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Abstract

For diagnosis and surgical planning, magnetic resonance imaging (MRI) has become an
important source of medical data. About a decade ago, a novel MRI technique called
diffusion tensor imaging (DTI) evolved. Due to its ability to reflect the location and
structure of fibrous tissue such as white matter in vivo, this technique has gained in-
creasing interest in different research disciplines.

For neurosurgery, DTI data is of high value since information about the location and
the course of white matter tract systems is provided, thus supporting the anatomical
information obtained from MRI. White matter tracts, i.e. motor or sensory pathways,
are important structures within the human brain. In order to avoid neurological deficits
after brain surgery, these fiber tracts must remain intact.

However, the reconstruction of neuronal structures from DTI data is a non-trivial
task due to the complex tensor information that is captured per voxel. For this reason,
extensive research has been conducted in recent years in order to develop techniques
for the processing and visualization of DTI tensor data.

This work contributes to current research and introduces new techniques for the re-
construction and visualization of white matter tracts. The different approaches were
developed in collaboration with neurosurgeons and are intended to support preopera-
tive planning and intraoperative guidance in surgical interventions. For this purpose, a
DTI toolbox comprising dataset processing, tensor reconstruction, filtering techniques,
fiber tracking and connectivity analysis, hull algorithms and different visualization ap-
proaches has been developed.

In the future, the research currently conducted in the field of DTI will contribute
to the further improvement of planning in neurosurgery and to the reduction of the
inherent risk of postoperative neurological deficits for the patients.
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Chapter 1

Background and overview

1.1 Motivation

The medical imaging techniques available today are a powerful tool for understand-
ing basic anatomical and physiological relationships and for accurate and reproducible
diagnosis. For this reason, modern imaging and image processing techniques provide
important support for a wide variety of clinical applications. Magnetic resonance imag-
ing (MRI) is a non-invasive imaging technique preferably applied for organs and tissue,
resulting in scalar-valued slice images. For diagnosis and planning in surgery as well as
for navigation applications, MRI is a valuable source of information. For the processing
and visualization of MRI data, a wide variety of techniques including 3D visualization
and segmentation approaches have been developed.

Within the last decade, a further MRI technique denoted as diffusion tensor imaging
(DTI) has been established. DTI measures diffusion of water, which originates from
the random motion of molecules due to thermal energy. In fibrous tissue such as the
white matter1 of the nervous system, diffusion is restricted to a preferred direction.
From the diffusion measurements, it is possible to draw conclusions about the under-
lying tissue structure. This makes it possible to analyze brain function and structure
in vivo, which is of interest for different areas in research and medical application. The
diffusion characteristics measured with DTI support the diagnosis of acute ischemic
stroke, degenerative diseases such as Alzheimer’s disease or psychiatric disorders such
as schizophrenia. In neuroanatomy and neurosurgery, the DTI measurements serve as
a basis for the reconstruction of white matter structures.

However, the processing and visualization of DTI data is a non-trivial task due to the
complexity of the acquired data. Instead of a scalar value, a whole diffusion tensor is
available per voxel which describes the local diffusion properties. The challenges of re-
constructing and visualizing white matter tracts based on DTI data comprise the design
of meaningful scalar metrics, adequate reconstruction algorithms, as well as compre-

1White matter contains nerve fibers (axons) which are responsible for information transmission. The
axons are surrounded by myelin, which has a whitish appearance.
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hensive visualization techniques.
In this work, reconstruction and visualization techniques based on DTI data are pre-

sented, which are adapted to the requirements of neurosurgery. For diagnosis and plan-
ning in neurosurgery, DTI possesses a high degree of potential for the prevention of
injury to white matter tracts during surgery, thus avoiding postoperative neurological
deficits. For this reason, pioneering clinics have discovered the benefit of DTI data and
started to use reconstructed tract systems for preoperative planning as well as for intra-
operative visualization in combination with a neuronavigation system.

The goal of this work was to find an improved method of combining the contradic-
tory aims of neurosurgery, which are full tumor resection on the one hand, as well as
preservation of function on the other. For this purpose, novel reconstruction and visu-
alization techniques are presented which assist the neurosurgeon during preoperative
planning as well as intraoperatively.

1.2 Contribution

The main contributions of this work comprise different techniques for reconstructing
and visualizing white matter structures for clinical application. The research results
have been partly published in conference proceedings and journals [79-95]. In particu-
lar, the following contributions are presented and discussed in this work:

( 1 ) RECONSTRUCTION – TENSOR FILTERING
In spite of imaging protocols where several measurements are averaged, the dif-
fusion tensor data still suffers from imaging noise. In order to alleviate noise,
filters known from video processing were applied. Since a video sequence and a
sequence of slice images share some equivalence, the benefits of video filters were
exploited for smoothing of DTI data.

( 2 ) RECONSTRUCTION – FIBER TRACKING
Fiber tracking approaches are commonly applied for reconstructing fiber bundles
from DTI data. In this context, the concept of evenly spaced streamlines was
adapted and employed in order to control the density of the fibers, depending
on the local diffusion anisotropy values. Additionally, an alternative technique
for reconstructing white matter tracts based on directional volume growing was
developed.

( 3 ) RECONSTRUCTION – CONNECTIVITY ANALYSIS
For cortical regions where thin and diverging fiber bundles are located, the direc-
tional information inherent to the diffusion tensors is less pronounced. For this
reason, an alternative approach for reconstructing white matter tracts between
functional areas was developed. The initial algorithm based on A∗ pathfinding as
well as major improvements including a more sophisticated cost function and a
refined search grid are presented and discussed.
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( 4 ) RECONSTRUCTION – HULL SURFACES
Fiber tracking or connectivity algorithms usually generate bundles of lines that
represent the shape of a fiber tract. However, for intraoperative visualization us-
ing a neuronavigation system, hull surfaces are more appropriate and serve as a
basis for boundary curves which are superimposed on the OR microscope image.
Based on experiences with surface meshes [84-86], different techniques for gener-
ating hulls are presented, comprising an approach based on tetrahedralization as
well as a technique using isosurfaces.

( 5 ) RECONSTRUCTION – DISTORTION CORRECTION
The EPI sequences commonly used for DTI acquisitions suffer from distortion ar-
tifacts. As a result, the reconstructed fiber tracts are spatially displaced. In order
to correct the distortions for application in a navigational setup, a non-linear reg-
istration approach was applied. The processing steps as well as the registration
results were evaluated and are discussed.

( 6 ) VISUALIZATION – FIBER TRACKING
For the visualization of reconstructed fiber bundles, different approaches were
developed. Depending on the local diffusion anisotropy, transparent rendering of
fibers was applied in order to visually emphasize dominant tract systems. Addi-
tionally, in conjunction with the approach for connectivity analysis, different color
transfer functions were developed which encode local cost function or anisotropy
values. For the visualization of fibers, a novel hybrid approach based on triangle
strips and point sprites was developed. The resulting visualizations provide high
visual quality, and enable real-time visualization for a large number of fibers.

( 7 ) VISUALIZATION – HULL SURFACES
For visualizing the hull surfaces, per-pixel lighting as well as semi-transparent
visualization were implemented. Both techniques make it possible to investigate
the structure of the hulls in detail and to monitor the quality of the hull visually.
The approaches for visualizing the hulls were developed in conjunction with the
hull reconstruction algorithms.

( 8 ) VISUALIZATION – MULTIMODAL VISUALIZATION
In order to visualize reconstructed fiber tracts, respective hulls and functional ar-
eas obtained from fMRI in their anatomical context, multimodal visualization with
standard MR data is required. Respective visualization techniques and their ben-
efits for application in neurosurgery were investigated.

The development of reconstruction and visualization techniques for DTI data is an ac-
tive area of research. For this reason, the algorithms and visualization techniques pre-
sented are not to be regarded as the ultimate solution to the current problems, but as
contributions to an ongoing research process. The individual chapters contribute differ-
ent methods for processing DTI data, which were developed with regard to application
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in neurosurgery. The potential success of each method is discussed at the end of each
chapter. So far, the results are promising, even though comprehensive clinical evalua-
tions are still in progress.

1.3 Overview

In this work, a collection of novel methods for reconstructing and visualizing white
matter tracts from DTI data is presented. This thesis is divided into three parts: The first
part (Chapters 1 and 2) provides an introduction and outlines the medical background
of neurosurgery. The second part (Chapters 3 to 7) comprises different reconstruction
approaches based on DTI data. The third part (Chapters 8 to 10) addresses visualization
techniques that were developed in order to achieve appropriate visualization of the
reconstructed structures for medical application.

Part I – Chapter 2 outlines the medical background of neurosurgical procedures.
It starts with a short review of the history of neurosurgery, outlines disease patterns
treated in neurosurgery and gives an introduction to the clinical setup in the operating
room, including neuronavigation. The chapter concludes with a brief description of the
imaging techniques applied in neurosurgery.

Part II – Chapter 3 explains the basics about tensor reconstruction. The chapter con-
tinues with approaches for quantifying tensor shape, for tensor interpolation and for
tensor filtering. Since fundamental information about tensor reconstruction and pro-
cessing is provided, this chapter serves as a basis for subsequent parts of the thesis.

Part II – Chapter 4 provides an introduction to fiber tracking algorithms comprising
streamline tracking, tensor deflection and tract selection techniques. An approach for
oriented filters is explained, which is a local filtering method, in contrast to the global fil-
ters of Chapter 3. Subsequently, advanced approaches are described comprising evenly
spaced streamlines for controlling the spacing between single fibers and an alternative
approach denoted as directional volume growing.

Part II – Chapter 5 describes an approach for reconstructing neuronal structures
between functional areas, such as Broca’s and Wernicke’s speech areas. Since the dif-
fusion anisotropy is less pronounced in cortical and subcortical regions, an alternative
approach is presented which takes into account the whole diffusion tensor information.
The approach is based on pathfinding and takes advantage of a search grid and a cost
function based on the tensor information in order to reconstruct possible neuronal con-
nections.

Part II – Chapter 6 addresses the problem of representing the fiber tracking and con-
nectivity analysis results from Chapter 4 and 5 in an intraoperative setting. Since line
presentations superimposed on the OR microscope view would be confusing rather
than helpful, an alternative representation is required. For this purpose, different hull
approaches are presented in this chapter. The hulls serve as a basis for boundary curves
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superimposed on the focus plane of the OR microscope, which are much more appro-
priate for intraoperative visualization.

Part II – Chapter 7 addresses the problem of image distortions resulting from the
EPI sequences commonly used for DTI image acquisition. The chapter starts with a
description of the distortions encountered for EPI imaging. In the further course of the
chapter, the non-linear registration approach is described which is applied in order to
correct the distortions. Finally, results are presented and discussed that demonstrate the
benefit of this correction approach.

Part III – Chapter 8 presents different techniques for visualizing the fiber bundles ob-
tained from fiber tracking or connectivity analysis. Adaptive transparency depending
on the local diffusion anisotropy is introduced, resulting in opaque major tract systems
and rather transparent small fiber bundles. This visualization technique helps to focus
attention on major tract systems and ensures that they are not hidden by small fiber
bundles. Another aspect which has to be considered is the coloring of the fibers. In
order to convey additional information such as the local anisotropy value, appropriate
color encoding schemes are presented. Finally, the chapter presents a hybrid visualiza-
tion approach for fibers based on triangle strips and point sprites, which provides high
visual quality and yet efficient rendering.

Part III – Chapter 9 presents some information about the visualization of hulls. Light-
ing as well as transparency are important tools in order to visualize the shape and the
quality of the hulls with respect to the underlying fiber tracts.

Part III – Chapter 10 presents and discusses multimodal visualization of anatomical
data together with fiber tracts and hulls reconstructed from DTI data as well as func-
tional information. Simultaneous visualization of white matter structures and anatom-
ical data provides important information about the location of white matter tracts with
respect to surrounding anatomy for preoperative planning.
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Chapter 2

Neurosurgery: History, disease patterns,
and operative procedures

Neurosurgery comprises the surgical treatment of diseases related to the nervous sys-
tem, i.e. the brain, the spinal cord and the peripheral nervous system. This section starts
with an overview of the history of neurosurgery (Section 2.1), followed by an outline of
the disease patterns that necessitate neurosurgical treatment (Section 2.2). Furthermore,
the setup in the operating room is described including the neuronavigation system (Sec-
tion 2.3). The anatomical structure of the brain as well as functional areas and white
matter structures are surveyed in Section 2.4. An introduction to the different imag-
ing techniques applied in neurosurgery for diagnosis, planning and neuronavigation is
given in Section 2.5.

2.1 History of neurosurgery

Procedures related to neurosurgery date back to the earliest ages of human history.
Thousands of years ago, the art of trepanation where holes are drilled into the skull
and small pieces of bone are removed, was practiced as part of ritual actions. Accord-
ing to bone healing observed in trepanated skulls, patients survived these procedures
and went on to live for some time afterwards.

Several important advancements for surgery in general were developed in the 19th
century. Up to the middle of the 19th century, wound sepsis had been a major problem
in relation to surgical interventions, resulting in the death of half of the patients after
successful surgical treatment. The risk of postoperative infection was greatly reduced
by the carbolic spray invented in 1869 by Joseph Lister and the steam sterilizing tech-
nique for surgical instruments and dressings presented by Robert Koch in 1878. The
introduction of anesthesia by William T. G. Morton reduced the problem of pain and
paved the way for more time-consuming and difficult surgical procedures.

Based on these developments, neurosurgery became an independent discipline at
the turn of the 19th century. One of the first pioneers in neurosurgery was Victor Hors-
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ley (Great Britain), who specialized in surgery and physiology and developed many
practical neurosurgical techniques. In the United States, Harvey Cushing dedicated his
practice mainly to surgical interventions concerning the brain and developed many ba-
sic surgical techniques. In the field of diagnosis and treatment of brain tumors, he is
considered to be a pioneer of modern surgery. Among other achievements and research
results, he propagated the technique of x-ray imaging for diagnosis and has contributed
to the localization of cortical areas such as the sensory and motor cortex using electrical
stimuli.

Following these initial steps, the gradual advance of knowledge related to neu-
roanatomy and neurophysiology combined with technical progress enabled the system-
atic treatment of diseases related to the peripheral and central nervous system. Today,
modern neurosurgery provides excellent treatments for neurosurgical diseases. Inno-
vative operating techniques and instruments such as OR microscopes, intraoperative
imaging, neuronavigation systems or computer-assisted planning systems constantly
improve the safety and efficiency of neurosurgical procedures. Nevertheless, open
questions and further challenges remain, necessitating various research activities in this
field of medicine.

2.2 Disease patterns treated in neurosurgery

The diseases treated in neurosurgery primarily include disorders of the brain, the spinal
cord and the peripheral nervous system. Since the focus of this work is on brain surgery,
this overview is restricted to disorders involving the brain. Disease patterns of the hu-
man brain are related to the different cell types and vascular structures dedicated to
function and supply of the brain.

In general, the cells of the human brain are classified into neuronal and non-neuronal
cells. The cell bodies and dendrites of neuronal cells are denoted as grey matter and
form the convoluted surface (cortex) of the brain. The axons of the neuronal cells form
the white matter that descends deep into the brain. Glia cells are non-neuronal cells that
provide support and nutrition to the neuronal cells. Astrocytes are glia cells that anchor
neurons to their blood supply and play a dominant role in nourishing the neuronal
cells. Another type of glia cells, oligodendrocytes, form the myelin sheath of axons with
their cell membrane. As a result, the myelin sheath provides insulation to the axon and
electrical signals are propagated more efficiently. Ependymal cells are a further type of
glia cells which form the border of fluid-filled cavities within the brain and help to keep
the cerebrospinal fluid circulating.

Disease patterns of the human brain that are treated operatively mainly comprise
arterial-venous malformations as well as brain tumors originating from the different cell
types. The arterial-venous diseases comprise cavernoma, which are malformations of a
vein, as well as cerebral aneurysms, where a weak vascular wall results in a bulge of the
vessel, which may rupture. Brain tumors are classified according to the cell type show-
ing abnormal cell division resulting in tumor growth. Most primary brain tumors (not
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metastatic cancers) originate from glia cells and are therefore denoted as gliomas. They
are further classified as astrocytomas, oligodendrocytomas or ependymomas. Brain tu-
mors are further distinguished with respect to their malignance. According to the shape
and the growth properties of the tumor cells, a grade between I and IV is determined ac-
cording to the World Health Organization (WHO) brain tumor classification scheme in-
troduced in 1993. Grade I refers to less malignant tumors with a slow growth; grade IV
tumors are aggressive and grow fast.

2.3 Neurosurgical procedures

Diseases of the human brain such as arterial-venous malformations or brain tumors of-
ten necessitate surgical intervention such as resection. In this section, the setup of mod-
ern operating rooms (OR) (Section 2.3.1) including navigation in image-guided neuro-
surgery (Section 2.3.2) is explained.

2.3.1 Clinical setup in the operating room

The Department of Neurosurgery, Erlangen, Germany, is one of the pioneering clinics
equipped with intraoperative high-field MR imaging. Intraoperative imaging essen-
tially contributes to safe and precise surgery. MR imaging is commonly used for brain
tumor diagnosis and is applied intraoperatively for immediate quality control in order
to determine the extent of tumor removal. In addition to that, intraoperative MR imag-
ing allows for the compensation of brain shift by updating the navigation system with
intraoperative data.

The intraoperative MR scanner (Figure 2.1, (a)) is installed in an operating room with
radiofrequency shielding. During surgery, the patient is positioned on a rotating surgi-

(d)
(c)

(a)

(b)

Figure 2.1: Setup in the operating room. Attached to the MR scanner (a), a rotating
surgical table (b) allows positional changes. The view of the OR microscope (c) as well
as preoperative data are displayed by monitors mounted on the ceiling (d).
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cal table (Figure 2.1, (b)) which is attached to the high-field MR scanner. The table can
be locked in various positions and the tabletop is suited for MR imaging. For intraop-
erative MR scans, the table is rotated in front of the scanner and the tabletop with the
patient on top of it moves into the scanner. For surgery, the table is rotated in order to
position the patient’s head at the 0.5-mT line. Since the OR microscope (Figure 2.1, (c))
and the surgeon’s chair are not fully MR compatible, they are positioned outside the
0.5-mT line and are mechanically attached to the wall for safety reasons. Two monitors
mounted on a ceiling arm (Figure 2.1, (d)) show the images from the microscope as well
as further visualizations prepared preoperatively. The camera of the navigation system
used for neurosurgical guidance is mounted on the ceiling, as well as the touch screen
for software control of the navigation system.

A neurosurgical procedure starts with the preparation of the patient for surgery. Af-
ter anesthesia, the patient is moved to the operating table, and the head is attached to
the head holder. The screws of the head holder fixate the bone of the scull in order to
assure that the head does not move during surgery, for the patient’s own safety. In a
next step, the setup of the neuronavigation system is performed based on an initial MR
scan and identification of fiducial markers (Section 2.3.2). Additionally, preoperative
planning data such as functional information is registered onto the acquired MR data
in order to make it available for neuronavigation. As soon as the precision of the nav-
igation setup has been verified, surgery starts. For surgical intervention, the surgeon
takes advantage of the operating microscope which is equipped with strong lights that
help to distinguish different tissues. Additionally, the neuronavigation system is able
to display the border lines of the tumor as well as other important structures, such as
speech areas or white matter tracts that have been determined preoperatively, in the
focus plane of the microscope. The surgeon is thus able to avoid damaging these elo-
quent structures in order to prevent postoperative deficits. Intermediate MR scans are
acquired for quality control in order to verify the current surgery result.

2.3.2 Navigation in image-guided neurosurgery

A navigation system provides the surgeon with information about the position of
surgery tools with respect to image data of the patient. In the case of neurosurgery,
the relevant tool that has to be tracked is the OR microscope. The neuronavigation
system determines the position of the focus plane of the OR microscope in relation to
the patient in order to superimpose additional information obtained from preoperative
planning on the microscope image.

For this purpose, the neuronavigation system uses a stereo camera in order to mon-
itor the position of the microscope. Additionally, the spatial position of the patient’s
head has to be known to the system. This is determined during the navigational setup:
As soon as the patient is prepared for surgery with the skull fixed in the MR-compatible
head holder, skin-adhesive fiducial markers are attached to the skin of the patient’s
head (Figure 2.2, left, see arrow) and an initial MR scan is acquired (Figure 2.2, middle).
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The operating table is then rotated and locked at the surgery position. For the setup
of the neuronavigation system, each marker is identified with a navigation pointer and
assigned to the respective fiducial marker in the 3D MR scan in order to relate the MR
data to the patient. The navigation pointer and a reference array mounted on the head
frame (Figure 2.2, right, see arrows) are filmed by the stereo camera. The pins attached
to the pointer and the reference array are extracted from the camera images by a pattern-
recognition software and are used to compute the spatial position of the patient’s head.
By tracking the microscope position, it is now possible to relate the focus plane of the
OR microscope to the corresponding plane in the MR scan.

Figure 2.2: Setup of the neuronavigation system. Left: Fiducial markers (see arrow) are
attached to the patient’s skin. Middle: MR scan with intraoperative scanner. Right:
Fiducial markers are touched with a pointer (see upper arrow) and are assigned to the
respective marker within the MR dataset. The spherical pins attached to the pointer
and to the reference array (see lower arrow) are filmed by a stereo camera and identified
by a pattern-recognition software in order to compute the spatial position of the patient.

In standard neuronavigation, solely anatomical information from MR data is used.
However, in neurosurgery, a major goal is to preserve functional areas of the brain dur-
ing surgery. This comprises speech and motor areas on the cortex as well as deep white
matter structures (see Section 2.4). For this purpose, information from preoperative
functional MR imaging where eloquent brain areas are localized as well as white matter
tract information has to be incorporated into the navigation system. This is accom-
plished by rigid registration of the preoperative planning datasets comprising all the
required information with the initial MR scan for navigation setup. As a result, it is
possible to show the boundary curves of eloquent structures in the focus plane of the
microscope. The surgical guidance provided by this technique is of high value. It in-
creases the safety of surgery and helps to avoid postoperative deficits due to injury of
critical regions.
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2.4 Neuroanatomy

So that the following chapters may be better understood, a short introduction about
neuroanatomy is provided. The focus of this section is on functional areas and white
matter tract systems which are often monitored during neuronavigation, thus playing
an important role in the following chapters.

The human brain is a complex organ composed of about 10 billion neuronal cells.
In neuroanatomy, it is commonly divided into four parts denoted as frontal lobe, parietal
lobe, occipital lobe and temporal lobe, as outlined in Figure 2.3 (left).

The cell bodies of the neuronal cells form the grey matter, which is divided into
functional areas responsible for information processing. In Figure 2.3 (right), important
functional areas are shown: The motor cortex (blue) is responsible for planning and ex-
ecuting voluntary movements. Along the motor strip, different parts of the body are
represented, with the leg area located close to the midline, and the head and face area
located laterally on the brain hemisphere. The sensory cortex (red) is located just behind
the motor cortex and processes sensory information such as touch, pain, temperature
and body position received from the peripheral sensory receptors of the body. Visual
reception is processed in the visual cortex (yellow), which is part of the occipital lobe.
Speech processing involves two functional areas denoted as Broca’s and Wernicke’s speech
areas (dark grey) usually located in the left hemisphere of the brain. Broca’s area (also
denoted as motor speech area), is primarily involved in speech production, whereas
Wernicke’s area (also denoted as sensory speech area) is responsible for language com-
prehension and processing.

The axons of neuronal cells provide information transmission between neurons.
They form bundles denoted as white matter tracts and connect grey matter regions on
the same brain hemisphere (association fibers) or located in both brain hemispheres (com-
missural fibers). In order to link cortical regions with the peripheral nervous sysem, they

Temporal Lobe

Frontal Lobe

Parietal Lobe

Occipital
Lobe

Wern
icke

Bro
ca

Figure 2.3: Left: Lobes of the human brain. Right: Important functional areas: Motor
cortex (blue), sensory cortex (red), visual cortex (yellow), and Broca’s and Wernicke’s
speech areas (dark grey).
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may also extend down to the spinal cord (projection fibers). According to the cortical
areas they originate from, white matter tracts can be attributed to specific function:

Pyramidal tract: An important tract system is the pyramidal tract (Figure 2.4, left),
which is responsible for the transmission of motor impulses. It originates at the mo-
tor cortex and extends down to the spinal cord to synapse onto alpha motor neurons
which connect to the muscles.

