an approach based on landmarks is applied.
The landmarks were primarily selected in regions where distortions occur such
as in the frontal lobe and the brainstem. Thereby, P1 and P2 denote the most
frontal points of both lateral ventricles, P3 and P4 are positioned at the cere-
bellum, P5 indicates the junction between pons and mid-brain and P6 and P7

identify the most occipital points of both lateral ventricles.

P1 P2 P3 P5 P4 P6 P7

Patient 01 0.78 1.15 0.66 - 0.94 0.76 0.61

Patient 02 0.81 - 0.72 0.96 2.01 0.59 0.63

Patient 03 1.00 1.14 0.83 1.46 1.27 0.68 0.63

Patient 04 1.33 0.59 0.93 0.98 2.63 0.62 0.71

Patient 05 1.15 1.64 1.23 0.53 2.10 0.74 0.59

Patient 06 1.12 0.42 0.55 0.70 0.41 0.52 0.48

Patient 07 0.47 0.53 1.10 0.69 1.67 0.60 0.39

Patient 08 0.45 0.52 0.92 0.62 1.96 0.45 0.62

Patient 09 0.33 0.62 0.87 0.92 2.20 0.38 0.42

Patient 10 1.41 1.35 0.78 - 1.26 0.71 0.65

Patient 11 1.40 0.82 1.03 1.21 2.40 0.81 0.75

Patient 12 0.65 0.29 0.66 0.78 1.17 0.55 0.39

Patient 13 0.45 1.26 0.63 0.88 1.44 0.73 0.69

Patient 14 0.69 0.66 1.07 2.04 2.41 0.81 0.58

mean [mm] 0.86 0.85 0.86 0.98 1.71 0.64 0.58

sd [mm] 0.06 0.35 0.29 0.76 1.04 0.04 0.02

Table 2
Quality of non-linear registration for distortion correction in DTI data. For each
patient, the distance between distinct anatomical landmarks P1 - P7 in the DTI
and anatomical MR dataset was measured and is given in [mm]. In three cases, no
distance could be obtained: In two patients, P5 was out of the scan volume, in one
patient, P2 was infiltrated by the tumor.
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In Table 2, the measurement results are summarized and the mean value ±
standard deviation (sd) is given in [mm]. The misalignment for all landmarks
is in the range of 1-2 mm. Taking into account that the voxel resolution of the
DTI dataset is in the range of 2 mm and that the landmarks were placed in
regions where distortions due to susceptibility artifacts occur, this is a valuable
registration result.

Additionally, the registration result between DTI and anatomical MR data
was assessed by visual inspection by a medical expert. A semi-transparent
overlay of a DTI data window onto MR slices (Figure 7) as well as contour
plots (Figure 8 and 9) were applied for this purpose. Before non-linear reg-
istration, the distortions inherent in DTI data due to susceptibility artifacts
were clearly visible (Figure 8 and 9). The senior author having more than
15 years experience with MRI, approved a satisfying correspondence in the
gyri of the central region, the internal capsule, and the brainstem after regis-
tration which further confirms the achieved quality.

Fig. 7. Illustrative case of a 32-years-old female patient with a recurrent supraten-
torial primitive neuroectodermal tumor undergoing surgery. Inspection of the reg-
istration result using a semi-transparent overlay of DTI data (small data window,
movable) and anatomical MR data (background data).
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(a)

(b)(b)

Fig. 8. Illustrative case of a 39-years-old female patient with a right frontal astrocy-
tom (WHO grade III) undergoing surgery. Axial slice of the distorted DT image (B0
image) with the marked pyramidal tract before (left) and after (middle) non-linear
registration with contours of MPRAGE slice (right). (a) denotes distortions due
to susceptibility artifacts, (b) indicates distortions which can be attributed to the
metal screws of the intra-operative head frame. Dashed line allows investigation of
displacement.