Corpus callosum: The corpus callosum is a tract system composed of u-shaped fibers
which connect corresponding cortical areas situated in different brain hemispheres (Fig-
ure 2.4, middle). Most of the communication between both hemispheres is conducted
across the corpus callosum.

Optic tract: The optic tract is part of the visual system and links the optic chiasm to the
visual cortex (Figure 2.4, right). The optic chiasm is a structure, where the optic nerves
from both eyes cross. Each nerve divides and half of its fibers cross over to the other
hemisphere. As a result, the optic tract in each hemisphere transmits visual information
from both eyes.

Arcuate fasciculus: The Broca’s and Wernicke’s speech areas are connected by a white
matter tract system denoted as the arcuate fasciculus. This tract system is essential for
correct processing and understanding of language.

Figure 2.4: Important white matter tract systems (from left to right): Pyramidal tract
(motor tract system), corpus callosum (connection between the two brain hemispheres),
optic tract (visual pathway).

The above cortical areas and tract systems are responsible for essential motor, sen-
sory and other integrative functions. For this reason, an important aim of surgical in-
terventions is to preserve these structures. The next section provides an introduction to
imaging techniques which are required in order to obtain information about the location
of functional areas and white matter tracts of individual patients.
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2.5 Imaging techniques applied in neurosurgery

This section provides an introduction to imaging techniques which play an important
role in diagnosis, planning and navigation in neurosurgery. These imaging techniques
are based on nuclear magnetic resonance, which is a physical phenomenon described
in Section 2.5.1. In diagnosis and planning in neurosurgery, anatomical MRI scans play
an important role (Section 2.5.2). Additionally, fMRI is applied in order to localize func-
tional regions such as speech or motor areas (Section 2.5.3). In recent years, the first
clinics recognized the potential of DTI (Section 2.5.5) for obtaining information about
the organization of white matter structures and started to utilize DTI for preoperative
planning.

2.5.1 Physical background

Atomic nuclei with an odd number of protons and neutrons, such as the hydrogen nu-
cleus, 1H, possess a property known as spin. This is often visualized as a spinning
motion of the nucleus about its axis. In quantum mechanics, spin is represented by a
magnetic spin quantum number. Due to the charge of atomic nuclei, the spinning mo-
tion induces a magnetic field which is oriented according to the direction of the spin
axis. Due to their strong magnetic moment and due to their abundance in biological
tissue, the hydrogen nuclei of the human body are used as a source of imaging signals
in MRI. The hydrogen nucleus consists of one proton and has a spin quantum number
of 1/2, resulting in two eigenstates with slightly different energies.

In the absence of a magnetic field, the magnetic moments of the hydrogen nuclei are
randomly distributed. However, if an external magnetic field B0 is applied, the nuclei
align with this field. According to the two eigenstates, the nuclei are either in parallel or
antiparallel state (Figure 2.5, left). However, for quantum mechanical reasons, the spin
axes are not exactly aligned parallel or antiparallel with the magnetic field. They are
actually set off at an angle α and precess around B0 with a characteristic frequency ω0
known as Lamor frequency (Figure 2.5, right). For a nucleus with a given gyromagnetic
ratio γ, the Lamor frequency depends on the strength of the magnetic field:

ω0 = −γ · B0 . (2.1)

The number of spins in the parallel and antiparallel energy state depends on the
temperature. For a decreasing temperature, more spins are in the lower energy state N+,
for increasing temperature, more spins in the high energy level N− are encountered.
At blood temperature, the number of spins in the lower energy level is a bit higher
compared to spins in the higher level. The ratio of spins in the lower energy level N+

compared to spins in the upper energy level N− is described by Boltzmann statistics,
where E is the energy difference between the two states, k is the Boltzmann constant
and T denotes the temperature in Kelvin:

N−

N+
= e

−E
kT . (2.2)
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Figure 2.5: For an external magnetic field B0, nuclei with spin quantum number 1/2
adopt a parallel or an antiparallel state (left). Each spin axis precesses around the B0
field direction with Lamor frequency ω0 (right).

In order to understand the effect of magnetic resonance, a collection of hydrogen
nuclei within an external magnetic field B0 aligned with the z-axis in 3D space is con-
sidered. The magnetic moments of the nuclei can be represented as vectors on the sur-
face of a cone. The net magnetization M of all nuclei is in the direction of the external
magnetic field as shown in Figure 2.6 (left), since the higher energy state is slightly more
populated. This equilibrium state changes if radio frequency (RF) energy at the Lamor
frequency is applied. RF waves have a magnetic field component, which is a property
of all kinds of electromagnetic radiation. For a high-frequency magnetic field B1 rotat-
ing with Lamor frequency ω0 in the xy-plane, M tilts away from the direction of z, and
begins to precess around the z-axis as shown in Figure 2.6 (right). The angle between
the rotated direction of M and the z-axis is denoted as the flip angle and depends on the
strength and duration of the RF pulse. Accordingly, a 90 degree pulse rotates M into
the xy-plane, and a 180 degree pulse results in a net magnetization along the negative
z-axis. After a RF pulse of duration t, the flip angle for constant |B1| is computed as
follows:

α = |ω1| · t = γ · t · |B1| (2.3)

As soon as the RF signal is switched off, the system gradually returns to its equi-
librium state with M aligned with the z-axis. This process is denoted as relaxation.
Basically, two different relaxation processes are distinguished: T1 relaxation and T2 re-
laxation. T1 is the time constant describing the relaxation of M into its equilibrium
state aligned with the z-axis. T1 relaxation refers to the process where nuclei dissipate
their excess energy as heat to the surrounding environment (or lattice) and return to
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Figure 2.6: In a macroscopic sample, the net magnetization M is in the direction of the
magnetic field vector B0 (left). For a RF pulse with magnetization B1 rotating in the
xy-plane, M tilts away from the direction of B0 and begins to rotate (right).

the equilibrium state. This process is also known as spin-lattice relaxation. T2 is the
time constant related to the relaxation of transverse magnetization due to the interact-
ing magnetic moments of the nuclei. For this reason, this process is also called spin-spin
relaxation. The interacting magnetic moments of the nuclei result in local variations of
the magnetic field and cause a dephasing of the components of M within the xy-plane.

The signal that is measured in nuclear magnetic resonance results from the rotating
net magnetization M after turning off the RF pulse. According to Faraday’s law of
magnetic induction, M induces an electromotive force in a receiver coil (Figure 2.7). Due
to relaxation processes, the induced signal attenuates over time, which is denoted as free
induction decay (FID). The magnitude of the resulting signal depends on the number of
nuclei contributing to the transverse magnetization as well as on the relaxation times.
This RF signal is the basis for reconstructing the MR image.

2.5.2 Magnetic resonance imaging (MRI)

The physical effect of nuclear magnetic resonance is exploited in magnetic resonance
imaging (MRI) for non-invasive imaging of the human body. The concentration of water
varies depending on the tissue type and leads to a varying strength of the signal.

In order to locate the sample emitting the MR signal, three gradient coils generat-
ing orthogonal magnetic fields are necessary. The first magnetic field gradient (slice
selection gradient) is superimposed on the external magnetic field B0 leading to a graded
magnetization in z direction. As a result, the hydrogen nuclei precess at different Lamor
frequencies according to Equation 2.1. If a RF pulse is applied, the hydrogen nuclei with
the corresponding resonance frequency will absorb energy. Due to the magnetic field
gradient, only nuclei in the respective plane perpendicular to the z-axis are selected.
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Figure 2.7: A 90 degree RF pulse tilts M to the xy-plane, where M rotates around the
z-axis. Due to relaxation processes, the component of M in the xy-plane decays over
time (left). This rotating magnetic field induces an alternating current in the receiver
coil (right).

The thickness of the slice depends on the strength of the field gradient. The second
gradient denoted as frequency encoding gradient is necessary in order to spatially encode
the selected slice. Due to the overlapping orthogonal magnetic gradient fields, columns
of hydrogen nuclei precess at slightly different Lamor frequencies. Similarly, the third
gradient field (phase encoding gradient) encodes the third direction in three-dimensional
space. The received signal is processed using a Fourier transform in oder to assign
signal intensities to the volume element (x, y) in the slice that has the correct phase and
frequency. The grey scale representation of the signal intensities corresponds to the slice
image obtained from MRI.

Standard MRI is applied in neurosurgery for diagnosis, preoperative planning and
for the setup of the neuronavigation system (Section 2.3.2). For integrating relevant data
into the navigation system, such as the tumor border, the location of speech or motor
areas and the extent of white matter structures, an MRI dataset containing all relevant
information is prepared prior to surgery.

2.5.3 Functional magnetic resonance imaging (fMRI)

Functional MRI (fMRI) provides a means of visualizing functionally activated regions of
the brain. This imaging technique makes it possible to visualize physiological changes
within the brain that are associated with activation of functional areas. The effect that
is most frequently used for this purpose, is the blood oxygenation level dependent con-
trast (BOLD) effect. Increased brain activity leads to a higher demand for oxygen, which
is satisfied by the vascular system supplying oxygenated haemoglobin. Since the de-
oxygenated haemoglobin attenuates the MR signal, a signal change related to neuronal
activity can be measured.

An important application of fMRI relates to neurosurgical planning. For lesions that
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are close to the motor cortex or to the speech areas, this imaging technique makes it
possible to predict the exact location of functional areas and enables safe resection using
the neuronavigation system.

2.5.4 Diffusion tensor imaging (DTI)

Diffusion of water molecules results from the thermal random motion, often referred to
as Brownian motion. The MR signal is influenced by diffusion due to the phase varia-
tions when the water molecules are diffusing in an inhomogeneous magnetic field. This
effect is exploited by the Pulsed Gradient Spin Echo Sequence introduced by Stejskal and
Tanner [140]. This sequence uses two gradient pulses that are applied before and af-
ter the 180 degree refocusing pulse. The first gradient pulse induces a phase shift for
static spins and is used to label the hydrogen nuclei depending on their position. After
the first pulsed gradient, the spins start to dephase. The second gradient pulse is used
in order to refocus the magnetization. However, during the time period between the
two gradient pulses, spins have changed their location due to diffusion processes. As
a result, refocusing is incomplete, leading to a signal loss. In order to determine the
extent of signal loss per volume element, the measurement with diffusion gradient has
to be compared with the signal acquired without diffusion gradient. Based on diffusion
measurements for at least six collinear gradient directions, a diffusion tensor is recon-
structed per voxel which models the local diffusion and serves as a basis for different
reconstruction and visualization techniques.

In neurosurgery, DTI plays an important role in obtaining information about the
location of neuronal pathways. In order to avoid neurological deficits after surgery,
important tract systems dedicated to specific functions must remain intact. Since white
matter consists of long, cylindrical cells, water diffusion is anisotropic in these regions
resulting in a especially high signal attenuation if the field gradients are oriented along
the tract direction. Consequently, the diffusion behavior of water within the human
brain allows conclusions with respect to the white matter architecture, which is of high
value for surgery.

2.5.5 Imaging parameters and image data

The datasets employed in this work were acquired in patients with brain lesions under-
going surgery. All the datasets were measured using a Siemens MR Magnetom Sonata
Maestro Class 1.5 Tesla scanner. The specifications of the gradient system were a field
strength of up to 40 mT/m (effective 69 mT/m) and a slew rate of up to 200 T/m/s
(effective 346 T/m/s) for clinical application.

MRI: For diagnosis, planning and navigation in neurosurgery, standard T1-weighted
MRI data is acquired in each patient. More precisely, an MPRAGE (magnetization pre-
pared rapid acquisition gradient echo) sequence is applied for this purpose. The advan-
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number of voxels voxel size in [mm3]
MPRAGE 256 × 256 × 160 1.0 × 1.0 × 1.0
fMRI 80 × 80 × 25 3.0 × 3.0 × 3.0
DTI 128 × 128 × 60 1.875 × 1.875 × 1.9

Table 2.1: The dataset parameters, i.e. number of voxels and voxel size, for the different
types of data acquired for neurosurgical intervention.

tages of MRI imaging are a high signal-to-noise ratio and a high resolution (Table 2.1).
MRI imaging parameters are: TR = 2020 ms, TE = 4.38 ms.

fMRI: In patients with lesions close to functional areas, fMRI data is acquired. In order
to measure activated brain areas, the patient is instructed to perform specific tasks [65].
Based on the signal intensities, activation maps are reconstructed (resolution according
to Table 2.1). The functional slices are aligned to MPRAGE datasets obtained from the
same patient position in order to relate them to the anatomical context. Further fMRI
imaging parameters are: TR = 2470 ms, TE = 60 ms.

DTI: In the case of DTI acquisition, one reference dataset and at least six diffusion
datasets are acquired. The reference dataset is measured without any gradient direction,
which is equivalent to common T2 weighed MR data. For acquisition of the diffusion
datasets, either six or twelve gradient directions are selected (Table 2.2). With respect to
anatomical information, the reference image represents anatomical structures; the other
images show diffusion properties. Due to physical limitations, the spatial resolution
of DTI data is restricted to about 2 mm edge length per voxel (Table 2.1). Further DT
imaging parameters are: TR = 9200 ms, TE = 86 ms, bhigh =1000 s/mm2, blow = 0 s/mm2,
1502 Hz/Px bandwidth.

6 gradient directions 12 gradient directions
( ±1 , 0 , 1 ) ( 1 , 0 , ±0.5)
( 0 , 1 , ±1 ) ( 0 , ±0.5 , 1)
( ±1 , 1 , 0 ) ( ±0.5 , 1 , 0)

( 1 , ±0.5 , 0)
( 0 , 1 , ±0.5)
( ±0.5 , 0 , 1)

Table 2.2: Gradient directions for DTI acquisition, 6 or 12 gradient directions could be
selected.
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Part II

Reconstruction of neuronal structures
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Chapter 3

Tensor reconstruction and processing

This chapter outlines basic computation and processing schemes for diffusion tensors.
In Section 3.1, the Stejskal-Tanner formula for diffusive attenuation is described which
serves as physical basis for diffusion measurements. The computation of diffusion ten-
sors is outlined in Section 3.2. Based on this tensor data, different methods for quantify-
ing characteristics of a tensor have been developed in previous research. In Section 3.3, a
selection of scalar metrics is reviewed, which will be used in further chapters. Another
important question which is considered in Section 3.4 relates to tensor interpolation,
which is important for most further processing steps such as fiber tracking. The last
topic covered in this chapter is tensor filtering, which is addressed in Section 3.5.

3.1 The Stejskal-Tanner equation

The Bloch equations [13] describe many phenomena in nuclear magnetic resonance and
have been modified by Torrey in order to include the effects of diffusion and flow pro-
cesses [144]. This results in the first-order differential Bloch-Torrey equation

∂M+

∂t
= −i |ω0| M+ − i γ G r M+ − M+/T2 + ∇ D ∇ M+ , (3.1)

where M+ = mx + i my is the complex representation of transverse magnetization in
the xy-plane precessing with Lamor frequency ω0, γ is the gyromagnetic ratio, r is the
spin position vector, T2 is the spin-spin relaxation time, and D is the apparent diffusion
coefficient. G is the linear magnetic field gradient, which is composed of a steady gra-
dient g0 due to inhomogeneities of the laboratory magnetic field, and a superimposed
gradient g.

For a spin-echo experiment as described in Section 2.5.5, the Bloch-Torrey equation
can be solved using a substitution suggested by Stejskal and Tanner [140]. On the as-
sumption that the direction of the gradient g is not changed during the experiment, and
is much larger than other gradients g0, the resulting equation is further simplified. As a
result, the Stejskal-Tanner formula for diffusive attenuation [140] relates the attenuated
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signal of the spin-echo experiment S to the signal S0 obtained in absence of diffusion
gradients:

S = S0 exp
(

−γ2δ2|g|2(∆ − δ

3
)D

)

= S0 exp (−bD) . (3.2)

The b-factor b = γ2δ2|g|2(∆ − δ
3) is the diffusion weighting factor [72], where δ is the

duration of the diffusion sensitizing gradient pulse, |g| is the strength of the gradient
pulses and ∆ is the duration between the two gradient pulses (the time constant τ =
∆ − δ/3 is the effective diffusion time, the correction δ/3 relates to the time when the
gradients are on).

This equation applies to isotropic diffusion, where D is independent of the direction
of the gradients. For the case of anisotropic, restricted diffusion, a more general form of
Equation 3.2 taking into account the gradient direction is necessary. For this purpose,
Stejskal introduced the rank-2 real symmetric diffusion tensor D and replaced the dif-
fusion term ∇ D ∇ M+ in Equation 3.1 with ∇ D ∇ M+ [139]. Basser [4] adapted this
formalism in order to measure diffusion in biological tissues, where the signal attenua-
tion is described by:

S = S0 exp
(

−bgTDg
)

. (3.3)

Comparison of Equation 3.2 and 3.13 yields the relation:

D(g) = gTDg . (3.4)

The rank-2 real symmetric diffusion tensor D is able to describe anisotropic Gaussian
diffusion which is observed in fibrous biological tissues such as white matter or muscle
tissue.

3.2 Diffusion tensor reconstruction

Since the diffusion tensor D is a real Hermitian positive definite matrix, it has 6 unique
coefficients:

D =





Dxx Dxy Dxz

Dxy Dyy Dyz

Dxz Dyz Dzz



 (3.5)

In order to reconstruct a diffusion tensor for each voxel of a volume dataset, at least
seven MR acquisitions are necessary. This comprises six acquisitions with non-collinear
gradient directions gi, i = 1...6, and an acquisition without gradient which provides the
unattenuated reference dataset. For each voxel, the system of equations

Si = S0 exp
(

−bgT
i Dgi

)

, i = 1...6 (3.6)
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has to be solved, where S0 corresponds to the grey value of the respective voxel in
the reference dataset, and Si to the grey value in the gradient dataset with gradient
direction gi. In the case of six diffusion datasets, a unique solution for the system of
equations exists; for more acquisitions a linear regression approach has to be applied.

3.3 Quantifying tensor shape

Diffusion tensors reflect the structure of underlying white matter, such as the density or
the directional similarity of fibers and are therefore a meaningful measure of fiber-tract
organization. However, the complex information provided by the diffusion tensor as
a whole is difficult to interpret. For this reason, approaches have been developed to
quantify a tensor and to relate the measure of diffusion properties to the structure of
tissue. In this section, the eigensystem of the tensor (Section 3.3.1) as well as its physical
interpretation (Section 3.3.2) is presented and scalar invariants for tensor quantification
are outlined (Section 3.3.3).

3.3.1 Tensor eigensystem

Each diffusion tensor is characterized by its principal diffusivity directions (i.e. eigen-
vectors vi, i = 1, 2, 3) and the corresponding diffusion coefficients (i.e. eigenvalues λi, i =
1, 2, 3). Due to the symmetry of the diffusion tensor, the eigenvectors are perpendicular
to each other and the eigenvalues are real and positive. The decomposition of the diffu-
sion tensor D into eigenvalues and eigenvectors is known as eigen decomposition and
satisfies the following equation:

Dv = λv (3.7)

which can be rewritten as

(D − λI)v = 0 (3.8)

where I is the identity matrix. This equation has non-trivial solutions, if the following
determinant is equal to zero:

det(D − λI) = 0 . (3.9)

The cubic equation in 3.9 provides the eigenvalues of D; the eigenvectors are obtained
by substituting each eigenvalue into Equation 3.8 and by solving the resulting system of
equations. The eigenvalues are typically ordered in descending order, i.e. λ1 ≥ λ2 ≥ λ3.
They provide information about the anisotropy of a tensor which is an indicator for
white matter structures. In the case of eigenvalues with similar value λ1 ≈ λ2 ≈ λ3,
isotropic diffusion is encountered which occurs in tissue with cell bodies or in fluid-
filled cavities such as the ventricles. If one eigenvalue predominates over the others,
i.e. λ1 ≫ λ2 ≈ λ3, white matter structures showing a strong anisotropic diffusion
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characteristic are encountered. However, in the case of crossing or branching fibers,
intermediate tensor characteristics may occur, where two eigenvalues of comparable
size are much greater than the third one λ1 ≈ λ2 ≫ λ3. The associated eigenvectors
indicate the principal diffusion directions.

3.3.2 Diffusion ellipsoids

The diffusion tensor characterizes the Gaussian diffusion within a voxel, where the
eigenvectors indicate the directions of main diffusion, and the eigenvalues the associ-
ated diffusivities. Based on the eigensystem, the Gaussian diffusion can be represented
graphically by a diffusion ellipsoid [5]. The axes of the ellipsoid correlate with the di-
rections of the eigenvectors, and their length is proportional to the square roots of the
corresponding eigenvalues (Figure 3.1). In the coordinate system spanned by the eigen-
vectors v1, v2 and v3, the diffusion ellipsoid is calculated as follows [5]:

(
x√

2λ1τ

)2

+

(
y√

2λ2τ

)2

+

(
z√

2λ3τ

)2

= 1 . (3.10)

The physical interpretation of the diffusion ellipsoid relates to the isoprobability sur-
face of diffusion. For a spin located at the origin of the ellipsoid at t = 0, the ellipsoid
surface represents possible locations (x, y, z) of equal probability at t = τ after Gaussian
diffusion.

2l t v22

2l t v33

2l t v1
1

Figure 3.1: The eigenvectors vi and eigenvalues λi of the diffusion tensor define the dif-
fusion ellipsoid. The ellipsoid surface is the isoprobability surface of Gaussian diffusion
after a time interval τ.

As an alternative, the axes are often scaled according to the eigenvalues (instead of
their square roots) in medical applications [155, 60, 34]. This refers to a direct visualiza-
tion of the eigensystem and emphasizes anisotropy, but lacks physical interpretation.
Additionally, alternative tensor glyphs such as cylinders and superquadrics have been
proposed in order that the shape of the tensor may be better conveyed [155, 60].

3.3.3 Scalar metrics

In order to summarize the geometrical properties of the diffusion tensor, different rota-
tionally invariant scalar metrics have been presented. The complex tensor information
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is reduced to a meaningful scalar value and facilitates 2D visualization. Based on these
values, different regions of the brain can be compared with respect to their diffusion
characteristics. In the literature, various metrics have been defined. In the following,
the tensor trace tr(D), the fractional anisotropy FA(D) and the barycentric space coor-
dinates cl, cp and cs are presented, which are referred to in this thesis.

Tensor trace

The tensor trace tr(D) is a physical measure of the overall amount of diffusion within
a voxel. In fluid-filled cavities such as the ventricles, a high value is observed which
is in contrast to brain tissue, where the total diffusion is low. According to empirical
observations, this measure is essentially constant within healthy brain tissue [118].

tr(D) = λ1 + λ2 + λ3 (3.11)

Fractional anisotropy

The fractional anisotropy FA(D) is related to the coherence of oriented structures and
describes a directional bias of diffusion. It is defined in terms of the eigenvalue variance
according to [7]:

FA(D) =

√

3
2

√

(λ1 − 〈λ〉)2 + (λ2 − 〈λ〉)2 + (λ3 − 〈λ〉)2

λ2
1 + λ2

2 + λ2
3

, (3.12)

where 〈λ〉 = 1/3 (λ1 + λ2 + λ3) is the mean of the eigenvalues. Essentially, the nomi-
nator is the standard deviation of the eigenvalues, which characterizes the ratio of the
anisotropic part of D to its isotropic part. The denominator contains the norm of the
tensor. FA as a whole provides the fraction of diffusion that refers to anisotropic diffu-
sion. The value of FA varies between 0 (isotropic diffusion) and 1 (complete anisotropic
diffusion).

Barycentric space coordinates

Another set of scalar metrics characterizes a tensor in terms of three basic tensor shapes
which are associated with linear, planar and spherical diffusion [154, 153]. In the linear
case, the corresponding diffusion ellipsoid is cigar-shaped and diffusion in the direction
of the eigenvector corresponding to the largest eigenvalue dominates (i.e. λ1 ≫ λ2 ≈
λ3). In the planar case the diffusion ellipsoid is flat, which corresponds to diffusion in
a plane spanned by the eigenvectors with respective eigenvalues λ1 and λ2 (i.e. λ1 ≈
λ2 ≫ λ3). In the spherical case, the shape of the tensor is a sphere and no preferred
diffusion direction exists (i.e. λ1 ≈ λ2 ≈ λ3). Depending on the tensor eigenvalues,
a metric will be high if the tensor shape correlates with the corresponding diffusion
characteristic. The metrics associated with linear cl, planar cp and spherical cs diffusion
are defined as follows:
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cl =
λ1 − λ2

λ1 + λ2 + λ3

cp =
2(λ2 − λ3)

λ1 + λ2 + λ3

cs =
3λ3

λ1 + λ2 + λ3

cl + cp + cs = 1

c = 1.0l

c = 1.0s

c = 1.0p
c = 0s

c
=
 0

p

c
=

0
l

Figure 3.2: Barycentric coordinate space
spanned by the three basic tensor shapes.

According to [61, 62], these metrics can be considered as coordinates in a barycentric
space which is spanned by the three basic tensor shapes, as shown in Figure 3.2. Each
point in the barycentric space corresponds to a possible tensor shape, and the associated
anisotropy metrics (cl,cp,cs) are the point’s barycentric space coordinates.

3.4 Tensor interpolation

During DTI acquisition, diffusion values are measured for each voxel, leading to a dif-
fusion tensor that characterizes the average diffusion behavior per voxel. However, for
different reconstruction algorithms based on DTI data such as fiber tracking, it is de-
sirable to obtain a tensor at arbitrary coordinates within the dataset. In principle, three
different possibilities for DTI interpolation exist:

(1) Dataset interpolation: Interpolation of the diffusion datasets prior to tensor com-
putation and further metric computations.

(2) Tensor interpolation: Component-wise interpolation of the tensor matrix entries.

(3) Eigensystem interpolation: Interpolation of the eigenvalues and eigenvectors,
which are the basis for further reconstruction and visualization approaches.

With regard to computational effort, the most convenient kind of interpolation would be
the eigensystem interpolation, which is carried out at the end of the processing pipeline.
In the case of tensor interpolation, it would be necessary to compute the eigensystem
anew for each interpolated tensor. In the case of dataset interpolation, even each inter-
polated tensor must be computed anew. However, as far as maintaining the diffusion
characteristics is concerned, it may be anticipated that dataset interpolation is the most
careful and for this reason the most accurate method of interpolation.

This issue has been thoroughly investigated in [62], where the differences between
the three interpolation methods were analyzed. For this purpose, a start and an end
voxel were defined in a brain dataset, and the intermediate samples were obtained by
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the different interpolation techniques. For each interpolation technique, the barycentric
space coordinates of the intermediate samples were computed. The resulting interpola-
tion paths within barycentric space were then compared for the different interpolation
approaches. As a result, the interpolation paths for dataset and tensor interpolation
track each other closely, whereas the path for eigensystem interpolation differs signif-
icantly. From this evaluation, it can be concluded that tensor interpolation is a good
trade-off between accuracy and computing times.

3.5 Tensor filtering

In image and data processing, filtering techniques play an important role in reducing
imaging noise. Like other MRI sequences, DTI suffers from partial volume effects and
various artifacts which lead to corrupted diffusion measurements. Biological effects
such as varying drain of cerebro-spinal fluid add further noise to the data. For this
reason, different techniques for noise reduction have been presented for DTI data. Pre-
vious work mainly addresses regularization of the major eigenvectors and eigenval-
ues [27, 77]. In combination with fiber tracking, stochastic approaches adding uncer-
tainty to the propagation direction [11] and local filters [160] have been investigated.
However, as outlined in Section 3.4, operations on the tensor data should be performed
either on the data itself or component-wise on the tensors.

For this reason, a set of global filters was implemented in this work, which smooth
the reconstructed tensors. The filtering results were also published in [83]. Filtering is
performed component-wise, i.e. each component of the tensors is considered separately.
The filter is first applied to all entries Dxx of the tensors, then to all entries Dxy, and
so on, which is equivalent to smoothing different scalar datasets. For comparison, a
standard Gaussian filter was implemented. Additionally, two powerful filters originally
developed for video processing were chosen for noise reduction. Since a volume dataset
consists of slices, and the changes from slice to slice are only slight, there is a certain
equivalence between a video and scrolling through a medical slice dataset. For this
reason, the benefits of video filters were exploited for smoothing of DTI data.

In Section 3.5.1, the standard Gaussian filter implemented in this work is presented.
The first video filter, the two-class Gauss weighting filter [42], is outlined in Section 3.5.2.
It computes the difference between the tensor entry of a voxel and its neighboring vox-
els. Depending on the similarity of these values each neighbor is weighted. In this
way, similar values have a higher contribution to the filtered value. The second video
filter is a best-neighbor filter [161] which works in a similar way, as described in Sec-
tion 3.5.3. Surrounding neighbors are sorted according to the difference of values. Only
the best-matching third of the sorted neighbors is equally weighted and contributes to
the filtered value of the center voxel.
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3.5.1 Gaussian filter

Gaussian filtering is one of the most common filter techniques. Gaussian smoothing is
based on the Gaussian distribution, which in 1D is represented as follows:

G(x) =
1

2πσ2 e−
x2

2σ2 , (3.13)

where σ is the standard deviation of the distribution, and the distribution has a mean of
zero, i.e. it is centered at x = 0. Based on the Gaussian distribution, the corresponding
3D volume filter is a smoothing operator for volume datasets, which blurs the image
data and removes noise. The degree of smoothing is determined by σ, where the no-
ticeable influence of the neighborhood increases with a larger σ. Since the dataset is
stored as a collection of discrete voxel values, a discrete approximation of the Gaussian
function is required, which is denoted as filter kernel. The filter kernel is then convoluted
with each dataset value, resulting in the Gaussian filtered dataset.

The computational effort for convolution is reduced by convolving the whole dataset
in x-, y-, and z-direction with a 1D filter kernel. Since the equation for the 3D isotropic
Gaussian is separable into x, y and z components, this provides an identical result to
that obtained by convoluting once with a 3D kernel.

In Figure 3.3, the smoothing results of the Gaussian kernel are shown by means of
FA datasets. The original dataset (left) shows a noisy structure which vanishes with
increasing filter kernel sizes (middle, right). However, the edges and structures in the
filtered images disappear as well, which is also reflected by a lower average and maxi-
mum FA value after filtering.

Figure 3.3: FA slice of dataset before smoothing (left), after Gaussian smoothing with a
filter kernel of size three (middle) and of size five (right).
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3.5.2 Two-class Gaussian weighting

A variation of the Gaussian filter which aims at better preserving edges is the two-class
Gaussian weighting (TCGW) filter [42]. In contrast to Gaussian filtering, where the weight
of a neighbor voxel depends on the spatial distance to the center voxel, in the case of
the TCGW filter the impact of a neighbor voxel on the filtering result depends on the
difference between the values of neighbor and center voxel.

Depending on the local intensity values, voxels are classified as edge or as non-edge
voxels. For non-edge voxels, Gaussian weighting coefficients are computed, while edge
voxels are excluded from filtering. For the classification of a voxel with grey value x1,
the grey values x of the surrounding voxels within the 3D filter window are considered,
where

x = (x2, . . . , xN)T (3.14)

and N = n× n× n is the vector size, depending on the filter kernel size n. The difference
vector ∆ stores the difference values of the filter window voxels with respect to the
center voxel with grey value x1 according to

∆ = (|x2 − x1|, . . . , |xN − x1|)T . (3.15)

Based on this difference vector, the center voxel is classified as an edge or a non-edge
voxel. For this purpose, each difference value ∆i is compared to a threshold value T.
For edge voxels, the filter weight wi is set to zero; for non-edge voxels, the filter weight
wi is computed according to Gaussian filtering, resulting in the weight vector w, where
σ is half the filter kernel size:

w = (w2, . . . , wN)T with wi =







0 , ∆i > T (edge voxel)

e−
∆2

i
2σ2 , ∆i ≤ T (non-edge voxel)

. (3.16)

The resulting weights ensure that only non-edge voxels with a similar value compared
to the center voxel are considered for filtering. For voxels within the filter window
showing a significant deviation from the center value, the respective weight is set to
zero and the value of this voxel has no impact on the filtering result. Based on these
weights, the filtered value y for the original image value x1 is:

y =
wT · x

∑i wi
(3.17)

As a result, TCGW filtering provides better preservation of edges, as shown in Fig-
ure 3.4. However, compared to standard Gaussian filtering, a greater computational
effort is required, since an individual 3D filter window has to be computed for each
voxel.
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Figure 3.4: FA slice of dataset before smoothing (left), after TCGW smoothing with a
filter kernel of size three (middle) and of size five (right).

3.5.3 Best-neighbor filter

The intention of the best-neighbor (BN) filter [161] is similar to the TCGW filter presented
before. The BN filter sorts the values within the filter window according to the differ-
ence to the center voxel. The filter weights a value within the filter window according
to the sorting order, resulting in a higher impact of voxels with similar value.

For this purpose, a vector x comprising all surrounding values within the filter win-
dow around the voxel with value xi and a difference vector ∆ are generated according
to Equation 3.14 and 3.15. The entries of x are then sorted in ascending order according
to the difference values in ∆, providing the sorted vector

x′ =
(

x′2, . . . , x′N
)T , (3.18)

where |x′i − x1| < |x′i+1 − x1|, i = 2, . . . , N − 1. Depending on the position within the
sorted vector, each entry x′i is weighted with a corresponding weight wi. The filtered
value y is computed as follows:

y =
1

∑i wi
∑

i

wix
′
i . (3.19)

In our implementation, only the best third of the values within the filter window is
used in order to compute the filtered value, i.e. wi = 0 for i > N/3. The contribut-
ing values are weighted with constantly decreasing weights wi. The smoothing results
presented in Figure 3.5 show, that edges are well preserved while noise is suppressed.
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Figure 3.5: FA slice of dataset before smoothing (left), after best-neighbor smoothing
with a filter kernel of size three (middle) and of size five (right).

3.5.4 Results

The FA images in Figures 3.3, 3.4 and 3.5 show the impact of global filtering on the dif-
fusion tensor data. All three filters are able to suppress noise, which is clearly visible
in comparison to the unfiltered FA slices. However, while Gaussian filtering merely
smears the FA values, edges are much better preserved using the TCGW or the BN fil-
tering technique. Comparison of Figure 3.4 and 3.5 shows that the BN filter provides
a more conservative smoothing result, compared to the TCGW filter. This can be at-
tributed to the truncation of values within the filter window, which diverge too much
from the center value.

If global filtering techniques are applied prior to tract reconstruction algorithms such
as the approaches outlined in Chapters 4 and 5, it can be observed that the resulting
paths are smoother. However, global filtering tends to lower the local FA values. Since
FA is commonly used as a criterion for path termination, a higher FA threshold value
has to be applied for tract reconstruction.

The computing times for the different global filters were measured on a PC equipped
with an Intel Pentium 4, 2.4 GHz and 512 KB RAM, and are summarized in Table 3.1.
The computing times for the Gaussian filter are comparably low, which can be attributed
to the fact that the Gaussian filter is based on a fixed filter kernel and is separable into
1D Gaussian kernels, which are applied separately for each dimension in 3D space. The
TCGW filter constructs an individual filter window in each step, based on the difference
values of the filter window voxels with respect to the center voxel. For this reason, this
adaptive filter involves a higher computational cost. Similarly, the BN filter only takes
into account neighbor voxels with similar values, which requires sorting of all values
within the filter window. As a result, the computational effort increases further, due to
the computation of difference values and due to the sorting operation.
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Filter kernel size
3×3×3 5×5×5

Gaussian filter 2.9 sec 4.4 sec
Two-class Gaussian weighting 11.7 sec 51.6 sec
Best-neighbor filter 24.2 sec 106.2 sec

Table 3.1: Computing times in seconds for global filtering of a diffusion tensor dataset
(resolution according to Table 2.1). The computational effort for Gaussian filtering,
TCGW filtering and BN filtering for different filter kernel sizes is shown.

3.6 Discussion

In this chapter, basic principles for tensor reconstruction and processing have been pre-
sented. The Stejskal-Tanner equation outlined in Section 3.1 provides the physical basis
for diffusion tensor reconstruction and was adapted by [4] in order to measure diffu-
sion in biological tissues. Thanks to this groundwork it became possible to reconstruct
diffusion tensors, a topic which is reviewed in Section 3.2.

The shape of the resulting diffusion tensors provides information about the local
diffusion characteristics and therefore allows conclusions about the underlying white
matter. For this reason, approaches for quantifying tensor shape have been developed.
They are discussed in detail in the previous work of different research groups [118, 7,
154, 153, 61, 62]. A selection of scalar metrics which are commonly used in clinical ap-
plication is summarized in Section 3.3. These metrics play an important role in diffusion
tensor data analysis and proved to be of high value in relation to the diagnosis of psy-
chiatric disorders [97, 114, 125], degenerative diseases [15, 157, 138] or acute ischemic
stroke [131, 19, 10]. In neuroanatomy and neurosurgery, they are commonly used in
order to analyze and reconstruct white matter tracts. Since these scalar metrics have
become established in many areas of application related to DTI, they are also used in
the following chapters.

In Section 3.4, the topic of tensor interpolation is addressed. In order to obtain ade-
quate diffusion tensors at intermediate positions within the dataset, appropriate inter-
polation schemes are required. This topic was thoroughly investigated in [62], where
the quality of the interpolation result after dataset, tensor or eigensystem interpolation
is assessed and compared. According to the results presented in [62], dataset interpo-
lation provides the highest quality, closely followed by tensor interpolation. Regarding
the computational cost for the different interpolation alternatives, dataset interpolation
is the most, and eigensystem interpolation the least expensive method. Since tensor
interpolation is nearly as accurate as dataset interpolation, but much more efficient, it
provides a good trade-off between quality and computational cost. Alternative interpo-
lation schemes such as anisotropic interpolation [20, 96] or interpolation in a nonlinear
Riemannian symmetric space [26, 39] have been presented as well, but involve a high
computational cost. For this reason, tensor interpolation as suggested by [62] is em-
ployed in this work.
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Another important topic related to DTI tensor processing is global filtering of the
tensor data. This technique is commonly applied in order to regularize the tensor field,
prior to further processing. In addition to Gaussian filtering, which is thoroughly inves-
tigated in [54], two alternative approaches based on video filtering are presented and
analyzed in this chapter. As shown in the respective section, these filters are better able
to preserve edges, compared to the Gaussian filter. However, for all three filters, a slight
decrease of the FA value can be observed, which must be taken into account when using
the filtered data for further reconstruction algorithms, such as fiber tracking. In the case
of voxel-based evaluations for statistical purposes, which are often assessed for the di-
agnosis of Alzheimer’s disease or psychiatric disorders, the filter size must be carfully
adjusted, as outlined by [54]. Nevertheless, the two filter techniques presented provide
a regularization mechanism which ensures better preservation of the features within the
data, compared to Gaussian filtering, which is achieved with an adaptive filter window
which is locally assessed based on the neighbor voxels.

Overall, the techniques presented in this chapter provide fundamental tensor re-
construction, processing and filtering techniques which serve as a basis for the more
advanced techniques presented in the subsequent chapters.
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Chapter 4

Fiber tracking

The scalar metrics and diffusion ellipsoids presented in the previous chapter already
provide insight into the diffusion data. However, directional information showing the
course of the underlying white matter tracts is difficult to convey on the basis of scalar
metrics, and diffusion ellipsoids are difficult to interpret.

For this reason, another class of algorithms has emerged, which are denoted as fiber
tracking. Based on the tensor information, these approaches generate bundles of lines
which approximate the course and location of white matter tracts within the human
brain. However, since the scale of axons is in the range of several micrometers, com-
pared to DTI data with a voxel size of about 2 millimeters, the trajectories obtained
from fiber tracking are not able to depict single axons. Nevertheless, in the case of ma-
jor white matter tracts, which consist of a collection of aligned axons, the fiber-tracking
results approximate the overall shape and structure of the tract system.

This chapter starts with a survey of fiber-tracking algorithms in Section 4.1. The two
most prominent approaches for fiber tracking are streamline-based techniques and ten-
sor deflection, which are outlined in Section 4.1.1. Different tract-selection techniques
are described in Section 4.1.2. In order to improve the accuracy of fiber tracking, ori-
ented filters were implemented, as outlined in Section 4.2. Subsequently, fiber tracking
based on evenly spaced streamlines is presented in Section 4.3, which was published
in [91]. An advanced technique for fiber tracking is directional volume growing, which
was published in [87] and which is outlined in Section 4.4. A discussion evaluating the
benefit of the different techniques for medical application is provided in Section 4.5 and
was partly published in [35, 106].

4.1 Basics about tracking algorithms

Fiber-tracking approaches indicate the location of white matter tracts within the human
brain and have become a widely accepted technique for DTI visualization. Respective
algorithms propagate lines through the tensor field, based on the local diffusion char-
acteristics which reflect the course of the underlying white matter tracts. The resulting
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fiber bundles approximate the location of neuronal fibers and are therefore a powerful
tool for white matter reconstruction.

Most fiber-tracking approaches have a number of processing steps in common. First
of all, seed points are selected within the volume, which may be positioned within re-
gions of high FA, in regions of interest, or according to a specific seed-point selection
scheme such as encountered in the case of evenly spaced streamlines. From each seed
point, a fiber is propagated in a forward and backward direction, until certain termina-
tion criteria are met.

In each propagation step, the trajectory is extended on the basis of the underlying
tensor information. In principle, two major techniques for line propagation have been
established, namely streamline propagation [24, 99, 6] and tensor deflection [148, 152, 71].
In the case of streamline propagation, the tensor field is reduced to the field of the major
eigenvector and streamline integration known from flow visualization is performed in
the resulting vector field. Contrarily, tensor deflection takes advantage of the whole
diffusion tensor and computes the new fiber direction as a product of the diffusion
tensor and the last fiber direction.

In order to terminate fiber propagation, different techniques exist. A termination
threshold based on FA is commonly used in order to stop propagation if the fiber leaves
regions with anisotropic diffusion. Other criteria for streamline termination are a pre-
defined maximum length in order to assure termination of the algorithm after a finite
number of steps, or a maximum bending angle which assumes a certain straightness of
the anatomical fibers. In Code Example 4.1, the pseudocode for fiber tracking in general
is provided.

As an alternative, less common tracking techniques such as wavefront evolution [116,
50, 51] or probabilistic tracking [8] have been presented. The objective of these recent
approaches is also to track pathways in subcortical or even cortical regions, where more
isotropic tensors are present. Furthermore, regularization of the tensor data either dur-
ing tracking with moving least-squares filters [160] or based on the tensor field [11,
77, 74], has been the subject of current research. The accurate treatment of crossing and
branching fibers during fiber tracking is another important research topic [137, 158, 147].
An overview of different fiber-tracking techniques is provided in [100].

4.1.1 Streamline propagation and tensor deflection

Most fiber tracking algorithms take advantage of a streamline integration scheme or
employ tensor deflection in order to propagate fibers. In this section, both techniques
are outlined in more detail and the advantages and disadvantages of each approach are
discussed.

Fiber tracking based on streamline propagation takes advantage of the major eigenvec-
tor of each tensor, which correlates with the direction of major diffusion. A schematic
outline of streamline propagation is given in Figure 4.1. Streamline tracing is performed
by stepwise integration of the diffusion field. In each step, the next position after a time
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FiberTracking(fiberData) {

for (allSeedPoints) {

fiber = fiberData.StartNewFiber();
length = 0;
FWD = true;
BWD = true;

while (length < MAXLENGTH) {

// try to propagate fiber in fwd and bwd direction
success = PropagateFiber(fiber,FWD,BWD);

switch (success) {
case 3: length += 2;
case 2: length += 1;

FWD = false;
case 1: length += 1;

BWD = false;
case 0: break; // termination criterion reached

}
}

}
}

PropagateFiber(fiber,FWD,BWD) {

if (FWD) {
p = propagateForwardPoint(fiber);

if (faThreshold AND angleThreshold FULFILLED)
fiber.addForwardPoint(p);

else FWD = false;
}

if (BWD) {
p = propagateBackwardPoint(fiber);

if (faThreshold AND angleThreshold FULFILLED)
fiber.addBackwardPoint(p);

else BWD = false;
}

if (FWD && BWD) return 3;
if (BWD) return 2;
if (FWD) return 1;
return 0;

}

Code Example 4.1: Pseudocode for fiber tracking.
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Figure 4.1: Schematic outline of fiber tracking based on streamline propagation. Accord-
ing to the underlying vector field, each streamline extends in forward and backward
direction until a termination criterion is reached.

step ∆t is computed based on the position p(t) and the direction of major diffusion
v(p(t)) at time t:

p(t + ∆t) = p(t) +
∫ t+∆t

t
v(p(t)) dt . (4.1)

Since the vector field of the major eigenvectors v(p(t)) consists of experimental mea-
surements, instead of a continuous function, numerical integration of v(p(t)) has to
be performed. For this purpose, the Taylor series polynomial of v(p(t)) is constructed
and employed instead of the integral in Equation 4.1. Replacing the integral with the
respective Taylor series expansion yields the following equation:

p(t + ∆t) = p(t) +
∆t

1!
· v (p(t)) +

(∆t)2

2!
· v′ (p(t)) +

(∆t)3

3!
· v′′ (p(t)) + . . . . (4.2)

In oder to approximate the result of Equation 4.2, different integration schemes exist.
The Euler integration scheme (also referred to as Runge-Kutta of order one) truncates
Equation 4.2 after the first term of the Taylor expansion:

p(t + ∆t) = p(t) + ∆t · v (p(t)) + O(∆t2) . (4.3)

The resulting error O(∆t2) is determined according to the first term of the truncated
part of the Taylor series expansion.

In order to achieve better accuracy, Runge-Kutta integration schemes of higher or-
der [18, 120] are commonly employed. The order of the respective integration scheme
denotes the number of summands of the Taylor series expansion considered for inte-
gration. The main idea behind the Runge-Kutta integration schemes is to eliminate the
need for explicit computation of the derivatives in Equation 4.2. Instead, the Taylor se-
ries expansion up to some higher order is approximated by sampling the vector field at
certain positions in a local neighborhood and by combining the information obtained.
Implementations of the Runge-Kutta scheme for different orders are provided in [120].

In general, the higher the order of the integration scheme, the greater the accuracy
of integration. However, in the case of measured data as encountered in the case of
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DTI, accuracy is limited due to the discrete nature of the underlying data. For this rea-
son, Runge-Kutta integration up to order four is commonly implemented in streamline-
based fiber-tracking algorithms. An error analysis comparing different integration
schemes for DTI fiber tracking is provided by [69, 70].

Fiber tracking based on streamline propagation using higher-order integration
schemes makes it possible to propagate trajectories which approximate the course of
underlying white matter structures. However, even higher-order integration does not
prevent the streamlines from drifting away from the exact path due to numerical in-
accuracies that accumulate during streamline propagation. Another limitation of fiber
tracking is that bundles of crossing fibers represented by areas of planar anisotropy are
not appropriately processed.

For this reason, an alternative technique denoted as tensor deflection was devel-
oped [148, 71, 152]. The main idea behind tensor deflection is to propagate a trajectory
by multiplying the direction of the current segment din with the local diffusion tensor
D, resulting in a deflected direction dout indicating the direction of propagation:

dout = D · din . (4.4)

This approach was developed in order to improve tracking results in regions with
low FA, where the direction of fastest diffusion is not well defined. In areas of isotropic
diffusion, the incoming direction will not be significantly deviated, whereas anisotropic
tensors deflect vin in the direction of the major eigenvector. This is shown in Figure 4.2,
where an outline of fiber tracking based on tensor deflection is provided. The spherical
tensors in the middle resulting from crossing fibers, have no impact on the propagation

Figure 4.2: Schematic outline of fiber tracking based on tensor deflection (red) in com-
parison to streamline propagation (blue). Spherical tensors do not deflect the tracking
direction, whereas streamline propagation follows a misleading major eigenvector.
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direction in the case of tensor deflection (red). In comparison, fiber tracking based on
streamline propagation (blue) follows the major eigenvectors of the spherical tensors,
resulting in an erroneous path.

Fiber tracking using tensor deflection is based on the entire tensor information and
takes into account both shape and orientation of the local tensor. The hope of tensor de-
flection is to achieve better processing of flat and rather spherical tensors, also enabling
fiber tracking in cortical or sub-cortical regions. However, a closer look at the approach
reveals that nevertheless severe disadvantages are encountered: First of all, the infor-
mation conveyed by a spherical tensor is that all directions are equally probable. In the
case of a rather spherical tensor, tensor deflection maintains the incoming fiber direc-
tion, which is not an appropriate interpretation of the tensor information, since only a
single outgoing direction is considered. Furthermore, in the case of curved pathways,
tensor deflection may underestimate the tract curvature [70].