(a)

(b)

(c)
(d)

Fig. 9. Illustrative case of a 75-years-old female patient with a right precentral
glioblastoma multiforme (WHO grade IV) undergoing surgery. Contours of the
anatomical MR slice (right) mapped onto the DT image (B0 image) before (left)
and after (middle) non-linear registration support inspection of registration result.
(a) denotes an odema, (b) shows the location of the tumor, (c) indicates distortions
due to susceptibility artifacts, (d) denotes the pyramidal tract.

22



4.2 Measured susceptibility distortions

For each patient, the shift of the pyramidal tract after non-linear registration
for compensating susceptibility artifacts was measured for each second axial
slice. The displacement of the right pyramidal tract in anterior-posterior direc-
tion is visualized in Figure 10, where the corresponding measured distortion
is plotted for the respective slices.

Fig. 10. Measured distortions of the right pyramidal tract in anterior-posterior di-
rection in a 20-years-old female patient with a cavernoma located in the postcentral
gyrus. For each second axial slice the distortion of the fibers was measured in cor-
responding slices of a B0 dataset before and after registration showing that distinct
distortions occurred near the cortex and the brainstem.

The results of all 14 patients are summarized in Figure 11 and 12. In Figure 11
the datasets were aligned according to the upper boundary of the lateral ven-
tricles, in Figure 12 according to the frontal base of the brain. The numbering
of the slices was adjusted accordingly. This allows comparing the distortion
of DTI data in different individuals to some extent. The displacement of the
fibers, i.e. marked voxels, was measured for every second axial slice. In both
figures, two separate diagrams indicate the measured distortion in left-right
and anterior-posterior direction. For each slice the maximum and minimum
measured distortion, as well as the mean value ± standard deviation of dis-
tortion is displayed in the diagram.

The distortion of the pyramidal tract in all patients amounted up to 11.5 mm
in the area of the brainstem with a mean of 3.2 ± 3.5 mm in phase encoding
direction (anterior-posterior). However, in the area of interest, i.e. around the
zone undergoing resection, the mean distortion was limited to 2.4 ± 1.7 mm
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with a maximum of 9 mm in phase-encoding direction. Near the cortex, higher
distortions of up to 15 mm (mean 4.0 ± 2.8 mm) were measured. The left-right
distortions amounted up to 9 mm in the area of the brainstem with a mean
of 1.0 ± 1.5 mm. In the area of interest the mean distortion was even smaller,
with a maximum of 7 mm and a mean of 0.9 ± 0.9 mm. Near the cortex larger
distortions of up to 10 mm with a mean of 1.3 ± 1.4 mm were observed. These
results are summarized in Table 3.

anterior-posterior left-right

min max mean ± sd min max mean ± sd
[mm] [mm] [mm] [mm] [mm] [mm]

cortex 0 15 4.0 ± 2.8 0 10 1.3 ± 1.4

internal capsule 0 9 2.4 ± 1.7 0 7 0.9 ± 0.9

brainstem 0.5 11.5 3.2 ± 3.5 0 9 1.0 ± 1.5

Table 3
Minimum (min), maximum (max), and mean distortion ± standard deviation (sd)
in anterior-posterior (phase-encoding) and left-right direction measured for different
areas of the brain in 14 patients.
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anterior-posterior

left-right

Fig. 11. Datasets aligned according to the upper boundary of the lateral ventricles.
Slice numbering starts at the brainstem level. Average distortion ± standard devi-
ation, as well as minimum and maximum distortions for corresponding axial slices
in 14 patients denoted in mm.