For this reason, it is advisable to employ fiber tracking based on streamline propaga-
tion for the reconstruction of major tract systems, since streamline propagation achieves
better preservation of the path curvature and provides more accurate results than tensor
deflection [70]. For peripheral regions near the cortex, where the diffusion information
is less pronounced due to crossing and diverging fibers, alternative approaches have
been developed which take into account multiple directions in the case of isotropic ten-
sors [40, 116, 8, 50, 51]. An example is the approach for connectivity analysis between
functional regions presented in Chapter 5.

4.1.2 Tract-selection techniques

For the definition of separate tract systems which can be attributed to specific function,
tract-selection approaches are required. A popular technique is to define regions of in-
terest (ROIs) that cross the respective tract based on anatomical knowledge. Based on
these ROIs, the fiber-tracking algorithm generates streamlines that cross the ROIs. A
similar technique based on dynamic queries [1, 12] makes it possible to select specific
tract systems interactively from a tracking of the whole brain, using box-shaped ROIs.
In addition to that, clustering techniques have emerged which automatically generate
bundles of fibers from a tracking of the whole brain [17, 98]. As a result, selection ap-
proaches provide mechanisms for fast and efficient extraction of separate tract systems.

In clinical application, regions of interest (ROIs) defined by a medical expert are
preferably used for selecting specific tract systems [105]. In order to provide more flex-
ibility for the application of ROIs, an implementation incorporating Boolean operators
was chosen. Thereby, each ROI is associated with one of the Boolean operators AND,
NOT or OR. In the case of the AND operator, the resulting fibers must cross the respective
ROI. The NOT operator suppresses all fibers crossing the associated ROI, and the OR op-
erator ensures that a fiber either runs through this OR ROI or through one of the other
OR ROIs. As a result, this technique allows fast and efficient retrieval of specific tract
systems such as the pyramidal tract, the optic tract or the corpus callosum for medical
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application. In Figure 4.3, the application of ROIs with associated Boolean operators for
the extraction of the pyramidal tract is demonstrated.

AND

AND

ORORNOT

AND

AND AND

Figure 4.3: The pyramidal tract is reconstructed using ROIs associated with Boolean
operators. Application of AND ROIs results in fibers crossing each AND ROI (left).
The NOT ROI (middle) excludes fibers from the tracking result (compare left and middle).
OR ROIs ensure that the fibers run through one of the specified OR ROIs (right).

4.2 Local regularization filters

In contrast to global filters which process the whole tensor dataset prior to fiber recon-
struction (Section 3.5), local regularization filters [160] are applied during fiber tracking
and move forward as the fibers are constructed. The idea behind local regularization
filters is to provide more reliable tracking results by preserving directional consistency
and at the same time cross noisy regions and gaps in the data. Compared to global fil-
ters, local regularization filters provide more flexibility since the filter parameters can
be better adjusted to the data. In order to put more weight on the tensors in the direc-
tion of the tracked fiber, a moving filter window of ellipsoidal shape is employed. It is
centered around the current end point of the fiber, and points in direction of the current
fiber course. The size of the filter window is adjusted depending on the reliability of the
local tensor data.

During fiber tracking, a local regularization approach is applied to the tensors in
the filter window in order to approximate the local tensor. The resulting regularized
tensor is used for tract propagation. For this purpose, a filter window is constructed
as outlined in Section 4.2.1. The regularization scheme proposed by [160] is based on
Gaussian weighting within the filter window (Section 4.2.2) in combination with a least-
squares approximation scheme (Section 4.2.3). Results of local filtering are presented in
Section 4.2.4.
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4.2.1 Local filter window

In order to provide a convenient method of describing the filter window and all mathe-
matical operations related to filtering, a local frame of reference is employed. Its origin p
corresponds to the center of the filter window, and the axes are aligned according to the
semi-axes of the filter ellipsoid. The world coordinates (sx, sy, sz) of a point s are trans-
formed to the respective local coordinates (ζ, η, θ) based on a rotation and translation
transformation according to:





ζ
η
θ



 = R−1
p





sx − px

sy − py

sz − pz



 = R−1
p (s − p) , (4.5)

where Rp is the rotation matrix formed by the coordinate axes of the local coordinate
system. The local filter ellipsoid is oriented according to the interpolated tensor Dp

located at p, i.e. the rotation matrix Rp = {e1, e2, e3} is formed by the eigenvectors
of Dp. In Figure 4.4, an outline of the filter window is provided, with the local coordi-
nate system indicated in red. The tensor located at p determines the shape of the local
filter window. In order to compute the filtered tensor at p, sample tensors at varying
positions s within the filter window are used and processed according to one of the
approaches described in Section 4.2.2 and 4.2.3.

p

s

Figure 4.4: Local filter window; the domain of the filter window is indicated in yel-
low. The filtered tensor at the center p is computed from tensor samples at different
locations s within the filter window.

4.2.2 Gaussian local regularization filter

In order to weight the tensors within the filter window, a Gaussian weighting function
G(s − p; Dp) is introduced [160], which assigns a weight to a point position s in the
vicinity of the center point p. The weighting function has the effect that tensors located
close to the center of the filter window have a higher impact on the regularization result
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than tensors at the border of the filter window. In the local frame of reference, the
Gaussian weighting function can be expressed in terms of the local coordinates ζ, η
and θ according to:

G(s − p; Dp) = G(Rp{ζ, η, θ}; Dp) . (4.6)

The shape of the Gaussian filter window is adapted from the tensor ellipsoid associated
with the local tensor Dp at the center point p. For this reason, a tensor at the coordi-
nate (ζ, η, θ) in the local (translated and rotated) frame of reference is weighted by the
Gaussian filter window according to:

G(Rp{ζ, η, θ}; Dp) = e−
(

( ζ
σa )

2+(
η
σb )

2+( θ
σc )

2
)

, (4.7)

where σ denotes the scaling factor of the filter ellipsoid and a, b and c the length of
the ellipsoid semi-axes. As outlined in Section 3.3.2, the length of the semi-axes of a
diffusion ellipsoid is proportional to the square root of the associated eigenvalues of the
tensor. Since the Gaussian filter window is adapted to the shape of the local tensor Dp,
its semi-axes are scaled in the same way:

a =
√

λ1[Dp] , b =
√

λ2[Dp] , c =
√

λ3[Dp] . (4.8)

In order to approximate the tensor D̄p at position p from the tensors in the local
neighborhood using the Gaussian filter window in Equation 4.7, the weighted average
of the tensors within the filter volume is computed according to:

D̄p =
1
V

∫

V
D

(
p + Rp{ζ, η, θ}

)
· G(Rp{ζ, η, θ}; Dp) dζ dη dθ , (4.9)

where D
(

p + Rp{ζ, η, θ}
)

refers to the tensor at a position s with local coordinates
(ζ, η, θ). In order to evaluate the integral, the filter window is sampled and tensors
are computed at discrete coordinate positions using component-wise interpolation of
the tensor entries (Section 3.4). For fiber tracking, the filtered tensor D̄p is used as a
substitute for the original, noisy tensor Dp, resulting in regularized fiber trajectories.

4.2.3 Moving least-squares filter

The local filtering scheme based on Gaussian filtering in Section 4.2.2 is extended by a
least-squares approximation within the filter window [160]. Least-squares approxima-
tion aims at minimizing an error functional E which measures the quality of a polyno-
mial fit of the data:

E(p) =
1
V

∫

V
G(s − p; Dp) ·

[

F(s − p)− D(s)
]2

ds3 . (4.10)

In order to solve this equation, a low degree polynomial F has to be found which best
approximates the data D(s) at different locations s within the filter window centered
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around p. The quality of fit in a least-squares sense is assessed by the functional E,
which must be minimized. The impact of a point location on the functional E is con-
trolled by the filter function G(s − p; Dp).

After transforming all point locations to the local frame of reference in Equation 4.5,
the polynomial fit in Equation 4.10 can be rewritten as:

E(p) =
1
V

∫

V
G(Rp{ζ, η, θ}; Dp) ·

[

F(Rp{ζ, η, θ}) − D(p + Rp{ζ, η, θ})
]2

dζ dη dθ .

(4.11)
The low degree polynomial F is a linear combination of tensor basis functions Amnp.
For a set of local coordinates (ζ, η, θ), the weighted sum of the basis functions yields the
approximated tensor at this position:

F(Rp{ζ, η, θ}) =
N

∑
mnp

Amnp ζm ηn θp . (4.12)

In order to obtain the tensor basis functions Amnp which provide a smooth approx-
imation of the tensor data in the filter window, Equation 4.11 must be solved. The
least-squares fitting procedure is described in more detail in [160].

For fiber tracking, the original, noisy tensor Dp is approximated with the polynomial
fit F at position p. Since the position of p in the local frame of reference corresponds to
the origin, the approximated tensor D̄p evaluates to the first tensor basis function:

D̄p = ∑
mnp

Amnp ζm ηn θp
∣
∣
∣
ζ=η=θ=0

=

= A000 00 00 00
︸ ︷︷ ︸

=1

+ A100 01 00 00
︸ ︷︷ ︸

=0

+ . . . + ANNN 0N 0N 0N

︸ ︷︷ ︸

=0

= (4.13)

= A000 .

4.2.4 Results

The local filtering techniques in Section 4.2.2 and Section 4.2.3 were employed in or-
der to reconstruct major tract systems, namely the pyramidal tract, the optic tract and
the corpus callosum in various patient and proband datasets. In Figure 4.5, the result
of fiber tracking without local filtering (left), with a Gaussian local regularization filter
(middle) and with a moving least-squares filter (right) is shown. In each case, stream-
line propagation using Euler integration (RK-1) was employed. For both local filtering
approaches, the moving filter windows were scaled with a factor σ = 50 and tensor
samples within the filter window were taken at a distance of 1 mm for each dimension
in 3D space. In the case of the least-squares filter, a polynomial of degree 2 was applied
for the approximation.

In order to assess the quality of local filtering using either the Gaussian local reg-
ularization filter (Section 4.2.2) or the moving least-squares filter (Section 4.2.3), both
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Figure 4.5: Pyramidal tract reconstructed with streamline integration (RK-1) without
filtering (left), with a Gaussian local regularization filter (middle), and with a moving
least-squares filter (right).

techniques were compared to fiber-tracking results without filtering. For this purpose,
streamlines were traced until a termination criterion was reached, and the final sam-
pling point of the fiber was used as the starting point for a reverse fiber, running in
the opposite direction. Depending on the quality of the tracking approach applied, the
reverse fiber closely follows the original fiber for a certain number of steps, before it
diverges from the course of the original fiber. As a consequence, the distance between
corresponding sampling points of the original fiber and the reverse fiber indicates the
quality of the respective tracking approach. In order to obtain significant results, a set of
streamlines and associated reverse fibers was computed and the results were averaged.
The diagram in Figure 4.6 (right) shows the averaged divergence between original and
reverse fibers for streamline propagation without filtering, with a Gaussian local regu-
larization filter and with a moving least-squares filter. In Table 4.1, the divergence after
50 integration steps as well as the computing times on a PC equipped with an Intel
Pentium 4, 3.4 GHz, and 2 GB RAM are provided.

Time Divergence
RK-1 none 4 sec 8.61 mm
RK-2 none 11 sec 1.46 mm
RK-4 none 18 sec 1.27 mm

Time Divergence
RK-1 none 4 sec 8.61 mm
RK-1 Gauss 242 sec 5.91 mm
RK-1 MLS 464 sec 5.88 mm

Table 4.1: For a tracking of the whole brain, the computing time for different integration
schemes without filtering (left) and with a Gaussian local regularization filter and a
moving least-squares filter (right) are provided. Additionally, the average divergence
between the original fiber and the reverse fiber after 50 integration steps is specified.
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Figure 4.6: Divergence between original fiber and reverse fiber for 50 integration steps,
averaged for all fibers in a tracking of the whole brain. Left: Comparison of different
integration schemes (RK-1, RK-2 and RK-4). Right: Comparison of RK-1 integration
without local filter (RK-1 none), with local Gaussian filter (RK-1 Gauss) and with mov-
ing least-squares filter (RK-1 MLS).

From the diagram in Figure 4.6 (right), it can be concluded that the Gaussian local
regularization filter provides similar accuracy to that of the moving least-squares fil-
ter, i.e. the computational effort added by the least-squares approximation has only a
very slight impact on the accuracy. Taking into account the computing time in Table 4.1
(right), which is much higher in the case of least-squares approximation, it can be con-
cluded that the Gaussian local regularization filter is much more suitable for practical
application.

In principle, the local filters improve the tracking accuracy of the respective inte-
gration scheme, as shown in Figure 4.6 (right) for streamline tracking based on first
order Runge-Kutta integration. However, for a higher-order integration scheme, such
as second or fourth order Runge-Kutta in Figure 4.6 (left), even greater accuracy is ob-
tained compared to the lower-order integration in combination with local filters. For
this reason, it is more feasible to apply higher-order integration instead of a lower-order
integration scheme combined with local filters.

4.3 Fiber tracking using evenly spaced streamlines

Apart from the techniques for propagating fibers through the tensor field presented
in the previous section, another important issue in order to obtain meaningful fiber-
tracking results is the selection of seed points. In standard fiber tracking, the seed points
are commonly positioned in voxels of high FA or in ROIs. However, due to the diverg-
ing nature of white matter tract systems, the density of the reconstructed streamlines
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varies over the domain in an uncontrolled manner, resulting in sparse areas as well as
closely packed regions. In regions containing only a limited number of streamlines, fea-
tures of the data may remain concealed. Many white matter tracts such as the pyramidal
tract ascending from the brain stem to the cortex, diverge as they reach the cortex. As
a result, the distribution of generic streamlines becomes sparser as they approach sub-
cortical regions of the brain, providing only rare information about the location of white
matter. For this reason, the placement of the initial seed points is a critical factor with
regard to the effectiveness of fiber-tracking approaches.

To overcome the general problem of seed-point selection, the concept of evenly
spaced streamlines for effective user-controlled streamline placement has been presented
in the literature [53, 146]. The benefits of this approach were adapted to fiber track-
ing [147] to obtain uniformly distributed streamlines. In this way, the features contained
within the data are better captured. This approach was extended with an adaptive con-
trol of the separating distance between single streamlines, depending on the local FA
value. In this way, dominant tract systems are visually emphasized and are perceptually
more apparent. Additionally, a multi-step technique for ROI-based fiber tracking using
evenly spaced streamlines was developed. Both approaches were published in [91].

In this section, an outline of the algorithm for evenly spaced streamlines is provided
(Section 4.3.1). The approach for adaptive density control is presented in Section 4.3.2,
and special features for extracting separate tract systems using ROIs are covered in Sec-
tion 4.3.3.

4.3.1 Standard approach for evenly spaced streamlines

The main idea behind evenly spaced streamlines [53, 146] is to propagate trajectories
until a user-defined density level is reached. As a result, a regular distribution of fibers
is obtained, and areas with an otherwise sparse distribution of trajectories are filled. For
the reconstruction of white matter tracts, this is an important characteristic in order to
capture all features, i.e. locations of white matter, within the data.

The general outline of the algorithm for evenly spaced streamlines is as follows:
First, an initial streamline is computed and new seed points with distance dseed to the
initial streamline are defined. Starting at these seed points, new streamlines are propa-
gated in both a forward and backward direction. In order to ensure that streamlines do
not come closer to each other than the separating distance dsep, an additional termina-
tion criterion is introduced which checks the distance to nearby streamlines after each
integration step. Thereby, dseed is slightly higher than dsep to prevent the new streamline
from terminating immediately after the first step.

Compared to standard fiber tracking, the algorithm for evenly spaced streamline
placement comprises additional processing steps, namely distance control between ad-
jacent fibers and selection of additional seed points, which are outlined in the following.
Finally, results are presented which demonstrate the benefit of the approach for the re-
construction of neuronal pathways.
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Distance control

The distance check is performed after each propagation step to verify whether the
streamline gets too close to another one. In order to obtain acceptable computation
times for distance control, only the sample vertices of the streamline are considered.
A simple check would test a new streamline vertex p against all sample vertices of all
other streamlines, which would be rather inefficient. This is circumvented by using a
Cartesian grid with voxel size dsep superimposed on the domain [147]. In order to ob-
tain all vertices that are potentially closer than dsep to p, the voxel containing p as well as
the neighboring voxels are determined. For each vertex the distance to p is computed
and compared to the separating distance dsep. In the case of a distance less than dsep,
streamline propagation is aborted.

The test becomes even more efficient, if the number of distance computations is min-
imized. For this purpose, the order in which the surrounding voxels and the referred
vertices are processed is optimized [91]. For vertices contained within the center voxel,
the probability that they are closer to p than dsep is very high, so this voxel is processed
first. The voxels sharing a face with the center voxel are processed next, followed by
voxels sharing an edge. Finally, the diagonally adjacent voxels only sharing a vertex
with the center voxel are examined.

Another point to mention is that the step size for streamline integration and dsep are
not fully independent. Since only the distance between sample vertices of the stream-
lines is computed and not the actual distance to the segments of another streamline, dsep

should not be smaller than the step size for fiber tracking. This guarantees that a vertex
will not be located much closer to a fiber segment than dsep.

Selection of seed points

In order to fill the domain with equally spaced fibers, new seed points are defined based
on existing streamlines. For this purpose, new seed points are determined after com-
pleting a streamline, before continuing with another one. The new seed points are de-
fined at a distance dseed from the sample vertices of the current trajectory. They are
added to a queue which stores the seed points and controls the order in which seed
points are processed.

Since the algorithm for evenly spaced streamlines was originally designed for 2D [53,
146], it has to be extended to three dimensions in order to serve for the reconstruction
of neuronal pathways. To obtain new seed points in the vicinity of a sample vertex, the
adjacent streamline segments are averaged to obtain the normal of the plane where the
new seed points will be placed. The approach for seed-point placement is outlined in
more detail in [91]. Finally, the seed-point coordinates are added to the queue, provided
that the FA value at each seed point is high enough for tracking.



4.3 Fiber tracking using evenly spaced streamlines 53

Results

The approach for evenly spaced streamlines provides fibers equally distributed in white
matter regions. In Figure 4.7, a standard fiber tracking of the whole brain (left) in com-
parison to fiber tracking using evenly spaced streamlines (middle, right) is shown. In
the case of standard fiber tracking, seed points were located in voxels with a high FA
value. Figure 4.7 clearly shows that standard fiber tracking produces regions of sparse
fiber density as well as closely packed areas. Contrarily, fiber tracking incorporating
evenly spaced streamlines provides a constant fiber density and therefore an unbiased
representation of the data.

The computing time for standard tracking (left) amounted to 8 sec, on a PC equipped
with an AMD Athlon (1.2 GHz). In the case of evenly spaced streamlines, the com-
putation time for a spacing of dsep = 0.5 mm (middle) was 134 sec. For a spacing of
dsep = 1.5 mm (right), the computation time amounted to 23 sec.

Figure 4.7: Comparison of standard fiber tracking (left) and tracking based on evenly
spaced streamlines with density dsep = 0.5 mm (middle) and dsep = 1.5 mm (right).

4.3.2 Adaptive control of the separating distance

The standard approach for evenly spaced streamlines takes advantage of the separating
distance dsep in order to achieve a regular distribution of fibers. However, for surgical
application, major tract systems associated with specific function are of primary inter-
est. In a tracking of the whole brain, small peripheral fiber bundles occlude the major
pathways and hamper medical interpretation. For this reason, an approach for adaptive
distance control is described in this section, which was published in [88].

Since major white matter tracts are composed of dense bundles of coherent nerve
fibers, high anisotropic diffusion is encountered in these areas. This information can
be used during fiber tracking in order to control the separating distance between the
streamlines, resulting in a more comprehensive tracking result. Adaptive density con-
trol generates fibers of higher density in areas of anisotropic diffusion, and reduces the
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fiber density in more isotropic regions. Thereby, dominant fiber structures character-
ized by high anisotropic diffusion are visualized with dense streamlines and are still
visible in spite of surrounding small fiber bundles. Consequently, attention is drawn to
the major fiber bundles, which become visually much more apparent.

From the implementation point of view, some extensions of the original approach
for evenly spaced streamlines are required. Since the FA value is in the range between
0 and 1, where high values indicate anisotropic regions, the factor (1 − FA) is used as
a distance weight. The values dsep−a and dseed−a for adaptive density control are ob-
tained by multiplying the initial distance control values dsep and dseed with this distance
weight. Additionally, a lower limit for dsep−a and dseed−a has to be defined in order to
prevent these values from dropping below the step size for fiber tracking. The grid with
voxel size dsep superimposed on the domain remains the same, since the adaptive dis-
tance dsep−a is less than or equal to dsep. For regions of high density, the grid is in fact
coarser than actually required, which leads to a higher number of distance checks than
necessary.

Results

A comparison between tracking of the whole brain using evenly spaced streamlines
with different levels of adaptive distance control is provided in Figure 4.8. The approach
for adaptive spacing ensures that major tract systems with a high anisotropic diffusion
are represented with dense streamlines. The pyramidal tract (left, see arrows) as well as
the fibers of the corpus callosum (middle, see arrows) can be clearly identified.

In each image, the density dsep−a varies between 0.5 mm which is the step size for
fiber tracking and 2 mm (left), 3 mm (middle) and 5 mm (right). On a PC equipped with
an AMD Athlon (1.2 GHz), computing times were 142 sec, 98 sec and 58 sec.

Figure 4.8: Adaptive distance control for tracking using evenly spaced streamlines em-
phasizes dominant tract systems with dense streamlines. The spacing dsep−a between
adjacent streamlines is adjusted depending on the local FA and varies between 0.5 mm
and 2 mm (left), 3 mm (middle) and 5 mm (right).
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4.3.3 ROI based tracking using evenly spaced streamlines

As outlined in Section 4.1.2, ROIs are an essential technique for obtaining separate tract
systems associated with specific function. However, the approach for evenly spaced
streamlines is originally not adequate for the combination with ROI tracking because
of the following reasons: First of all, the approach for evenly spaced streamlines causes
streamlines to terminate early if they get too close to each other. For this reason, only a
few streamlines fulfill the ROI conditions, especially if multiple ROIs are used. Addi-
tionally, shorter streamlines filling gaps between longer streamlines are not maintained
since they do not cross the ROIs themselves.

In order to overcome these problems and to integrate evenly spaced streamlines into
standard fiber tracking, the following approach was implemented: In a first iteration, a
set of fibers fulfilling the ROI conditions is computed using evenly spaced streamlines.
Based on this initial set of fibers, a further generation of evenly spaced streamlines is
generated in a second pass. Since these fibers are generated regardless of the ROIs,
they are able to fill sparse regions between the initial set of fibers. A second generation
of evenly spaced streamlines may be computed based on the first generation, and so
on. This iterative process makes it possible to reconstruct a dense white matter bundle
based on the initial set of streamlines. However, the number of generations of evenly
spaced streamlines should be low to avoid expansion to undesired areas.

Results

In Figure 4.9, the strategy for ROI tracking based on evenly spaced streamlines is shown
for the pyramidal tract in a healthy volunteer. In a first step, the initial set of fibers is
computed, taking into account the user-defined ROIs for the pyramidal tract (left). In

Figure 4.9: ROI tracking of the pyramidal tract (left), first (middle) and second (right)
generation of evenly spaced streamlines. Incorporation of evenly spaced streamlines
into ROI tracking provides dense tracts.
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a second pass, the first generation of evenly spaced streamlines filling sparse regions is
generated (middle). A third pass based on the initial fiber bundle and the first genera-
tion of evenly spaced streamlines fills the volume further (right). With this technique,
the concept of evenly spaced streamlines was adapted to ROI tracking providing dense
tracts capturing the features within the data.

4.4 Directional Volume Growing

The fiber-tracking approaches presented in the previous sections generate fiber bun-
dles which approximate the shape and location of major white matter tracts. The re-
constructed fiber tracts provide a good impression of the spatial relation of fibers and
anatomy and are therefore a valuable supplement for neurosurgical planning. How-
ever, even higher-order integration schemes do not prevent the trajectories from drifting
away from the exact path due to numerical inaccuracies that accumulate during stream-
line propagation. Another limitation of fiber tracking is that crossing bundles in areas
of planar anisotropy are not comprehensively represented.

For this reason, an alternative approach for reconstructing major tract systems de-
noted as directional volume growing was developed and published in [87]. The ap-
proach is intended to overcome the limitations of fiber tracking by expanding a volume
encompassing white matter tracts based on the local tensor information. Instead of a
bundle of fibers approximating the shape of the tract system, a volume is generated
which contains neuronal structures.

This section is organized as follows: In Section 4.4.1, the strategy for directional
volume growing is presented which enables the extraction of separate tract systems.
Experimental results using different datasets are provided Section 4.4.2.

4.4.1 Algorithm for directional volume growing

The basic idea of directional volume growing is to expand a volume of interest contain-
ing neuronal structures based on the local tensor information. In contrast to standard
fiber tracking, where only a single direction is derived in each propagation step, the
volume may expand in multiple directions in the case of planar or rather spherical ten-
sors. In this way, the information content provided by rather isotropic tensors is more
appropriately processed.

In general, volume-growing algorithms start from a predefined seed region and
spread out within the volume until some terminating criterion is reached. In the case of
directional volume growing based on diffusion tensor data, the shape of the local ten-
sor controls the direction in which the process expands. The local FA value is used as a
threshold in order to prevent the volume from expanding to isotropic regions. The seed
regions required for directional volume growing are identical to the ROIs specified for
fiber tracking, and are defined based on anatomical landmarks. However, in this case
only AND ROIs are possible. In order to expand the volume, the algorithm starts from
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each voxel within the ROI and adds neighboring voxels to the initial volume. For this
purpose, the diffusion characteristics of the underlying diffusion tensor are taken into
account (more details are provided in [87]):

Anisotropic diffusion

In the case of anisotropic tensors with a dominating barycentric space coordinate for
linear diffusion cl, directional volume growing expands the volume in the direction of
the principal eigenvector. For this purpose, the algorithm computes all vectors pointing
from the center of the current voxel to the centers of the immediate neighboring voxels.
A neighboring voxel is added to the growing volume, if two threshold requirements are
met:

(1) The FA value of the neighboring voxel must be above a predefined threshold.

(2) The angle between the principal eigenvector and the vector pointing to the respec-
tive neighboring voxel must be below a specified threshold.

For reasons of symmetry, it is sufficient to check the angle for only 13 of the 26 neighbor-
ing voxels. If a neighboring voxel fulfills the angle threshold criterion, this neighboring
voxel as well as its opposite voxel is added to the volume.

Isotropic diffusion

In the case of a dominating barycentric space coordinate for planar diffusion cp, the al-
gorithm tries to enlarge the grown volume in a plane according to the planar shape of
the tensor. For this purpose, the third eigenvector is used as a normal vector n of the
plane containing the principal and second eigenvector. For each neighboring voxel, the
angle between the normal and the vector pointing to the neighboring voxel is deter-
mined, and 90 degrees are subtracted in order to obtain the offset angle to the ellipsoid
plane. In the same way as for linear diffusion, the associated neighboring voxel is added
to the grown volume if this angle is below a specified threshold.

4.4.2 Results

In order to compare fiber tracking based on streamline propagation and directional vol-
ume growing, both techniques were applied for the reconstruction of the pyramidal
tract in brain tumor patients. On a PC equipped with an Intel Pentium 4, 2.4 GHz, the
computing times for directional volume growing were in the range of 40-60 seconds.

In Figure 4.10, conventional volume growing (left) in comparison to iso-surface ex-
traction based on FA values (right) is shown for DTI data of a healthy volunteer. The
fragmented nature of the iso-surface makes it difficult to identify clearly connectivity
information which is important for surgery. In contrast, conventional volume growing
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Figure 4.10: Conventional volume growing in healthy volunteer starting from a central
seed region: Connected volume of high FA within the whole brain (left) and iso-surface
extracted from the binary volume (middle). Iso-surface extraction of the original FA
dataset (right).

produces a connected volume without any detached parts. The resulting visualization
is further improved after iso-surface extraction based on the binary volume (middle).

In Figure 4.11, fiber tracking and directional volume growing is shown for two tu-
mor patients, where the pyramidal tract passes very close to the tumor. The streamline
representation (left) already indicates a close spatial relation between tumor and fiber
tract. Additionally, the directional-volume-growing result (middle) clearly shows the
volume occupied by white matter in the vicinity of the tumor. A comparison of both
representations (right) shows that the tracking algorithm computes streamlines which
are completely encompassed by the volume obtained from directional volume growing
(in both cases the same FA threshold was applied). This observation indicates that fiber
tracking is able to represent the overall shape of the tract, in spite of numerical inaccura-
cies during line propagation. However, the volume derived by the growing procedure
presented occupies more space than revealed by the fiber bundles. Consequently, direc-
tional volume growing provides a more conservative estimate of the volume potentially
containing fibers.

As demonstrated in the case of different patients, directional volume growing is an
adequate tool for estimating the entire volume occupied by white matter tracts within
the human brain. The design of the approach aims at obtaining a better evaluation
of the tensor information in more isotropic regions, e.g. in voxels containing crossing
fibers. In comparison to conventional fiber-tracking approaches, the strategy presented
provides a more conservative estimate of the critical volume filled with white matter.
For this reason, the resulting representation is of high value for clinical application in
neurosurgery.
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tumor

tumor

Figure 4.11: Visualization of pyramidal tract in two tumor patients (top/bottom) assign-
ing RGB colors to the x,y,z-coordinates of the normalized principal eigenvector: Fiber
tracking (left), directional volume growing showing binary volume (middle), overlay
of fiber tracking and iso-surface derived from binary volume after directional volume
growing (right).

4.5 Discussion

In this chapter, different approaches for the reconstruction of major white matter tracts
were presented and evaluated. These approaches comprise techniques for fiber tracking
based on streamline propagation or based on tensor deflection. ROIs defined by the user
based on anatomical knowledge are used in order to extract separate tract systems. Ori-
ented filters are used during fiber tracking in order to regularize the tensor field during
streamline propagation in a local neighborhood. Another extension for fiber tracking
is a mechanism for distance control between single trajectories, which is based on the
concept of evenly spaced streamlines. Finally, an approach denoted as directional vol-
ume growing is presented, which expands a volume instead of single trajectories. In
contrast to fiber tracking, the volume is expanded in multiple directions, depending on
the underlying tensor information.
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The fiber-tracking approaches presented at the beginning of the chapter are a com-
monly accepted technique for the reconstruction of major white matter tracts. The re-
sulting fiber bundles approximate the shape of major tract systems and are a valuable
source of information for surgical planning. However, in the case of crossing or branch-
ing fibers represented by planar or spherical tensors, fiber tracking is not able to model
fibers appropriately. In the case of streamline propagation, jagged paths are generated
in more isotropic regions because of the flipping direction of the major eigenvector of
planar or spherical ellipsoids. The approach for tensor deflection is less sensitive to di-
rectional changes of the major eigenvector; in the case of spherical tensors, the direction
of propagation is maintained. To sum up the characteristics of streamline propagation
and tensor deflection, the advantage of streamline propagation is that it is better able to
follow curved pathways, whereas tensor deflection is less sensitive to isotropic regions.

However, in both cases a decision for a single direction is taken, which is not an
appropriate interpretation of planar or spherical tensors, where multiple directions of
equal probability exist. For this reason, fiber tracking should be restricted to regions
of anisotropic diffusion, where the direction of main diffusion is unambiguous. Due to
the high anisotropic diffusion encountered in these regions, it is advisable to use fiber
tracking based on streamline propagation, which is better able to follow curved paths.
For the major tract systems considered in this chapter, strong anisotropic diffusion is
encountered. For this reason, fiber-tracking algorithms are capable of recovering the
underlying neuronal structures to a satisfactory extent in these cases, as reported in a
tracer experiment [28] and in clinical studies [9, 56, 105]. In order to construct neuronal
connections in sub-cortical regions, alternative approaches exist, such as the algorithm
for connectivity analysis presented in the next chapter.

The approach for oriented filters aims at improving the accuracy of fiber tracking.
A local filter window is constructed and evaluated in order to approximate the local
tensor, based on the tensor information in a local neighborhood. In this way, the fiber-
tracking algorithm is less sensitive to noise, and crossing fibers are better processed.
According to the evaluations presented in this chapter, oriented filters improve the ac-
curacy of the respective integration scheme. However, oriented filters require a high
level of computational effort, especially for higher-order integration schemes. In the
case of Euler integration, the accuracy obtained with oriented filters is achieved just as
well with higher-order integration, which involves less computational effort. For this
reason, it is more advisable to use a higher-order integration scheme (such as RK-2 or
RK-4) instead of RK-1 integration combined with oriented filters.

Apart from line propagation schemes, seed-point selection is another important is-
sue for the reconstruction of fiber bundles. The concept of evenly spaced streamlines,
which was originally developed for flow visualization, enables a more comprehensive
representation of the data. Evenly spaced placement of seed points as well as early ter-
mination of streamlines, if a distance threshold is violated, results in fibers equally dis-
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tributed over the domain. In this way, sparse regions are filled and all features within
the data are captured. A possible limitation of fiber tracking based on evenly spaced
streamlines relates to the step size for tracking. In order to ensure an even spacing be-
tween single streamlines, either fiber tracking with fixed step size is required, or at least
an upper limit for the maximum step size which is below the separating distance dsep,
in the case of tracking with adaptive step size.

The basic approach for evenly spaced streamlines was extended to include a mecha-
nism for adaptive control of the separating distance between single streamlines, and an
approach for ROI tracking. Adaptive density control helps to visually emphasize dom-
inant tract systems in areas of high anisotropy, which would otherwise be occluded by
more peripheral small fiber tracts. In order to combine the concept of evenly spaced
streamlines with ROI-based tracking, a multi-stage approach was presented. Since
streamlines are commonly terminated early in order to fulfill the spacing criterion, the
fiber bundle resulting from ROI tracking is only sparse. In a first and second itera-
tion, evenly spaced streamlines are generated in order to enhance the reconstructed
fiber tract. This approach allows the extraction of separate tract systems based on ROIs,
which are generated with the concept of evenly spaced streamlines.

The approach for directional volume growing presented at the end of this chapter, is
an extension towards multiple directions. In order to implement expansion to several
directions, a volume encompassing neuronal structures is constructed, instead of sin-
gle trajectories. Limitations of the approach relate to the percentage of planar tensors,
which is commonly low in DTI datasets. For this reason, expansion to multiple direc-
tions plays only a minor role in the reconstruction of major tract systems. Nevertheless,
this technique is a first step towards tract reconstruction taking into account multiple
directions per voxel, depending on the underlying tensor information. This idea is pur-
sued further in the next chapter, where a graph structure is built and employed for
connectivity analysis between functional regions.
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Chapter 5

Connectivity analysis between
functional regions

The fiber-tracking techniques presented in the previous chapter are well suited for the
reconstruction of major tract systems composed of thick bundles of coherent fibers, such
as the pyramidal tract, the optic tract or the corpus callosum. However, in areas near
the cortex where small tract systems such as the arcuate fasciculus are located, crossing
and branching fibers occur more frequently. As a result, the direction of diffusion is
less pronounced resulting in planar and spherical tensor ellipsoids. Consequently, stan-
dard approaches for reconstructing fiber tracts are not adequate for connectivity anal-
ysis between sub-cortical or cortical regions. For this reason, this chapter presents an
alternative technique based on pathfinding. Since pathfinding algorithms are required
for various types of search problems, highly efficient solutions such as the A∗ algo-
rithm [45] exist. For this reason, it is straightforward to adapt pathfinding also in the
context of white matter connectivity analysis, which can be considered as an instance
of a minimum-cost path problem [51, 40]. The presented approach employs the whole
tensor information for connectivity analysis and combines computational efficiency and
accuracy. The initial algorithm introducing pathfinding for connectivity analysis was
published in [79]; further advances including a more sophisticated cost function and a
refined search grid were published in [90].

This chapter starts with a summary of previous work aiming at reconstructing fibers
in sub-cortical regions (Section 5.1). Subsequently, an introduction to pathfinding is
provided and important parts of the search algorithm as well as efficiency aspects are
considered. Finally, pathfinding results for different patient datasets are presented in
Section 5.3 and the advantages of the approach are discussed in Section 5.4.

5.1 Previous work

First approaches addressing the problem of connectivity analysis between cortical re-
gions used probabilistic or regularization techniques [8, 11]. Over a large number of
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iterations, the process yields a connectivity probability related to the number of prob-
abilistic streamlines found in a volume element. Another class of algorithms derived
from level set theory considers arrival times of diffusion fronts [113, 51]. In most re-
cent work based on level sets, the problem of white matter connectivity is modeled as
wavefront evolution based on a cost function which depends on the entire diffusion
tensor [51]. Considering the arrival times of the wavefront, connections are derived by
minimizing the cumulative travel cost along the path. Another recent approach uses
global optimization and dynamic programming for fiber reconstruction [40]. A graph
is spanned over the domain with assigned cost for each edge connecting two voxels.
By means of dynamic programming, connections with the highest probability are com-
puted.

5.2 Connectivity analysis based on pathfinding

Basically, pathfinding algorithms are highly efficient search strategies commonly used
in artificial intelligence for problems associated with a state space search. They are de-
signed to derive the minimum-cost path between a start and a goal node based on a cost
function [68]. Starting with an initial node, the algorithm builds up a graph consisting
of weighted edges leading to successor nodes representing valid steps in solving the
search problem. The reliability of a certain edge within the graph is indicated by the
costs accumulated up to the current node and estimation of the remaining cost denoted
as heuristics. The graph search expands until the goal node is reached.

For connectivity analysis between cortical regions, the A∗ algorithm [45, 103] is em-
ployed in this work. This section provides an introduction to A∗ pathfinding (Sec-
tion 5.2.1) and important parts of the algorithm comprising domain restriction, an ad-
equate search grid and an appropriate cost function based on the local tensor informa-
tion are presented in Sections 5.2.2, 5.2.3 and 5.2.4. The reconstruction of minimum
cost paths representing neuronal connections is outlined in Section 5.2.5 and efficiency
aspects are considered in Section 5.2.7.

5.2.1 A∗ algorithm

The A∗ algorithm [45, 103] was designed for the efficient computation of the path with
the lowest cost between a start and a goal node. For this purpose, the algorithm builds
up a graph with nodes and edges, where to each edge a local cost is assigned. In each
iteration, the path with the lowest cost is expanded until the goal node is reached. An
important fact about the A∗ algorithm is its optimality [29] which guarantees that the
best possible solution is found with the smallest computational effort.

In this application, the search area for the A∗ algorithm is the diffusion tensor dataset.
The center points of the voxels in the search area are denoted as ’nodes’. The status of a
node may be walkable or unwalkable according to a domain restriction threshold (Sec-
tion 5.2.2). The search is initialized with a start node and a goal node. Beginning with
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A-Star-Search(startNode, goalNode) {

openList.AddNode(startNode);

while (openList NOT EMPTY) {

currentNode = openList.RemoveMinCostNode();

if (currentNode == goalNode)
return TraceBackPath(currentNode);

closedList.AddNode(currentNode);
neighbors* = GetNeighbors(currentNode);

foreach (neighbors) {
if (neighbor NOT WALKABLE) continue;

else if (neighbor NOT ON OPEN OR CLOSED LIST) {
neighbor.SetParent(currentNode);
neighbor.ComputeCosts();
openList.Insert(neighbor);

} else { // neighbor on open or closed list
costG_old = costG(OLD PATH TO NEIGHBOR);
costG_new = costG(NEW PATH TO NEIGHBOR);

if (costG_new < costG_old)) {
neighbor.SetParent(currentNode);
neighbor.ComputeCosts();

}
}

}
}

// No path between start and goal found
return EmptyPath();

}

Code Example 5.1: Pseudocode for A∗ algorithm.



66 Chapter 5. Connectivity analysis between functional regions

the start node, in each step the neighbor nodes of the current node are determined and
further processed based on thresholds and costs. To find the path with the lowest cost,
the searching process builds up a graph until the goal node is found. A schematic out-
line of pathfinding in comparison to fiber tracking is found in Figure 5.1.

G

S

Figure 5.1: Schematic outline of the A∗ algorithm. For each square in the grid the shape
of the tensor ellipsoid is indicated. Squares with a low FA value are not walkable and
are denoted by a dark background. An example of fiber tracking (blue) as well as a
possible pathfinding result (red) are shown. Contrary to the fiber, pathfinding is goal
oriented and arrives at the goal.

For expanding the search, the algorithm maintains two lists: An open list encom-
passing all nodes that require further consideration and a closed list of nodes that have
already been processed. When starting the search, the open list just contains the start
node and the closed list is empty. The start node is taken from the open list and all
walkable neighbor nodes are determined and inserted into the open list. Each node
maintains a reference pointing to its parent. For each neighbor node on the open list
the start node is thus saved as a parent node. As soon as the goal node is reached, the
references are used in order to trace the path from the goal back to the start node.

In order to determine the best path, cost functions (Section 5.2.4) are employed. They
provide a bias towards neighbor nodes that are more likely to lie on this path and there-
fore constitute a crucial detail of the algorithm. For a node i of the graph, the following
costs are determined:

Movement cost: gi is the movement cost required to travel along the path to the respec-
tive node i and is stored for each node.

Heuristic: hi provides an estimate of the remaining cost (also called heuristic) to the
goal which may optionally be added to direct the search towards the goal making the
algorithm more efficient. Otherwise, the search would spread equally in all directions.
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It is important to note that hi does not affect the optimality of A∗ as long as hi is not
higher than the actual cost necessary to reach the goal.

Cost function: fi = gi + hi is the overall cost function which is evaluated for each node
of the open list in order to decide which one to process next.

The path with the lowest cost is generated by repeatedly selecting the node with
the lowest cost fi from the open list. The walkable neighbors of the current node are
determined and added to the open list, provided that they are not yet part of the open
or the closed list. Otherwise, the movement costs encountered for reaching the neighbor
node via different paths have to be compared and the cheapest alternative is selected.
Subsequently, the current node is moved to the closed list. These processing steps are
repeated until the goal node is added to the open list and the path with the lowest cost
is found. The pseudocode for A∗ pathfinding is provided in Code Example 5.1.

5.2.2 Domain restriction

A possible connection between areas within the brain must be restricted to regions of
white matter. In order to prevent the algorithm from expanding to regions definitely
beyond white matter, the search domain is limited to regions where diffusion exhibits a
directional bias due to underlying neuronal structures. For this purpose, diffusion met-
rics (Section 3.3.3) are employed [51, 40] which classify the properties of local diffusion.
These metrics measure the degree of anisotropic diffusion, which is generally agreed to
be a characteristic property of white matter. Strongly aligned tissue such as white matter
causes anisotropic diffusion resulting in linear diffusion tensors. In the case of crossing
or kissing fibers, planar diffusion tensors are observed due to the partial volume effect.
Contrarily, in areas of grey matter spherical tensors are mainly encountered. Among the
available measures for anisotropy, we selected FA for domain restriction which is also a
common fiber propagation threshold for fiber tracking algorithms.

In the context of pathfinding such a threshold is known as a walkability threshold
since nodes are thereby classified either as possible successor nodes or as forbidden
nodes excluded from further consideration. Due to the restricted search area, the size
of the edge weighted graph is considerably reduced. Computation times become faster
since the graph expands more restrictively and fewer possible directions have to be
processed. Furthermore, a connection is only found if a possible path exists according
to the walkability criterion.

5.2.3 Grid for partitioning the search space

For navigating in three-dimensional space, the search algorithm requires a grid which
should provide a regular structure uniformly covering the search space and a small
step-size between neighbor nodes. The angle between edges should be small to provide
enough flexibility to follow the direction of anisotropic diffusion. These requirements
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lead to regular polyhedra, the Platonic solids. While grids composed of icosahedra
and dodecahedra feature holes, grid structures composed of tetrahedra, hexahedra or
octahedra come into question. We choose a grid structure based on hexahedra, where
each node is connected to 74 neighbors as shown in Figure 5.2 (left). In comparison
to a grid with 26 neighbors, further directions are provided reducing the angle between
neighbor edges and offering a considerably improved choice of different directions thus
fulfilling the flexibility criterion. The grid size chosen has to be sufficiently small to
guarantee a small maximum step-size which should not exceed the grid size of the DTI
dataset. The resulting grid is of high resolution and enables a dense sampling of the
search space as outlined in Figure 5.2 (middle, right).

Tumor

Figure 5.2: Octant of a grid with 26 and 74 neighbors (left). Expansion of the search
space between Broca’s and Wernicke’s speech areas using a grid with 74 neighbors and
a maximum edge length of 1.5 mm in a brain tumor patient (middle). Close-up view
showing details of search grid (right).

5.2.4 Cost function

The cost function is an integral part of all types of connectivity algorithms since it con-
trols the process of path evolution. In order to overcome the limitations encountered
with fiber tracking, where only one direction (principal eigenvector, deflected direction
or a combination of both) is considered, connectivity analysis algorithms employ a cost
function which incorporates the entire tensor information. For this purpose, the sur-
face of the tensor ellipsoid is commonly used as the probability profile [51, 40, 79]. In
order to compute the probability of a fiber following a certain direction, the distance
between the center of the ellipsoid located at (0, 0, 0)T and the intersection point r on
the surface of the ellipsoid is determined. For a tensor ellipsoid with semi-axes aligned
to the eigenvectors and scaled according to the respective eigenvalues λi, i = 1, 2, 3,
probabilities between 0 and 1 are obtained by normalizing the tensor ellipsoid using λ1.
Consequently, any segment connecting the center of the ellipsoid with its surface has a
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maximum length of 1. As a result, the diffusion probability pi(r) for any direction can
be directly obtained from the profile of the normalized ellipsoid:

pi(r) =
|r|
λ1

. (5.1)

However, the resulting probability profile results in a bias towards spherical ellip-
soids since they are traversed more easily due to a high probability for all directions.
In [51], this is addressed by incorporating fractional anisotropy (FA) [7] into the cost
function. In this work, we propose to model the anisotropic characteristic of a tensor by
subtracting the isotropic part represented by λ3 before normalization:

pi(r) =
|r| − λ3

λ1
. (5.2)

This is motivated by considering the probability profile of the tensor. In Figure 5.3, the
probability profiles for a linear and a spherical tensor are plotted as a function of the az-
imuthal and polar angle of the corresponding ellipsoid. In the case of Equation 5.1 (left
plot in each section), the almost spherical tensor yields very high probabilities for all di-
rections resulting in a bias of isotropic tensors. This is circumvented by the probability
profile resulting from Equation 5.2 (right plot in each section) which on the one hand
perfectly maintains the shape of the probability profile but cuts the isotropic fraction. In
this way, the probability function is solely based on the tensor probability profile and
no additional term in the cost function is necessary. The resulting cost function is thus
defined as

ci(r) = 1 − pi(r) (5.3)

with pi(r) derived from Equation 5.2. Based on this approach, a more comprehensive
probability profile is provided which better captures the tensor properties, making the
incorporation of FA into the cost function redundant.

Figure 5.3: Tensor probability profiles (z-axis) of a linear and an almost spherical tensor
for Eq. 5.1 (left in each section) and Eq. 5.2 (right in each section), plotted as a function of
the azimuthal and polar angle (x- and y-axis) of the corresponding ellipsoid.
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5.2.5 Minimum cost path

The theory of tension-based morphogenesis [38] anticipates that neuronal connections
are kept optimal during the development of the brain. Under the assumption that this
theory is correct, which is supported by numerous examples of evidence, minimum-
cost approaches are an appropriate tool for modeling neuronal connectivity. In previous
work [51, 40], this concept is used for different types of connectivity algorithms.

In the context of A∗ pathfinding, minimum-cost connections which approximate
neuronal structures are derived. For this purpose, minimum-cost paths are determined
by summing up all local movement costs cj encountered along the path to node i result-
ing in a global movement cost gi for the whole path:

gi =
i

∑
j=1

cj → min . (5.4)

In this way, connections fulfilling the global optimum condition are derived. Thereby,
the pathfinding algorithm preferably propagates paths with a low global cost by com-
paring the cost of all nodes on the open list. As a result, the computed connection
between the start and goal region is guaranteed to be optimal.

5.2.6 Multiple start and goal voxels

For connectivity analysis between functional areas, the start and goal region usually
comprises more than one voxel. Furthermore, it is desirable to obtain more than one
path between the functional regions. For this reason, the start region is divided into a
user-defined number of subregions and a path to the goal region is computed for each
subregion. So that the search space may be better covered, start and goal region are then
switched and connections are computed which run in the opposite direction.