25



anterior-posterior

left-right

Fig. 12. Datasets aligned according to the frontal base of the brain. Slice numbering
starts at the brainstem level. Average distortion ± standard deviation, as well as
minimum and maximum distortions for corresponding axial slices in 14 patients
denoted in mm.
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5 Discussion

This paper presents an approach for non-linear registration applied for DTI
distortion correction extending our previous work (Hastreiter and Ertl, 1998;
Hastreiter et al., 2000; Soza et al., 2002; Hastreiter et al., 2004; Soza et al.,
2004). In this context, the optimization process was considerably improved
using the SPSA optimization strategy. Compared to Powell’s direction search
method (Press et al., 2002) that we applied up to now, the SPSA method is
much better suited to overcome local minima which contributes to the robust-
ness of the registration framework. Furthermore, SPSA is an excellent method
for both local and global optimization and has equal or greater efficiency in
terms of overall cost compared to other optimization approaches (Maryak and
Chin, 2001; Spall, 2000; Spall et al., 1999). For an equal registration accuracy
expressed by similar NMI values, the number of iterations required by SPSA
is reduced to about 15 % (Soza, 2005) compared to Powell optimization. An-
other efficiency aspect of SPSA is its behavior for an increased number of
control points. As an advantage, the number of iterations does not scale lin-
early with the number of control points, as encountered in case of the Powell
optimizer. Therefore, the computing time for non-linear registration was only
about 50 minutes in spite of a considerably increased number of free control
points which is about 13 times higher in the employed 9×9×9 lattice (73 free
control points) compared to the 5 × 5 × 5 lattice (Soza et al., 2002) (33 free
control points).

In addition to our hardware-based strategy of non-linear registration, SPSA
further contributes to the robustness and efficiency of the registration ap-
proach due to simultaneous perturbation of the optimized parameters and
due to estimated gradient information of the similarity measure.

The presented approach for non-linear registration was used to correct for
susceptibility artifacts inherent to EPI data in the context of DTI. Within
an iterative procedure, a displacement field is computed resulting in a shift
of fibers represented by marked voxels. This indirect approach relying on pre-
computed fibers is necessary since applying the deformation field to the B1-B6
data would not provide correct tensors due to the geometric nature of the ten-
sor information. This is related to the warping of the DTI data requiring
a re-orientation of the respective tensors for full correction. Using the pre-
sented approach, the difficult problem of tensor re-orientation was elegantly
overcome. A severe drawback of approaches currently available for tensor re-
orientation (Guimond et al., 2002; Ruiz-Alzola et al., 2002; Sierra, 2001) is the
significantly increased computational cost due to their algorithmic complexity.
In addition to that, these techniques have not yet been fully quantified and
theoretically proven, for this reason re-orientation of tensors is circumvented
in our registration framework.
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To quantify the extent of distortions resulting from susceptibility artifacts,
the presented approach was evaluated for 14 patients. Thereby, the displace-
ment after distortion correction of the pyramidal tract was measured in the
hemisphere where the lesion was located. The results were consistent with our
expectations showing distinct distortions at the brain surface (in the central
region) and near the brainstem. Accordingly, the distortion in the region of
the internal capsule was less significant. In general, the main displacement oc-
curred in anterior-posterior direction, i.e. in phase-encoding direction, whereas
the left-right displacements proved to be less dominant. This observation is of
clinical importance in cases where a tumor causes a medial shift of the pyrami-
dal tract since the position in left-right direction is relatively exactly depicted
by DTI data even without non-linear registration. The two approaches for
roughly aligning the different patient data to summarize the measured data,
using the position of either the lateral ventricles or the frontal brain base
as reference, showed no prominent difference regarding the averaged distor-
tion measurements. In spite of the general tendencies, we observed differences
between individual patients. For this reason, distortion correction based on
non-linear registration has to be applied for each patient dataset separately
in order to obtain precise results. This is of special importance for patients
where the lesion is close to the pyramidal tract in order to prevent injury of
this tract system due to a wrong anticipated position resulting from suscep-
tibility distortions. Nevertheless, the comparison and evaluation involving all
datasets shows that susceptibility artifacts are most prominent near the cortex
and in the brain stem and affect the position of the pyramidal tract primarily
in anterior-posterior direction.