Optionally, it is also possible to continue the search beyond the optimal path, in
order to obtain the n best paths. For this purpose, the search is resumed even though a
path to the goal region is found, until the desired number of connections is computed.

5.2.7 Heuristic

In order to direct the search towards the goal, the A∗ algorithm takes advantage of an
estimate hi of the remaining cost, also denoted as the heuristic. If the heuristic overesti-
mates the real cost, it is termed inadmissible. In this case, it is not guaranteed that the
algorithm finds the path with lowest cost. If hi is admissible, i.e. it never overestimates
the cost to the goal, then A∗ is guaranteed to find the path with lowest cost. However,
the lower the values of hi, the more the algorithm expands and the slower it performs.
For this reason, the heuristic should be as high as possible, but it should still represent
a limit which is lower than the real cost, which has to be estimated.
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The heuristic hi can be considered as an attractor which is employed in the cost
function fi = gi + hi in order to direct the search towards the goal. For the connectivity
approach presented in this chapter, the following heuristic is employed:

hi =
di

smax
· ĉ . (5.5)

Thereby, di denotes the Euclidean distance of node i to the goal which is normalized
according to the maximum step length smax within the grid. The minimum number of
steps to the goal di/smax is multiplied with the estimated average cost per step ĉ which
is determined by sampling the data for short connections in regions with high FA. The
smallest cost among the samples is then assigned to ĉ. This additional term of the cost
function fi directs the search towards the goal. According to my observations, it can be
empirically approved that the heuristic is admissible since the resulting paths did not
differ from paths computed without heuristic. It was possible to reduce the computing
time for the search considerably (for more details see Section 8.3.3).

5.2.8 Efficient implementation

Since the algorithm for connectivity analysis aims at clinical application, strict require-
ments with respect to computing times are encountered. With increasing distance be-
tween start and goal region and with increasing grid resolution, the dimension and
complexity of the search grid increases rapidly. For this reason, appropriate data struc-
tures and computing schemes are of major importance for an efficient search.

The bulk of the computing time is consumed by operations performed on the open
and closed list. Both lists contain a high number of nodes and are frequently accessed for
data retrieval and insertion / deletion of nodes. For this reason, different data structures
provided by the Standard Template Library (STL) [102] were investigated, as outlined
in Table 5.1.

Vector Hashtable Binary Heap Sorted Vector
IsContained() O(n) O(1) O(1) O(1)
AddNode() O(1) O(1) O(log(n)) O(log(n))

RemoveMinCostNode() O(n) O(n) O(log(n)) O(1)

Table 5.1: Complexity of different data structures for the operations IsContained(),
AddNode() and RemoveMinCostNode(), which are frequently required for the open
and closed list.

For the closed list, efficient methods for insertion and access are essential. Since no
sorting is required, but fast access to nodes with a specific key for tracing back the final
path, a hash table is employed. The hash table provides a complexity of O(1) for both
operations and is therefore the best alternative.
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In the case of the open list, a data structure is required which provides fast access
to the node with minimum cost fi, in spite of the large number of nodes contained.
For this reason, sorted data structures are required such as a binary heap or a sorted
vector. With respect to node insertion, the average expense for AddNode() is slightly
higher in the case of a sorted vector, since all elements following the position of insertion
are repositioned. This is subsumed by the RemoveMinCostNode(), which occurs less
frequently but is much more efficient in the case of a sorted vector.

The complexity values provided in Table 5.1 denote the upper bounds of the respec-
tive operations. In practice, the average computing time for connectivity analysis based
on A∗ pathfinding is higher, if a sorted vector is used as data structure for the open list.
Especially for a large search area, the advantage of the sorted vector over the binary
heap becomes apparent.

5.3 Results

For evaluation purposes, two proband and three patient DTI datasets were analyzed.
For all datasets, seed regions corresponding to the Broca’s and Wernicke’s speech ar-
eas derived from fMRI were available. From anatomy, it is known that these areas are
functionally related by the arcuate fasciculus (Section 2.4). All three patients suffered
from lesions located close to the functional areas. However, the speech abilities were
unaffected, which indicates that the arcuate fasciculus was intact in each patient.

The approach for connectivity analysis between Broca’s and Wernicke’s speech area
was applied for all datasets. For pathfinding, the 74-neighbor grid introduced in Sec-
tion 5.2.3 was employed with a maximum step length of 1.5 mm. According to Sec-
tion 5.2.2, a walkability threshold based on FA was defined in order to restrict the search
to regions of white matter only. In all experiments, the walkability threshold amounted
to 0.3, excluding nodes with an FA value below the threshold from further processing.
The following evaluation investigates the quality of the paths obtained (Section 5.3.1) as
well as the computing time (Section 5.3.2).

5.3.1 Quality analysis

In order to investigate the accuracy of the proposed cost function (Equation 5.2) in com-
parison to a cost function based on the product of the normalized probability profile
(Equation 5.1) and the local FA value [51], different measures were evaluated per path.
For this purpose, the average probability according to the probability profile of Equa-
tion 5.2 and the average FA value were investigated. Additionally, the validity index
introduced by Jackowski [51] was recorded. The validity index computes the scalar
product between path tangent and major eigenvector for each segment and returns the
average value for the whole path. Table 5.2 shows the minimum, maximum and av-
erage value for the connections derived between speech areas in two patient datasets.
As a result, the cost function achieves better results compared to the normalized tensor
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profile commonly employed [51, 40]. In addition to that, the presented approach is as
accurate as wavefront evolution [51] with respect to the validity index.

Cost Function: Equation 5.1
Patient 1 Patient 2

Number of fibers 17 21
avg min max avg min max

Probability Profile 0.68 0.65 0.70 0.63 0.62 0.64
Fractional Anisotropy 0.58 0.54 0.61 0.56 0.55 0.57
Validity Index 0.75 0.69 0.87 0.83 0.82 0.86

Cost Function: Equation 5.2
Patient 1 Patient 2

Number of fibers 19 23
avg min max avg min max

Probability Profile 0.75 0.73 0.82 0.70 0.69 0.70
Fractional Anisotropy 0.61 0.57 0.68 0.56 0.55 0.57
Validity Index 0.77 0.70 0.88 0.86 0.85 0.87

Table 5.2: Evaluation based on validity index, probability profile and FA represented by
average, maximum and minimum value of all fibers.

In order to visualize the local probability according to Equation 5.2, a color transfer
function is employed as outlined in Section 8.1. Each segment is color encoded assign-
ing red to a low and green to a high value of the probability profile from Equation 5.2. In
Figure 5.4, color coding is used to compare standard fiber tracking based on streamline
propagation [99] (RK-4 integration, step size 0.5 mm) and pathfinding with regard to
their exactness. The red segments encountered in the case of fiber tracking indicate that
spherical tensors were crossed. A more reliable path was obtained using pathfinding
which takes into account the entire probability profile of the local tensor and resulted in
paths along anisotropic tensors.

5.3.2 Computing time

Since the algorithm aims at clinical application thus requiring fast interaction times,
computational cost is of major concern in addition to accuracy. As far as implementa-
tion is concerned, an efficient implementation of the open and closed list is instrumental
in producing fast processing times since both lists are accessed frequently and have to
manage a high number of nodes (Section 5.2.8). Incorporation of the heuristic (Sec-
tion 5.2.7) directs the search towards the goal, resulting in a smaller search grid and
reduced computing times. In both cases, the resulting paths remained the same, since
the heuristic is admissible according to empirical observations.

In Table 5.3, results regarding the computing time are presented. Since the comput-
ing time directly relates to the expansion of the search tree, the respective node num-
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Figure 5.4: Upper row (Patient 1): Patient with a cavernoma. Lower row (Patient 2): Patient
with a glioblastoma multiforme (WHO grade IV) having speech dominance on the right
hemisphere. The respective lesion is shown in red in each patient. Pathfinding (left) vs.
fiber tracking (right); color coding shows that pathfinding provides more precise results.

bers were recorded as well. All computations were performed on a PC equipped with
an Intel Pentium 4, 3.4 GHz, and 2 GB RAM. For connectivity analysis incorporating
a heuristic, the average computing time per path was 14.9 sec for the first patient and
19.5 sec for the second patient. Without heuristic, the computing time is about 70%
higher, which illustrates the importance of a heuristic for efficiency reasons. These tim-
ings are also reflected by the node numbers of the search tree, which are considerably
higher if no heuristic is employed.

Performance Computing Time Number of Grid Nodes
Patient 1 Patient 2 Patient 1 Patient 2

fi = gi + hi 14.9 sec 19.5 sec 106 414 163 586
fi = gi 42.0 sec 82.8 sec 240 705 318 163

Table 5.3: Average computing time per path and expansion of search grid (number
of nodes) for search based on global cost gi (Eq. 5.2) and speed up encountered with
heuristic hi.
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5.4 Discussion

In cortical and sub-cortical regions where the tensor shape deviates from the strongly
anisotropic linear type, standard fiber tracking approaches are inappropriate for connec-
tivity analysis, requiring alternative approaches. The advantage of connectivity analy-
sis based on pathfinding over standard fiber tracking is, that a set of multiple directions
is considered for each node in the graph. In contrast to standard fiber tracking, only a
single fiber direction is computed using streamline integration or tensor deflection. Fur-
thermore, pathfinding is goal oriented, which is another important property in order to
compute the course of fibers between functionally related regions. The design of the
pathfinding algorithm ensures that the best possible connection between the functional
areas is found, whereas fiber tracking initiated from one region is not guaranteed to find
the other functional area at all.

In comparison to other approaches aiming at connectivity analysis in cortical or
sub-cortical regions, the presented technique offers a number of advantages. First ap-
proaches developed in this context are based on probabilistic or regularization tech-
niques and require a huge amount of sampled fibers in order to give evidence about
probable connections. Another class of algorithms model connectivity as a minimum-
cost problem [51, 40], which is based on the assumption that neuronal connections are
kept optimal [38] during brain morphogenesis. They take advantage of a cost or evo-
lution function, which drives the connectivity algorithm. In comparison to the normal-
ized tensor profiles previously employed for this purpose [51, 40], connectivity results
were significantly improved using the novel cost function presented in Section 5.2.4,
which characterizes both shape and anisotropy of the local tensor. From the algorith-
mic point of view, pathfinding is computationally more efficient than other graph-based
techniques such as [40], since it is possible to prove formally that no other search algo-
rithm which is guaranteed to find the minimum-cost path requires less computational
expense than A∗ [29]. Apart from that, the presented grid structure provides high res-
olution and a considerably increased number of neighbor nodes to sample the search
space very densely, which is superior compared to the grid used in [40]. Overall, the
presented approach provides comparable or even better accuracy compared to other
approaches and is, at the same time, much faster than other current approaches.

The presented algorithm could also be combined with higher-order tensor represen-
tations derived from high angular resolution diffusion imaging (HARDI) [145]. In order
to capture the local diffusion properties more precisely, this technique acquires diffusion
datasets with diffusion-weighting gradients applied along many directions, resulting in
more complex tensor shapes. Recently, an approach was proposed for tracking lines
in higher-order tensor fields based on the direction of largest expansion of the higher-
order tensor [49]. The approach presented in this chapter is suited to take advantage of
this more complex tensor representation, since a whole set of directions is sampled for
constructing the graph, which better exploits the complex tensor information.
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Chapter 6

Generation of hulls

The fiber-tracking and connectivity approaches presented in the previous chapters gen-
erate fiber bundles which approximate the shape and the course of underlying white
matter structures. In neurosurgery, major white matter structures must be spared from
injury in order to avoid postoperative neurological deficits. Especially in cases where
the tumor is very close to a tract system, or difficult to access, the reconstructed bun-
dles are of great importance. For this reason, essential tract systems such as the optic
tract (vision), the pyramidal tract (motor tract system) or the corpus callosum (con-
nection between the two hemispheres) are reconstructed prior to surgery for preop-
erative planning. The resulting fiber bundles provide valuable information about the
location and extent of white matter structures with respect to the surrounding anatomy.
In pioneering clinics, they play an important role in planning and navigation in neuro-
surgery [105, 9].

In spite of the advantages of visualizing fiber bundles in 3D, streamline representa-
tions are not adequate for intraoperative visualization. The neuro-navigation system is

Figure 6.1: View through the OR microscope. The border of the tumor (yellow) as well as
functional structures such as the optic tract (green) are superimposed on the microscope
image.
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able to superimpose boundary curves of important structures on the OR microscope im-
age in order to guide the surgeon during the intervention. This is shown in Figure 6.1,
where the borders of the tumor and the optic tract are superimposed on the microscope
view in order to display the relation between tumor tissue and neuronal structures. The
boundary curves provide a clear representation and explicitly show the extent of the
fiber tract, providing a direct relation between tumor tissue and neuronal structures.

For this purpose, hulls tightly wrapping the fiber bundles are required to serve as a
basis for intraoperative visualization. In recent research, a first approach for wrapping
fiber tracts was presented [37]. It computes the centerline of the fiber bundle and defines
ellipses encompassing the fibers in a series of planes perpendicular to the center line.
The ellipses of subsequent planes are then connected using a triangular mesh, resulting
in a tube encompassing the fiber tract. This approach has been developed in conjunction
with automatic clustering [17] which ensures that single streamlines within a cluster or
bundle pursue a similar course. For this reason, the technique is restricted to elongated
white matter tracts where the centerline is well-defined. However, for tract systems
such as the corpus callosum encompassing fibers with a significantly varying course
and direction, the approach will fail. Another problem occurs if the fiber tract branches,
which would require a splitting centerline or the definition of several ellipses per plane.

For this reason, two alternative hull algorithms overcoming these drawbacks are
presented and discussed in this chapter. The first approach employs tetrahedralization
and 3D alpha shapes for hull generation (Section 6.1) and was published in [89]. The
second approach for wrapping fibers is based on isosurfaces (Section 6.2).

6.1 Tetrahedralization and 3D Alpha Shapes

The approach based on tetrahedralization and 3D alpha shapes takes advantage of the
sampling points of the tracked fibers in order to guarantee high precision. In a first
step, a tetrahedral mesh is constructed from the sampling points based on 3D Delaunay
tetrahedralization (Section 6.1.1). Since the tetrahedralization process results in the con-
vex hull of the fiber tract, a variation of the 3D-alpha-shape algorithm has to be applied
(Section 6.1.2). As a result, the triangles on the surface of the remaining tetrahedral
mesh describe a hull precisely encompassing the fiber tract.

6.1.1 3D Delaunay Tetrahedralization

The point set comprising the sampling points of all fibers within the fiber tract is used
as the input for the tetrahedralization algorithm. For the reconstruction of a tetrahedral
mesh based on this point set, a 3D Delaunay [30] approach is applied. For points in a
general position, i.e. no geometric test is ambiguous, this tetrahedralization is uniquely
defined and decomposes the convex hull of the point set into tetrahedra [30]. The tetra-
hedralization of a point set fulfills the 3D Delaunay criterion if each sphere defined by
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the four points of a tetrahedron contains no other point of the point set. For implemen-
tation purposes, the vtkDelaunay3D class of the Visualization ToolKit (VTK) [126] was
used. In Figure 6.2 (left), the surface of the initial set of tetrahedra after 3D Delaunay
tetrahedralization is shown.

Figure 6.2: 3D Delaunay tetrahedralization based on sampling points of a tract system
(corpus callosum) results in the convex hull (left). Subset of tetrahedra obtained with
3D alpha shapes for an alpha value of 10 mm (middle) and semi-transparent hull for an
alpha value of 5 mm displayed with tracked fibers (right).

6.1.2 3D Alpha Shapes

The output of the 3D Delaunay algorithm is a tetrahedral mesh filling the convex hull of
the point set with volume elements. In order to obtain the subset of tetrahedra tightly
enclosing the fiber tract, outer tetrahedra have to be removed in an iterative process.
For this purpose, a variation of the 3D-alpha-shape algorithm is applied. The concept
of alpha shapes [33] is a generalization of the convex hull, formalizing the intuitive
notion of ’shape’ for spatial point-set data. Depending on the alpha value, which is
a real number greater than zero, the alpha shape of an object encompasses only those
tetrahedra with a circumsphere smaller than or equal to a sphere with diameter alpha.
For sufficiently large alpha, the alpha shape is identical to the convex hull which is the
original tetrahedral mesh. For decreasing values of alpha, approaching the step size
used for fiber tracking, the alpha shape shrinks and gradually reveals the shape of the
fiber tract.

When applying the alpha-shape concept to the tetrahedral meshes obtained from
3D Delaunay tetrahedralization, holes may occur due to the removal of inner tetrahedra.
For this reason, a variation of the 3D-alpha-shape algorithm is used, where tetrahedra
are only removed according to the alpha criterion if they are on the surface of the current
tetrahedral mesh. This is implemented by setting an alpha-flag for all tetrahedra which
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should be removed according to the alpha value, and a boundary-flag for all tetrahedra
on the surface. In an iterative procedure, surface tetrahedra with a valid alpha-flag are
removed, and the boundary-flag of their neighboring elements is set. Sweeping through
the tetrahedra data structure continues, as long as tetrahedra requiring to be removed
are found.

After applying the 3D-alpha-shape algorithm, a tetrahedral mesh remains which
corresponds to the intuitive shape of the fiber tract. The triangular hull mesh is con-
structed from the outer faces of the surface tetrahedra. For dense fiber bundles, the
resulting hull tightly wraps the fiber tract, as shown in Figure 6.3.

Figure 6.3: Hulls obtained from tetrahedralization and 3D alpha shapes for an alpha
value of 5 mm for the pyramidal (blue) and the optic tract (green). Semi-transparent
visualization of the hulls in combination with the fibers (right) shows the high precision
of the approach.

6.1.3 Results

The hull approach based on tetrahedralization and 3D alpha shapes was applied to
different tract systems, as shown in Figures 6.2 and 6.3. For the tract systems presented,
the computing times for 3D Delaunay tetrahedralization are between 2 and 80 seconds
on a PC equipped with a P4 3.0 GHz and 2 GB RAM. The remaining computations
required in order to eliminate unnecessary tetrahedra (Section 6.1.2) are in the range of
a few seconds. Computing times could be lowered by a coarser sampling of the fibers,
or by advanced tracking strategies controlling the density of single fibers, both resulting
in a smaller point set.
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For all tract systems, the algorithm succeeded in generating precise hulls following
the shape of the fiber bundle, as shown in Figures 6.2 and 6.3. The technique presented
provides high precision which is due to the fact that points originating from fiber track-
ing are directly used for tetrahedralization and remain after application of 3D alpha
shapes. As a result, the hulls tightly fit the underlying fiber structure.

6.2 Isosurfaces

The idea behind the hull approach based on isosurfaces is to raster the fibers and to gen-
erate an isosurface encompassing the fiber tract. For this purpose, a series of processing
steps has to be accomplished. First, the fiber tracts are rasterized (Section 6.2.1) and a
volume filter is applied (Section 6.2.2). The Marching Cubes algorithm is then applied
in order to extract an isosurface (Section 6.2.3), which is finally smoothed using surface
filters (Section 6.2.4).

6.2.1 Rasterization

In order to encompass the fiber bundle with a wrapping surface, the volume occupied
in 3D-space is determined in a first step which is achieved with rasterization. For this
purpose, the Bresenham algorithm [16] is employed, which is a standard concept for
rasterization, originally designed for lines in 2D discrete space. This approach is based
on integer arithmetic and takes advantage of the implicit representation of a line for
efficient drawing.

For rasterization in 3D space, the Bresenham algorithm has been adapted to three
dimensions [57]. The 3D version of the Bresenham algorithm projects the 3D line on 2D
planes and executes the 2D Bresenham algorithm on each plane. As a result, a consis-
tent volume comprising the tracked fibers is extracted. Since the fiber bundles consist
of multiple streamlines which are composed of a series of line segments, the 3D Bresen-
ham algorithm is executed for each line segment by taking the start- and endpoint of
the line segment as input values. The rasterization result is a binary volume that ap-
proximates the fiber bundle in 3D discrete space. With respect to the resolution of the
grid, two contradicting criteria are encountered: The grid must be fine enough in or-
der to maintain the shape of the tract after rasterization, but at the same time, the tract
should be represented by connected rasterized voxels without holes. Depending on the
density of fibers representing the whole tract, a good trade-off between these criteria is
provided by a grid size of about 1 mm edge length or less.

For a maximum fiber-tracking step size below the rasterization resolution, it would
be equally possible to mark voxels containing a tract vertex. However, rasterization
based on the 3D Bresenham algorithm ensures that streamlines with arbitrary sampling
features, such as an adaptive step size or a step size above the grid resolution, are cor-
rectly processed.
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6.2.2 Volume filtering

The binary volume generated with the 3D Bresenham algorithm needs further prepro-
cessing, in order to serve as an input for a surface extraction algorithm, since its discrete
nature would result in jaggies. A commonly used technique used to reduce these alias-
ing artifacts is to apply filter operations on the volume. For this purpose, a 3D Gaussian
filter is applied. This filter kernel suppresses high frequencies in the spatial domain and
smooths the rasterized volume. In Figure 6.4, the effect of Gaussian volume filtering is
shown for a coronal slice of the corpus callosum.

Figure 6.4: Comparison of volume after rasterization using 3D Bresenham (left) and
additional Gaussian volume filtering (right), shown for a coronal slice of the corpus
callosum.

Application of the 3D Gaussian filter not only smooths the volume, but also results
in a slight volume expansion. However, this is tolerable if an appropriate value for iso-
surface extraction is used, or is compensated later by surface filters, which cause a slight
volume shrinkage. In order to maintain important details during volume filtering, it is
advisable to use a small Gaussian kernel of size 3 × 3 × 3. In addition to Gaussian vol-
ume filtering, morphological operations could be applied in order to fill potential holes
and to smooth the volume further. However, for the processed tract systems consisting
of dense fiber bundles, application of the Gaussian volume filter was sufficient.

6.2.3 Surface Extraction

Based on the rasterized and filtered volume, surface extraction is applied. For this pur-
pose, the Marching Cubes algorithm [73] is employed, which is an effective technique
for extracting a triangular surface from a volume dataset. For surface extraction, an iso-
value is specified that indicates at which grey level of the input volume the boundary
surface has to be computed. In order to extract an iso-surface encompassing all fibers,
a low iso-value has to be selected. The rasterized and Gaussian-filtered volume com-
prises grey values between 0 and 255; for iso-surface extraction an iso-value between 0
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and 10 is advisable. In Figure 6.5, an iso-surface extracted by Marching Cubes based on
a rasterized and Gaussian-filtered volume is shown. Even though the Marching Cubes
algorithm works on a filtered volume, the extracted surface features terracing artifacts.
For this reason, surface filtering is applied in the next step in order to attenuate these
artifacts resulting in a smooth hull.

Figure 6.5: Initial iso-surface extracted with Marching Cubes for an iso-value of 1.

6.2.4 Surface filtering

In spite of volume filtering, the hulls resulting from iso-surface extraction suffer from
unevenness and consequently lack tightness. For this reason, three surface filters are
presented in this section, which are based on the umbrella operator [64]. The filter
parameters are adjusted by the user in order to generate tight and smooth hulls.

Laplace Filter: A discrete Laplace filter based on angle weights was originally proposed
by [119]. In the meantime, the Laplace filter has become a standard approach for mesh
smoothing [2, 32, 59, 64]. Based on the topological neighborhood, each vertex is reposi-
tioned and the mesh gets smoother within a few iterations. In each iteration, the Laplace
filter traverses all surface vertices and moves each vertex p towards the geometric center
of the n topological neighboring vertices qi. Since this approach leads to a considerable
shrinkage of the surface, a weighting factor λ is commonly applied. This factor has the
effect that p is not completely moved to the center of its topological neighbors, but only
for a portion λ of the movement vector. Accordingly, the smoothed position p′ of vertex
p is computed as follows:

p′ = p + λ
1
n

n−1

∑
i=0

(qi − p) (6.1)

Taubin Filter: The main idea of the Taubin filter [143] is to reduce volume shrinkage
encountered with the Laplace filter by applying a positive (λ1) and a negative weighting
factor (λ2) alternately. The new position p′ of a vertex is computed according to:
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p′ = p + λ1/2

n−1

∑
i=0

wi(qi − p) (6.2)

The weighting factors wi sum up to 1 and can be used to weight the influence of a
neighboring vertex. A common setting is to use wi = 1/n, which is equivalent to the
standard Laplace filter. The absolute value of the negative weight |λ2| is chosen slightly
bigger than |λ1|, e.g. λ2 = −1.02 λ1 as suggested by [143]. Alternating application
of the factors λ1 and λ2 in subsequent iterations alternately shrinks and expands the
volume. As a result, the Taubin filter preserves the volume much better than the Laplace
filter.

Scale-Dependent Laplace Filter: The previously introduced filters based on the um-
brella operator do not take into account the angles between triangles or the edge length,
which leads to the same smoothing result for different neighborhood configurations.
However, the length of edges in the neighborhood provides more information about
the configuration of a triangulation, which is important for good smoothing results. For
this reason, the scale-dependent Laplace filter [32] scales the umbrella operator with
the sum E of the lengths of all neighboring edges. The resulting filter computes the
smoothed position p′ of a vertex from its old position p and its neighbors qi as de-
scribed previously, but the vectors to the neighboring vertices are normalized and the
sum of edge lengths E is used in order to scale the resulting movement vector:

p′ = p +
λ

E

n−1

∑
i=0

(qi − p)

|qi − p| , with E =
n−1

∑
i=0

|qi − p| (6.3)

In Figure 6.6, smoothing results obtained with the scale-dependent Laplace filter are
shown. Depending on the number of iterations, a slight but constant volume shrinkage
is observed. At the same time, the surface gets smoother and terracing artefacts disap-
pear. The filter parameter λ as well as the number of iterations is controlled by the user
in order to obtain a hull surface tightly fitting the underlying fiber tract. In addition to
the iso-value, the filter parameters thus allow fine-tuned fitting of the hull in order to
obtain the desired surface quality.

Figure 6.6: Surface filtering with a scale-dependent Laplace filter after 0, 25, 50 and 75
iterations and a filter value λ = 0.5 (from left to right).
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6.2.5 Results

Based on fiber bundles obtained with fiber tracking (Section 4) or connectivity analysis
(Section 5), hulls were generated by means of rasterization, volume filtering, iso-surface
extraction and surface smoothing, as outlined in the previous sections. The comput-
ing times for the hull surfaces presented were between ten seconds and three minutes
(on a PC equipped with a P4 3.0 GHz and 2 GB RAM), depending on the number of
fibers which have to be rasterized and the number of iterations chosen for the surface
filter. From various experiments, the following parameters proved to be adequate for
generating isosurface-hulls tightly fitting the underlying fiber tract:

• Voxel size of rasterization volume: 1×1×1 mm3

• Size of Gaussian filter kernel: 3×3×3
• Iso-value for Marching Cubes: 0-10
• Surface filter: Scale-dependent Laplace filter
• Filter parameter λ: 0.5
• Number of filter iterations: 10-60

One neurosurgeon and two medical students (neurosurgery) applied the approach
to several tract systems in different patients, namely the arcuate fasciculus, the pyrami-
dal tract, the optic tract, and the corpus callosum. In Figure 6.7, a hull wrapping the
arcuate fasciculus obtained from connectivity analysis is shown. In Figure 6.8, hulls for
the corpus callosum and the pyramidal tract are shown for a brain-tumor patient. The

Figure 6.7: Arcuate fasciculus in a brain-tumor patient undergoing surgery. Based on
the results obtained from connectivity analysis (left), a hull was generated (iso-value 5,
Taubin filter with λ = 0.4, 40 iterations) (right).
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Figure 6.8: Brain-tumor patient, the corpus callosum (upper row) and the pyramidal
tract (lower row) are very close to the tumor (red), as indicated by fiber tracking (left). A
hull wrapping the corpus callosum and the pyramidal tract was generated (iso-value 1,
scale-dependent Laplace filter with λ = 0.5, 40 iterations) which tightly fits the underly-
ing fiber tracts (middle). Zoomed views of the tumor region (right).

tumor was manually segmented and is shown in red. Since the tract systems presented
are very close to the lesion, intraoperative visualization of the respective hulls provides
surgical guidance and supports safe resection. In Figure 6.9, the pyramidal tract in four
patients is investigated, and the hulls as well as a semi-transparent representation are
shown. The quality of the hulls was visually confirmed by the medical experts based
on semi-transparent hull visualization.

The quality of a hull resulting from a specific parameter set can be visually inves-
tigated by simultaneous visualization of the fiber tract and the respective hull. In this
way, the hull extraction parameters are easily adjusted in order to obtain tight hulls
wrapping the underlying fiber tract.

In order to support quality control further and to provide a quantitative measure, it
is also possible to measure the tightness of a hull with respect to the underlying tract
system. For this purpose, the distance of each surface point to the nearest tract vertex
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Figure 6.9: Pyramidal tract of different brain-tumor patients undergoing surgery. Based
on the fiber-tracking results, hulls were generated (iso-value 5, scale-dependent Laplace
filter with λ = 0.5, 50 iterations) (upper row). Semi-transparent visualization of the hull
in combination with the fiber-tracking results (lower row) facilitates the adjustment of
the surface extraction parameters in order to obtain tight hulls.

is computed and evaluated (average and maximum value of all surface vertices). In
order to compute the minimum distance for each surface vertex efficiently, the volume
is decomposed into cubes with edge length 4 mm, and the tract vertices are assigned
to the respective cube. For each surface vertex, the corresponding cube is determined
and the minimum distance between the surface vertex and all tract vertices within the
cube is computed. If the surface vertex is very close (< 1 mm) to one of the sides of the
cube, the tests are also performed for the tract vertices contained within the respective
adjacent cube. As a result, the distance between a surface vertex with respect to the fiber
tract is assessed. In Table 6.1, the results for the pyramidal tract for the five patients are
presented, depending on the number of iterations for the surface filter (the remaining
parameter settings were in accordance with the recommendation above, with an iso-
value of 5). For each patient, hulls for the pyramidal tract were extracted after 40, 50
and 60 surface-filter iterations, and the average and maximum distance value for all
surface points was determined.

Visual inspection of the hulls showed that the hulls enclosed the pyramidal tracts
completely; only in the case of 60 iterations did the tips of the tract systems protrude
slightly. The distance measurements further confirm the quality of the hulls, with an
average distance between hull and tract of about 1 mm. Moreover, these measurements
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Pyramidal tract
avg [mm] max [mm]

Patient 1 0.96 1.81
Patient 2 1.09 1.97

40 iter Patient 3 0.86 1.79
Patient 4 0.92 1.89
Patient 5 1.12 2.33
Patient 1 0.89 1.75
Patient 2 1.02 1.90

50 iter Patient 3 0.80 1.74
Patient 4 0.83 1.82
Patient 5 1.06 2.05
Patient 1 0.79 1.63
Patient 2 0.96 1.85

60 iter Patient 3 0.78 1.71
Patient 4 0.75 1.77
Patient 5 1.01 1.97

Table 6.1: In five patients, the pyramidal tract was reconstructed and wrapped with
hulls (iso-value 5, scale-dependent Laplace filter with λ = 0.5). The number of iterations
for the surface filter was varied between 40, 50 and 60 iterations. For each hull, the
average and maximum distance of all surface points to the nearest tract vertex was
computed.

are an upper limit of the real distance. Since the fiber-tracking step size was set to
1 mm, the real distance between surface vertex and fiber streamline may be up to 0.5 mm
less than the computed value. Nevertheless, the distance measures provide additional
information about the tightness of the hulls and enable a quantitative assessment of
their quality.

6.3 Construction of a safety margin

The wrapping approaches previously described provide hulls encompassing the fiber
bundles and are an important prerequisite for intraoperative visualization. Based on
these hulls, the boundary curves of white matter tracts are displayed within the focus
plane of the OR microscope in order to guide the surgeon during the intervention. In
this way, a direct relation between tumor tissue and eloquent structures is provided.

Additionally, an expanded surface providing a safety distance around the white mat-
ter tract is highly desirable for preoperative planning as well as for surgery. For this
purpose, an offset surface is computed based on the initial hull by shifting all vertices of
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the surface in the direction of the respective point normal n. A surface point p is repo-
sitioned by a distance d in the direction of the point normal resulting in the expanded
position p′ according to:

p′ = p + d · n

|n| (6.4)

This technique provides smooth offset hulls as shown in Figure 6.10 for the pyrami-
dal (blue) and optic (green) tract, where expanded safety hulls with a distance of 8 mm
are presented.

Figure 6.10: Hull surfaces and expanded surfaces for the optic (green) and pyramidal
(blue) tract obtained from the approach based on tetrahedralization (left) and based on
isosurfaces (right). The expanded surfaces serve as safety margins.

In principle, this simple approach for safety hulls might result in self-intersections
of the outer hull. However, for different reasons, with respect to clinical application
this is no real limitation: First of all, the required safety distances are in the range of
a few millimeters (1-5 mm), resulting in non-intersecting safety hulls for the majority
of reconstructed tract systems. Moreover, self-intersections may only occur in regions
near the cortex where the tract systems terminate and where single fibers may fan out
in different directions. For surgery of brain tumors, which are most frequently located
near the internal capsule, deep-seated regions are of major interest, where thick bundles
composed of coherent fibers are located. Finally, it is not difficult to interpret a boundary
curve resulting from a self-intersecting hull correctly. In this case, only the outer contour
is relevant, and inner loops have to be ignored (which can be further assessed, if the
inner hull is displayed as well).
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6.4 Discussion

The primary objective of the approaches presented in this section was to improve fiber-
tract visualization for medical application by providing smooth hulls tightly fitting the
underlying fiber tracts. Since streamline representations only illustrate a direction, the
shape of a streamline bundle as a whole can only be estimated. Furthermore, hulls
are necessary for intraoperative visualization, where the boundary curves of hulls are
displayed in the focus plane of the OR microscope for neuronavigation. As a result, for
neuronal structures within the brain, image-guided surgery based on hulls considerably
reduces the risk of postoperative deficits, which is of high value for neurosurgery.

The initial approach for wrapping fiber bundles [36] suffers from a number of lim-
itations, which are addressed by the alternative techniques presented. Developed in
conjunction with automatic clustering of fibers, the initial geometric approach is re-
stricted to elongated tract systems where a centerline is well-defined. For tract systems
such as the corpus callosum encompassing fibers with a significantly varying direction,
the approach will fail. Another problem is the precision of the approach. The ellipses
defined per plane provide only limited precision in the case of concavities which are not
correctly modeled.

In comparison to the initial approach for wrapping fibers, the approach based on
tetrahedralization and 3D alpha shapes [89] provides high precision, which is an essen-
tial feature for the intended application. This is due to the fact that points originating
from fiber tracking are directly used for tetrahedralization and remain after application
of 3D alpha shapes. Additionally, the algorithm is able to wrap branching fiber tracts
or tract systems with diverging fiber directions and it succeeded in generating precise
hulls following the shape of the fiber bundle. A limitation of the approach relates to
sparse bundles, where holes may occur if the threshold for tetrahedra removal is too
low or if an adaptive step size has been applied during fiber tracking. In addition to
that, the surface of the resulting hull is not very smooth, which makes the generation of
an extended hull difficult.

The approach based on isosurfaces produces smooth hulls that tightly fit the un-
derlying fiber bundles. The processing steps for hull generation have been thoroughly
investigated and are harmonized with each other in order to provide smooth hulls of
high accuracy. In a first processing step, the fibers are rasterized and a volume filter is
applied to the rasterized volume. In this way, the occurrence of holes during further
processing steps is circumvented. In a second step, a hull surface is extracted using the
Marching Cubes algorithm. The resulting surface is smoothed using surface filtering
approaches, where the number of iterations is used to control volume shrinkage and
the tightness of the fitted hull. As a result, the technique presented is able to wrap
fiber bundles of arbitrary shape and density. Even single streamlines diverging from
the bundle and sparse regions are wrapped. The usability and adjustment of hulls was
tested by a neurosurgeon and two medical students (neurosurgery), who applied the
approach to several tract systems in different patients. They appreciated the flexibil-
ity of the approach, which makes it possible to generate the desired hulls by varying
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mainly two parameters (the iso-value and the number of filter iterations). According to
the distance measurements, the hulls generated by the medical experts wrap the tract
systems with an average distance of about 1 mm to the underlying fibers. With respect
to accuracy, this slight average expansion is tolerable for surgery. In recent research,
it was even suggested that a worst-case safety distance of about 5 mm [110] should be
adhered to, in order to compensate for effects influencing the precision of location, such
as brain shift and image distortions inherent to DTI data. As a result, tight and smooth
hulls are generated for arbitrary tract shapes, which are very well-suited for application
in surgery. Due to their smoothness, they are also an appropriate basis for computing
an expanded hull.

Overall, both approaches presented are able to wrap fiber tracts of any shape, and at
the same time provide high wrapping precision. The hulls generated with the isosurface-
based approach feature a higher degree of smoothness, which is important if expanded
hulls are desired. For medical application as well as intraoperative visualization in neu-
rosurgery, the approaches are of high value.



92 Chapter 6. Generation of hulls



93

Chapter 7

Distortion correction

In Chapters 4 and 5, different methods for deriving fiber tract information from DTI
data are described. The resulting fiber bundles play an important role in surgical plan-
ning, especially in relation to surgery of tumors near eloquent brain areas. Knowledge
about the course and location of white matter tracts supports optimal resection while
avoiding postoperative neurological deficits [43, 66, 109]. However, DTI measurements
based on single-shot echo planar imaging (EPI) suffer from image distortions, primar-
ily eddy-current-induced image distortions, chemical shift, and susceptibility artifacts.
Consequently, the fiber tract information included in an anatomical MR dataset for neu-
ronavigation is spatially displaced with respect to anatomical structures. For this rea-
son, this chapter presents a method for correcting the distortions of DTI data based on
non-linear registration. The approach was first published in [88]; a more detailed outline
of the registration framework and an evaluation comprising the quality of registration
as well as experimental results were published in [94]. Details about the registration
strategy developed by Soza et al. are available in [132].

The chapter starts with an overview of image distortions inherent to DTI data in
Section 7.1. Recent work addressing the correction of DTI-EPI artifacts is reviewed in
Section 7.2. In Section 7.3, the registration framework and its main components are
described. The experimental setup for distortion correction is outlined in Section 7.4
and registration results are presented in Section 7.5. Finally, the registration approach
and its relevance for clinical application are discussed in Section 7.6.

7.1 Distortion artifacts of DTI-EPI data

During acquisition of DTI-EPI data, several sources of distortions exist; primarily eddy-
current-induced image distortions, chemical shift and susceptibility artifacts.

Eddy currents are induced by the switching of the diffusion gradients in diffusion-
weighted pulse sequences. They decay during the sampling period and produce time-
varying magnetic fields. Consequently, the k-space data is not correctly sampled, which
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results in a geometric distortion. Eddy-current-induced image distortions and patient
motion cause a spatial misalignment of the diffusion-weighted volumes and are a com-
mon problem in clinical DTI acquisitions. For this reason, gradient preemphasis schemes
are currently implemented in most MRI scanners, which is a very effective method of
reducing the impact of eddy currents. Alternatively, post-acquisition strategies using
image-based registration [121, 128, 76] or cross-correlation-based correction schemes [14]
have been presented. The advantage of such schemes is that they do not rely on a prop-
erly calibrated gradient pre-emphasis.

Chemical shift and susceptibility artifacts can be attributed to the small bandwidth of
the EPI sequence in phase-encoding direction. Differences in chemical shift or suscep-
tibility cause slight differences in the proton resonant frequency resulting in positional
shifts and distortions when the positions of the signal are mapped onto the image by
frequency. To minimize the image distortions originating from chemical shift, the EPI
scans are usually acquired with lipid suppression. For this purpose, a saturating pulse is
commonly applied to the fat resonance prior to data acquisition [150]. Another promis-
ing approach is to combine chemical shift and slice selective excitation [95].

Susceptibility artifacts [52] resulting from microscopic gradients or variations in the
magnetic field strength are observed at the interface of tissues with different magnetic
susceptibility. They appear in the proximity of the skull base and near other air-filled
spaces such as the brainstem and the frontal lobe and cause severe distortions implying
a displacement of anatomical structures.

While the problem of eddy currents and chemical shift artifacts is eliminated with gra-
dient pre-emphasis schemes and lipid suppression, the susceptibility artifacts inherent
to EPI data remain an open problem. A short review of strategies that aim at correcting
the respective distortions is provided in the next section.

7.2 Previous work

First attempts to account for susceptibility artifacts inherent to EPI use non-linear reg-
istration schemes. Hellier et al. [48] proposed a hierarchical multigrid algorithm, where
a deformation field is estimated. This is achieved by minimizing a cost function based
on mutual information using Powell’s optimization scheme [120]. Another approach
for correcting EPI distortions presented by Kybic et al. uses a higher-order spline model
for warping and a similarity measure based on squared differences [67]. In their work,
Kybic et al. encounter the problem of local minima, which they identified as a potential
source of error in their approach. To overcome this problem, the registration algorithm
applied in this work employs the SPSA optimization strategy [136] which is explicitly
designed to overcome the problem of local minima more efficiently. Since the low res-
olution of the DTI-B0 dataset makes registration more difficult, a robust optimization
technique is essential in order to obtain sufficient registration quality.
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7.3 Non-linear registration

In this section, an intensity-based registration approach is presented which is applied
in order to correct image distortions due to susceptibility artifacts inherent to DTI-EPI
data. During non-linear registration, a transformation is computed which maps the
reference B0 image onto the anatomical MR scan. In order to assess the quality of align-
ment, a similarity measure is required. For this purpose, normalized mutual informa-
tion is employed as outlined in Section 7.3.1. Another essential part of the registration
framework is the optimization strategy. Important characteristics of an optimization
strategy are robustness in order to overcome local minima, and high convergence rates
reducing the overall computational cost. The SPSA optimization strategy outlined in
Section 7.3.2 combines both features and is therefore well-suited for non-linear regis-
tration. Both similarity measure and optimization are combined with a deformation
model in order to compute the registration transformation. For this purpose, a control
point grid is superimposed on the B0 dataset and a 3D free-form deformation model is
employed for warping, as described in Section 7.3.3. Since the non-linear registration
approach requires repeated resampling of the dataset according to the current transfor-
mation, hardware-based techniques enabling an efficient implementation are employed
for the free-form deformation. In this way, the high computational cost for non-linear
registration is considerably reduced, which is an important aim for clinical application.

7.3.1 Similarity measure

For intensity-based image registration, a similarity measure is required in order to as-
sess the quality of alignment. For this purpose, an information theory approach denoted
as mutual information (MI) was introduced for medical image registration [23, 151]. MI
is based on the Shannon entropy H(I) [127], which is a measure of the diversity of the
intensity distribution in an image I. The quantity measured by MI is the statistical de-
pendency between intensities in two datasets, which has to be minimized during regis-
tration. Since MI does not directly depend on the intensity values, it is an adequate sim-
ilarity measure for datasets of different modalities, as required for distortion correction.
The normalized version of MI denoted as normalized mutual information (NMI) [142]
is currently the most frequently used similarity measure. For a source image Is and a
target image It with joint entropy H(Is, It), NMI is defined as

NMI(Is, It) =
MI(Is, It)

H(Is, It)
+ 1 =

H(Is) + H(It)

H(Is, It)
, (7.1)

where MI is normalized with respect to the joint entropy. NMI overcomes the problem
of MI sensitivity to changes in the image overlap region and is therefore used for the
registration framework.
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7.3.2 Optimization

Optimization is an iterative process, where the transformation mapping the source to
the target dataset is computed. In each iteration, the set of parameters is updated based
on the NMI value obtained for the current transformation. For a control point grid of
7× 7× 7 free vertices and x, y and z coordinate for each vertex, 1029 parameters have to
be adjusted during optimization in order to assess the optimal transformation. For this
reason, the robustness and performance of an optimization strategy are crucial in order
to arrive at the global minimum with minimal computational expenses. A very efficient
optimization strategy applied for this purpose is the simultaneous perturbation stochas-
tic approximation (SPSA) [136] method for multivariate optimization. In comparison to
other optimization approaches, SPSA provides equal or greater efficiency in terms of
overall cost as outlined in [78, 134, 135]. Additionally, SPSA proved to be more robust
than other optimization schemes due to simultaneous perturbation of the optimized
parameters and due to estimated gradient information [132]. In each iteration k + 1,
the vector tk+1 containing the translational offsets for all optimization parameters is
updated according to

tk+1 = tk − ak gk(tk) , (7.2)

where for varying k, ak is a scalar sequence and gk(tk) is the estimate of the gradient
of the optimized NMI function [136]. The gradient approximation requires only two
measurements of the NMI for the perturbed parameter vector tk, irrespective of the
dimension of the parameter domain. Essentially, the gradient approximation and si-
multaneous perturbation of all optimized parameters are the specific merits of SPSA
optimization, leading to a significant reduction of the optimization cost compared to
other optimization approaches such as Powell’s direction search method [120]. Further
implementation details and considerations relating to the SPSA optimization scheme
are available in [132, 94].

7.3.3 3D free-form deformation

In order to deform the source dataset according to the shifts of the control points deter-
mined during optimization, a free-form deformation (FFD) model based on 3D Bézier
functions is employed. The main principle of FFD is to warp the space surrounding an
object, which will be warped implicitly. In order to obtain an elastic deformation, Bézier
functions are employed which enable a smooth deformation of soft tissue by reposition-
ing the control points.

Deformation model

In order to define a deformation function D, a trivariate tensor product of Bézier func-
tions is employed. The respective basis functions Bl

i , Bm
j , Bn

k are the Bernstein polyno-
mials of order l, m and n. The dataset is embedded in a lattice of 3D control points bijk,
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where i = 0, . . . , l, j = 0, . . . , m, k = 0, . . . , n. The associated deformation function D
assigning a 3D coordinate position to a point with parameter space coordinates (s, t, u)
is defined as:

D(s, t, u) =
l

∑
i=0

m

∑
j=0

n

∑
k=0

Bl
i (s) Bm

j (t) Bn
k (u) bijk . (7.3)

By moving the control points bijk within the lattice, the deformation function is changed,
resulting in a shifted position of D(s, t, u). The design of the Bézier basis functions
ensures that the deformation function smoothly follows the movement of the control
points, showing an intuitive behavior on positional changes of the control points. Due
to the convex hull property inherent to the basis functions, it is possible to prevent the
deformation function from taking values outside the image volume, by moving only
inner control points and by setting the border control points fix. As a result, this FFD
model makes it possible to model smooth, elastic deformations according to the move-
ments of the control points.

Hardware-accelerated free-form deformation

The fact that a deformed dataset has to be generated in each iteration during optimiza-
tion in order to measure the alignment using NMI involves a high computational cost.
In order to speed-up the computation of the deformed dataset, the fast interpolation
capabilities available on modern graphics hardware were utilized. For this purpose, the
image data is loaded to the 3D texture memory of the graphics adapter in order to em-
ploy the texture processing unit. The control points, which are uniformly distributed at
the beginning, i.e. bijk = (i/l, j/m, k/n), correspond to respective texture coordinates.
According to the current optimization input defined by the translation vector tk, the
control points are shifted to new locations.

Based on the deformed control point grid, classical approaches [122] explicitly calcu-
late the new coordinate for every object point. In order to circumvent this computational
expense, the deformation function D is only evaluated for a limited set of parameter
values (s, t, u) which uniformly sample the parameter space. For an adequate approx-
imation of the original shape of the deformation function, the sampling points are set
more densely than the control lattice. For registration of DTI-EPI and anatomical MR
data, a control lattice of 9 × 9 × 9 control points (7 × 7 × 7 free control points) and a
grid of 17× 17× 17 sampling points provides the required flexibility. Based on the sam-
pled values of D, the deformation is propagated onto the whole volume using trilinear
interpolation. For this purpose, the deformation function is approximated with a 3D
piecewise linear model [132, 47]. This approach is computationally less expensive since
there is no need to process the whole volume to obtain new intensity values, which is
necessary in software approaches. Instead, graphics hardware is employed to reduce
the execution time of these expensive operations.
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7.3.4 Registration framework

Before non-linear registration, an initial transformation is computed based on rigid reg-
istration [46] which is used as an initial estimate. This step may be omitted if the DTI-EPI
and the anatomical MR dataset were acquired successively, without a positional change
of the patient. In order to refine the registration result gradually, a three-stage multires-
olution approach is employed. First, a non-linear registration is performed at a coarse
resolution level. The resulting transformation serves as input for the second stage at a
higher resolution level, et cetera. The third stage of the multiresolution approach cor-
responds to the original resolution of the datasets. With increasing resolution, the reg-
istration result is gradually improved on each hierarchy level. This technique helps to
overcome local minima and the computational effort is reduced, since the total number
of iterations required to achieve the optimum global value is generally reduced [132].