Even though our clinical evaluation is purely retrospective, the presented ap-
proach enables for distortion correction of susceptibility artifacts which is uti-
lizable for pre-operative planning. Thereby, eloquent cortical brain areas and
major fiber connections such as the pyramidal tract are determined and con-
sidered to minimize the risk of post-operative neurological deficits. For this
purpose, data from fMRI or MEG identifying eloquent cortical brain areas, are
integrated into datasets for stereotactic guidance resulting in so-called func-
tional neuro-navigation (Ganslandt et al., 2004; Nimsky et al., 1999; Nimsky
et al., 2004a). The next logical step is to also integrate major fiber connec-
tions such as the pyramidal tract computed by tractography algorithms in a
stereotactic setup (Kamada et al., 2005; Kinoshita et al., 2005; Clark et al.,
2003; Coenen et al., 2001) which requires techniques for distortion correction.

Apart from the registration approach presented in this paper, other strategies
exist to account for image distortions inherent to DTI data: In modern func-
tional scanning tools, field maps are implemented to identify and mark areas
where the image information can no longer be trusted. However, a correction
of image distortions is not provided with this technique. Another strategy
are DTI sequences such as diffusion-weighted single-shot STEAM MR imag-
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ing (Nolte et al., 2000) combining a diffusion-weighted spin-echo preparation
period and a high-speed stimulated echo acquisition mode (STEAM) MRI
sequence, resulting in significantly less imaging distortions.

Essentially, this MRI technique is insensitive to susceptibility gradients, mag-
netic field inhomogeneities, and chemical shifts (Nolte et al., 2000). However,
it suffers from several drawbacks such as a coarser resolution, a lower signal
to noise ratio and an increased measurement time which still render its clini-
cal use problematic. For these reasons, EPI remains essential for clinical DTI,
requiring strategies for distortion correction of the underlying EPI data.

The presented approach enables correction of susceptibility artifacts in DTI
data using non-linear registration and to use this data for neuro-navigation to
visualize the correct spatial relation of a tumor with respect to the pyrami-
dal tract. Limitations of the presented approach relate to brain shift effects
or tumor removal requiring an update of the navigation with intra-operative
image and fiber tract data (Nimsky et al., 2004b; Nimsky et al., 2005) to
compensate for these effects (Nimsky et al., 2000). In spite of acceleration
based on graphics hardware and a highly efficient optimization strategy, the
non-linear registration approach for 3D image data is still too time consuming
for intra-operative use. However, the problem of updating the navigation after
brain shift or tissue removal also holds for fMRI or MEG data which have to be
acquired pre-operatively. In current research, this problem is addressed by sim-
ulation approaches aiming at prediction of intra-operative deformations (Soza
et al., 2004). The simultaneous application of subcortical electrical stimulation
may be another possibility of additional help in the clinical setting. Neverthe-
less, transient neurological deficits of up to 37 %, decreasing to 7 % permanent
deficits remain when electrical stimulation is applied alone (Keles et al., 2004).
These high numbers emphasize the need for reliable integration of major white
matter tracts into neuro-navigation for intra-operative visualization. Our non-
linear registration approach helps to correct for distortions due to susceptibil-
ity artifacts and thus supports pre-operative planning in neurosurgery, aiming
at integrating major white matter tracts into stereotactic guidance systems.

6 Conclusions and future work

Susceptibility artifacts inherent to EPI data cause a spatial distortion of fiber
tracts obtained by DTI-based fiber tracking. In order to compensate for these
distortions, a non-linear registration approach based on graphics hardware in-
corporating a highly efficient and robust optimization strategy was proposed.
In a first evaluation, the quality of registration provided by the non-linear
registration framework was verified. The framework was then applied in a
clinical study comprising 14 patients, where distinct distortions were mea-
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sured near the brainstem and at the cortical surface, especially of the frontal
lobe. However, we observed a certain variability between different individuals
which requires considering each case separately. Correcting the error due to
image distortion improves spatially correct pre-operative neurosurgical plan-
ning and pre-operative integration of tractography data into neuro-navigation.
The presented approach thus contributes to a safer resection in neurosurgery.

In the future, we will focus on performance improvements by exploiting new
features of upcoming graphics hardware. Further speed-up could also result
from a lattice with control points positioned at specific landmarks or features
for selective correction.
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