On each hierarchy level, the source dataset is loaded into texture memory and is
embedded in a uniform lattice of control points. In an iterative procedure, the inner
control points of the lattice are perturbed until the source dataset aligns with the target
data. The manipulation of the free control points is controlled by the SPSA optimizer,
which estimates the optimal position in each iteration by stochastic perturbation. The
new deformed volume is generated by evaluating the deformation function at discrete
parameter values and by approximating it linearly at intermediate positions. Depend-
ing on the quality of alignment, the registration algorithm terminates if the similarity
measure does not change significantly over time, or if a maximum number of iterations
is reached.

7.4 Experimental setup

In order to assess the quality of the registration framework, different experiments based
on a known transformation and based on landmarks were performed. The experimen-
tal setup as well as respective results are documented in detail in [94]. This general
verification is necessary in order to ensure that the transformation field obtained from
non-linear registration reliably corrects the distortion artifacts inherent to the data.

After verifying the quality of registration, the presented approach was applied in
order to evaluate the impact of susceptibility distortions on the location of white matter
tracts. For this purpose, the pyramidal tract was investigated, which is an important
tract system commonly monitored during surgery by means of functional neuronaviga-
tion. In this context, the potential misalignment due to susceptibility artifacts is of great
interest to the surgeon.

For this purpose, datasets of 14 patients suffering from either gliomas or cavernoma
were investigated in a retrospective study. Preoperative anatomical MR as well as DTI-
EPI data were available for each patient. In order to leverage the impact of eddy cur-
rents and to eliminate chemical shift, gradient emphasis as well as lipid suppression
were enabled during EPI acquisition. The remaining susceptibility artifacts were then
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addressed using the presented approach for non-linear registration.
If necessary, the datasets are rigidly registered after image acquisition. Afterwards,

they are prepared for non-linear registration by extracting the brain from the scan data-
sets, which is automatically accomplished using the Brain Extraction Tool (BET) soft-
ware [130] from the FMRIB Software Library (FSL). This segmentation is of special im-
portance for intraoperative datasets where the intraoperative head holder is visible as
well as artifacts from the metal screws. In general, brain extraction prevents rigid struc-
tures such as skull bone from undesired deformation. The quality of the segmentation
result is adjusted by the fractional intensity threshold and verified for each dataset.

In order to assess the spatial distortion of the pyramidal tract in each patient, the
tract system is reconstructed using a ROI-based fiber-tracking approach, as outlined in
Chapter 4. Subsequently, a marked B0 dataset is generated, where the grey value of all
voxels containing fibers is set to a predefined, unambiguous value. Additionally, the
non-linear registration approach is applied for mapping the B0 onto the anatomical MR
dataset in order to compensate for the susceptibility artifacts. The resulting deformation
field is then applied to the marked B0 dataset in order to correct the spatial displacement
of the marked voxels. In Figure 7.1, the shift of marked voxels in areas where distortions
were present in the B0 data is illustrated. The distortions inherent to DTI data due to
susceptibility artifacts are clearly visible, as well as the effect of distortion correction on
the position of the marked pyramidal tract.

(a)

(b)(b)

Figure 7.1: Patient with a right frontal astrocytom (WHO grade III). Axial slice of the
distorted B0 image with the marked pyramidal tract before (left) and after (middle) regis-
tration, and anatomical MR slice (right). The dashed line makes it possible to investigate
displacement. (a) denotes susceptibility distortions, (b) indicates distortions due to the
metal screws of the intraoperative head holder.

For evaluation of the susceptibility distortions, the displacement of the marked pyra-
midal tract was investigated. In this context, the measurement of distortions in anterior-
posterior (A-P) directions is of major interest, since EPI distortions mainly occur in
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phase-encoding direction, which corresponds to the A-P direction. For this reason, the
left-right (L-R) distortions are expected to be minor. With respect to the z-direction,
no distortions occur since MR acquisition is performed in slice selection mode. Conse-
quently, the extent of distortions is evaluated by analyzing corresponding axial slices
of the marked B0 dataset before and after applying the non-linear registration transfor-
mation. For this purpose, the maximum displacement of the fibers was determined by
measuring the offset of marked voxels in every second axial slice. As outlined in Fig-
ure 7.2 (right), the maximum distance between two corresponding boundary points is
determined in A-P and L-R direction.

Figure 7.2: Patient with a right temporo-mesial WHO grade III anaplastic astrocytoma.
Axial slice of B0 dataset with marked voxels representing the right pyramidal tract be-
fore (left) and after (middle) registration and transparent overlay analysis (right). Arrows
indicate the maximal displacement in L-R and A-P direction.

In order to summarize roughly the distortion measurements in all 14 patients, the
axial slices in each dataset are renumbered in order to provide a cross-alignment be-
tween the different patient datasets. For this purpose, the axial slice containing the
upper boundary of the lateral ventricles is determined in each dataset and assigned a
common slice number, and all other slices are renumbered accordingly. As a result,
anatomical structures as well as areas of major distortions are located in slices with a
common number in all patient datasets. This makes it possible to average the measured
distortions in A-P and L-R direction per slice number.

7.5 Results

For each individual patient, distortion correction based on non-linear registration was
applied and the offset of the marked voxels was measured. The computing time for all
processing steps comprising data conversion, brain extraction, fiber tracking, marking
of voxels, linear and non-linear registration was about 1.5 h on a PC equipped with an
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Intel Pentium 4 (2.4 GHz). The main part is consumed by the non-linear registration
approach, which is in the region of 50 minutes.

In a first step, the measurements for each patient were evaluated individually by
plotting the distance measurements in A-P and L-R direction. For this purpose, the
displacement of the pyramidal tract is plotted for the respective slice, as visualized in
Figure 7.3 for A-P direction. In each patient, major distortions were observed in A-P
direction, whereas the L-R distortions were considerably smaller. This is in accordance
with previous expectations, taking into account that susceptibility distortions mainly
occur in phase-encoding direction. Another distinct feature observed in all individual
A-P evaluations was the distribution of distortions, depending on the slice location in
z-direction. While prominent distortions mainly occurred near the cortex and at the
brainstem, the intermediate part around the internal capsule was much less affected.

Figure 7.3: Patient with a cavernoma located in the postcentral gyrus. For each sec-
ond axial slice, the measured distortions for the pyramidal tract in A-P direction are
presented. Distinct distortions occur near the cortex and the brainstem.

In a second step, the results were summarized, based on the evaluations for each in-
dividual patient, by aligning the datasets. For this purpose, the slices were renumbered
in such a way, that the slice number denoting the frontal base of the brain is identical
in all datasets. This alignment makes it possible to compare the distortions in A-P and
L-R direction in different individuals to some extent. The respective results for all pa-
tient datasets are summarized in Figure 7.3, where the averaged distortions in A-P and
L-R direction are presented. In each diagram, the maximum and minimum, as well as
the mean value ± standard deviation of the distortion measurements is displayed. In
line with the observations made in relation to the individual measurements, the aver-
aged evaluation yielded major distortions in A-P direction, which were most prominent
at the brainstem and near the cortex, whereas the distortions in L-R direction were less
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significant.

anterior-posterior

left-right

Figure 7.4: The patient datasets are aligned according to the frontal base of the brain.
Slice numbering starts at the brainstem level. Average distortion ± standard deviation,
as well as minimum and maximum distortions for corresponding axial slices averaged
for all 14 patients denoted in mm.

Finally, the evaluations from Figure 7.4 were further subsumed by classifying the
slices into three groups, according to their location near the cortex, the internal capsule
or the brainstem. The measurements were averaged per group, resulting in the summa-
rized distortions presented in Table 7.1. As a result, the measured susceptibility artifacts
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in A-P direction are most prominent at the cortex and the brainstem, where the mean
distortion amounted to 4.0 mm and 3.2 mm. In the area of the internal capsule which
is frequently the zone undergoing tumor resection, the mean distortion was limited to
2.4 mm.

anterior-posterior left-right
min max mean ± sd min max mean ± sd

[mm] [mm] [mm] [mm] [mm] [mm]
cortex 0 15 4.0 ± 2.8 0 10 1.3 ± 1.4
internal capsule 0 9 2.4 ± 1.7 0 7 0.9 ± 0.9
brainstem 0.5 11.5 3.2 ± 3.5 0 9 1.0 ± 1.5

Table 7.1: Minimum (min), maximum (max), and mean distortion ± standard devia-
tion (sd) in A-P (phase-encoding) and L-R direction measured for different areas of the
brain in 14 patients.

7.6 Discussion

Susceptibility artifacts resulting in a spatial displacement of anatomical structures are
a problem when fiber tract data has to be integrated into anatomical data for neuro-
navigation. In principle, there exist different strategies in order to account for distor-
tions inherent to DTI-EPI data: In modern functional scanning tools, field maps are
implemented to identify and mark areas where the image information can no longer
be trusted. However, a correction of image distortions is not provided with this tech-
nique. Another strategy concerns DTI sequences such as diffusion-weighted single-shot
STEAM MR imaging [111] which exhibit significantly fewer image distortions. How-
ever, this MRI technique suffers from other drawbacks such as a coarser resolution, a
lower signal-to-noise ratio and an increased measurement time, which mean that its
clinical use is still problematic. For these reasons, EPI remains essential for clinical DTI,
requiring alternative strategies for distortion correction.

For this reason, non-linear registration approaches were proposed for correction of
susceptibility artifacts [48, 67, 88]. In particular, the presented registration strategy pro-
vides robustness and efficiency due to SPSA optimization and due to the implementa-
tion of the deformation model based on graphics hardware. SPSA has equal or greater
efficiency in terms of overall cost compared to other optimization approaches [78, 134,
135] and is therefore an excellent method for both local and global optimization. Addi-
tionally, the SPSA optimization method is much better suited to overcome local minima,
due to simultaneous perturbation of the optimized parameters and due to the fact that
the gradient of the similarity measure is estimated, which contributes to the robustness
of the registration framework. As a result, the presented registration algorithm enables
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registration of DTI-EPI and anatomical MR data in spite of the low resolution encoun-
tered for DTI-EPI data.

In this work, the non-linear registration approach is used in order to compute a
displacement field, which is applied to the DTI dataset, resulting in a shift of fibers
represented by marked voxels. This indirect approach relying on precomputed fibers
and marked voxels is necessary due to the geometric nature of the tensor information.
Non-linear registration of DTI data would require a re-orientation of the respective ten-
sors for full correction, which is overcome by the suggested technique. Furthermore,
approaches currently available for tensor re-orientation [44, 123, 129] suffer from signif-
icantly increased computing times due to their algorithmic complexity. In addition to
that, these techniques have not yet been fully quantified and theoretically proven. For
this reason, re-orientation of tensors is circumvented in the presented approach.

For clinical application, distortion correction of susceptibility artifacts inherent to
DTI-EPI data is of great interest. In order to minimize the risk of neurological deficits,
the location of functional brain areas and white matter tracts is determined preoper-
atively. Currently, functional brain areas identified with fMRI are integrated into an
anatomical MR dataset which is used for stereotactic guidance in functional neuronav-
igation [43, 109, 107]. In order to integrate white matter structures into a stereotactic
setup as well [56, 63, 21, 22], techniques for correcting susceptibility artifacts are re-
quired.

In order to evaluate the impact of susceptibility distortions for medical application,
the approach was applied in the case of 14 patients. After distortion correction, the
displacement of the pyramidal tract was assessed. In accordance with previous ex-
pectations, distinct distortions were measured near the cortex and in the area of the
brainstem. For all patients, the main displacement occurred in A-P direction, which
is the phase-encoding direction, whereas the left-right displacements proved to be less
dominant. These general observations are also supported by the summarized results
obtained from roughly aligning the different patient datasets. For medical application,
these observations are of major importance, showing that a displacement of up to 15 mm
is possible in A-P direction for the pyramidal tract. However, in spite of these general
tendencies, differences between the patients were apparent. For this reason, distortion
correction based on non-linear registration has to be applied separately for individual
patient datasets in order to obtain precise results. This is of special importance for pa-
tients where the lesion is close to the pyramidal tract in order to prevent injury of this
tract system. Nevertheless, the presented evaluations show that susceptibility artifacts
are most prominent near the cortex and in the brainstem and affect the position of the
pyramidal tract primarily in A-P direction.

However, with respect to intraoperative application, limitations are encountered due
to the computational expense of the approach. During surgical intervention, brain shift
effects and tumor removal require an update of the navigation system with intraop-
erative data [108, 105] to compensate for these effects [104]. In spite of acceleration
based on graphics hardware and a highly efficient optimization strategy, the non-linear
registration approach is still too time-consuming for intraoperative use. However, the
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problem of updating the navigation after brain shift or tissue removal also holds for
fMRI data which have to be acquired preoperatively. In current research, this problem
is addressed by simulation approaches aiming at prediction of intraoperative defor-
mations [133]. Another possible method for locating functional regions is subcortical
electrical stimulation, which may serve as an additional source of information. How-
ever, this technique is merely adequate to support neuronavigation, since permanent
deficits remain when electrical stimulation is applied alone [58]. For this reason, correc-
tion of susceptibility artifacts is an important aim for neurosurgical interventions. The
presented approach improves spatially correct preoperative planning and integration
of fiber-tracking data into the neuronavigation system, resulting in safer resection.
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Part III

Visualization
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Chapter 8

Visualization of fibers

For the reconstruction of fiber tracts based on DTI data, various approaches exist, as
outlined in Chapters 4 and 5. In order to provide an efficient and meaningful visual-
ization, different visualization strategies for reconstructed fiber bundles are presented
and discussed in this chapter. For medical application, a comprehensive visualization
of the reconstructed fiber tracts is important in order to support inspection of the data
for surgical planning. Since the amount of streamlines may be immense in the case of
tracking the whole brain, and since at the same time interactive visualization is nec-
essary for medical investigation, appropriate techniques are required. The topics ad-
dressed in this context comprise color schemes as well as rendering techniques for the
fibers. Color schemes are an important tool in order to convey additional information
about the local tensor field. In conjunction with the approach for connectivity analy-
sis, different color transfer functions were presented, which were published in [79, 90].
For efficient rendering of fibers, different renderers were developed. Fiber tracts are
frequently visualized based on line rendering, which was enhanced with an approach
for adaptive transparency depending on the local FA values. An alternative technique
based on triangle strips and point sprites provides improved visual quality and was
published in [93, 92].

The chapter starts with an overview of different color transfer functions in Sec-
tion 8.1. Subsequently, the approach for line rendering is outlined in Section 8.2 and
adaptive transparency depending on the local FA value is presented. Finally, a hybrid
visualization technique based on triangle strips and point sprites is described in Sec-
tion 8.3.

8.1 Color transfer functions

The fiber bundles obtained from fiber tracking or connectivity analysis represent the
shape and the course of the underlying white matter structures. In addition to this
spatial information, color transfer functions provide the possibility to convey additional
information, depending on the local tensor information. In principle, different scalar
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measures such as the local FA value, the barycentric space coordinates or the local cost
function may serve as a basis for the mapping function. For practical application, three
techniques proved to be of major interest:

Map major eigenvector components to RGB: The standard strategy for color encod-
ing of fibers [25, 55, 115] utilizes the normalized principal eigenvector of the local tri-
linear interpolated tensor. The vector components are mapped to RGB values, i.e. the
x component of the vector is taken as R value, the y component as G value and the z
component as B value. As a result, the orientation of fibers is highlighted by color, and
fibers of similar direction are visually bundled. In the case of fiber tracking, directional
information of the major eigenvector is already represented with streamline directions,
which is further supported by this color mapping scheme.

FA value: Mapping of the FA value [79, 90] assigns green to FA = 1 and red to FA = 0,
and intermediate values to the face diagonal of the RGB cube connecting red and green.
Since the FA value relates to the anisotropy of diffusion, the FA value adds further
information about the local coherence of underlying nerve structures. In the case of
fiber tracking, the mapped FA value is also an indicator of the reliability of the fiber-
tracking results. Since a high FA value visualized in green indicates an elongated tensor
with highly anisotropic diffusion characteristic, the reliability of fiber tracking based
on the major eigenvector is high in these regions. Contrarily, for fiber segments with a
reddish appearance, the underlying tensors are rather spherical. This implies that the
fiber-tracking results might be less reliable in these regions.

Figure 8.1: Color transfer functions for fiber visualization. Left: The xyz-components
of the normalized major eigenvector are mapped to RGB color values. Middle: The FA
value is mapped to green for a high, and red for a low value. Right: Mapping of the
barycentric space coordinates: Linear tensors are mapped to green, planar tensors to
brown and spherical tensors to red.
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Barycentric space coordinates: The barycentric space coordinates cl, cp and cs separate
the shape of a tensor into linear, planar and spherical components, which classify the
tensor properties. The barycentric space color mapping identifies the largest of the three
values and assigns green to a tensor with dominant cl value, brown to a tensor with
major cp value and red to a tensor with highest cs component. Similarly to mapping of
the FA value, regions of high anisotropic diffusion where linear tensors dominate can
be identified. The barycentric space color mapping thus conveys additional information
about the underlying tensors, with respect to their shape classification.

In Figure 8.1, the different techniques for color encoding are shown. Color encoding
of the major eigenvector (left) supports spatial perception of the fiber-tracking result
and provides visual clustering of similar fiber directions. FA mapping (middle) pro-
vides additional information about the local anisotropy of diffusion. Since the FA value
serves as a threshold for fiber tracking, zones with green and orange color occur, but
no red zones. The mapping technique based on the barycentric space coordinates cl , cp

and cs reveals that for most tensors, the linear (green) and spherical (red) barycentric
space coordinates dominate, whereas only a few tensors feature a primary planar char-
acteristic (brown).

8.2 Visualization based on lines

In order to visualize the trajectories obtained from fiber tracking or connectivity analy-
sis, line-based representations are frequently used. In this way, real-time rendering of
a large number of trajectories is possible, which is important for practical application,
since fiber trackings may result in several thousands of streamlines. For rendering of
fibers, the trajectories were stored in a vertex buffer object (VBO) and were rendered
using the OpenGL API. In order to improve visual perception, illuminated streamlines
were implemented as outlined in Section 8.2.1. The approach for adaptive transparency
presented in Section 8.2.2 was developed in order to make major tract systems occluded
by peripheral fibers visible.

8.2.1 Illuminated streamlines

In general, illumination is important in order to support the spatial interpretation, thus
improving insight into the data. For surface primitives characterized by a distinct out-
ward normal vector, illumination is provided by the hardware shading capabilities of
modern graphics cards. However, in the case of line primitives, no unique normal
directions exist. For this reason, an approach for illuminated streamlines presented
by [162, 75] is employed and extended, which is based on the Phong reflection model.
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Phong lighting model

The reflection model of Phong [117] is composed of different terms which are based
on the light direction L, the normal vector N and the reflection vector R. The ambient
fraction Iamb is a global term which represents the overall light intensity in the envi-
ronment due to multiple reflections. The diffuse term Idi f f describes diffuse reflection
according to Lambert’s law, where the reflected intensity is independent of the viewing
direction V . The specular term Ispec generates specular highlights with maximum inten-
sity in the direction of the reflection vector. The exponent n controls the shininess, i.e.
the width of the highlights. The terms are weighted with respective constants ka, kd and
ks, which characterize the reflection properties of the material. As a result, the equation
for Phong illumination is defined as follows:

I = Iamb + Idi f f + Ispec

= ka + kd L · N + ks (V · R)n . (8.1)

Line illumination

However, in the case of line primitives, no unique normal vector is defined, since all
vectors in a plane perpendicular to the fiber tangent T come into question. The normal
plane containing potential normal vectors is shown in Figure 8.2 (left). A possible so-
lution to the problem of ambiguous normal directions suggested by [3] maximizes the
scalar products for the diffuse and specular term in Equation 8.1. According to [162],
the diffuse term reaches its maximum, if the normal N is perpendicular to T and copla-
nar to T and L, as shown in Figure 8.2. Using Pythagoras’ theorem, the scalar product

T

LN

LT

L
normal plane

LN

LT

L T

N

R
VR

N

Figure 8.2: Left: The light vector L can be decomposed into two orthogonal components
LT and LN. Right: Plane containing the vectors V and T , with coplanar normal vector
N and reflection vector R.
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required for the diffuse term in Phong’s reflection model can be rewritten as follows
(see Figure 8.2 (right) for comparison):

L · N = |LN| =
√

1 − |LT|2 =
√

1 − (L · T)2 . (8.2)

Similarly, the scalar product required for the specular term can be expressed in terms
of L, V and T . In [162, 75], the following derivation is provided, which is adapted to
the vector directions employed in Figure 8.2:

V · R = V · (LN − LT)

= V · ((L · N)N − (L · T)T)

= (L · N)(V · N)− (L · T)(V · T)

=
√

1 − (V · T)2
√

1 − (L · T)2 − (L · T)(V · T) . (8.3)

In order to replace (L · N), the result from Equation 8.2 is applied, which is also adapted
in order to resolve (V · N). An alternative possibility to express (V · R) in terms of L, V
and T is derived as follows:

V · R = V · (LN − LT)

= V · ((L − LT)− LT)

= V · (L − 2 LT)

= V · (L − 2 (L · T)T)

= (V · L)− 2 (L · T)(V · T) . (8.4)

The presented result in Equation 8.4 needs fewer operations and is therefore more ef-
ficient than the derivation provided in Equation 8.3. In the case of a headlight located
at the same position as the camera, i.e. V = L, Equation 8.3 and 8.4 can be further
simplified, which yields the following result:

V · R = 1 − 2 (L · T)2 . (8.5)

In Table 8.1, the frame rates for the different techniques to compute the specular
term (V · R) are provided. For benchmarking a PC equipped with a P4 3.0 GHz, 2 GB
RAM and a NVidia Geforce 6800 Ultra graphics card with 256 MB graphics memory
was used. The viewport for all renderings was 600×800 pixels and the displayed set
of lines, generated by fiber tracking within the whole brain, consisted of approximately
300000 segments originating from about 4500 fibers. For rendering of illuminated lines,
the approach suggested by [162, 75] (Equation 8.3) is the least efficient one and achieves
only 88 % performance compared to the alternative technique presented in Equation 8.4.
Simplification of the equations by using a headlight with V = L provides a further gain
in performance, which is in the range of 22 % compared to the improved approach in
Equation 8.4.
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Visualization technique Frame rate
Lines, no illumination 232.5 fps
Illuminated lines, Equation 8.3 135.4 fps
Illuminated lines, Equation 8.4 153.3 fps
Illuminated lines (headlight), Equation 8.5 187.7 fps

Table 8.1: Frame rates in fps (frames per second) for illuminated lines, depending on
the implementation of the diffuse term according to Equation 8.3, 8.4 or 8.5.

Tangent interpolation

The lighting results obtained from the technique described above generate the intended
illumination effects and are automatically interpolated along each single line segment.
However, the highlights sometimes change abruptly and have an unnatural appear-
ance, which is due to sudden changes of the fiber direction. A possible solution in order
to improve lighting results is interpolation of the normal and color information between
an enlarged number of sampling vertices of the streamline. Alternatively, it is also pos-
sible to interpolate the respective tangent directions, which is more efficient since the
tangents must be computed anyway. In order to achieve a smooth transition between
highlights, weighted interpolation between five adjacent tangents according to

ti = 1/10 (ti−2 + 2 ti−1 + 4 ti + 2 ti+1 + ti+2)

= 1/10 (ti−2 + ti+2 + 2 (ti−1 + ti+1 + 2 ti)) (8.6)

is suggested. The resulting tangent direction is transferred to the vertex program and
serves as a basis for computing the local illumination. The difference between lighting
without and with tangent averaging is shown in Figure 8.3.

Figure 8.3: Left: Line rendering without illumination. Middle: Approach for illuminated
streamlines. Right: Tangent interpolation leads to smoother illumination results.
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Implementation

The above results for streamline illumination are implemented based on programma-
ble graphics hardware. The vertex program evaluates Equation 8.2 and 8.4 for each
vertex, based on the local tangent direction and the light vector. Instead of a normal,
the averaged tangent direction is submitted to the vertex program, and the light vector
is transferred for each draw command as a global variable. The resulting factors L · N
for diffuse and (V · R)n for specular illumination are passed to the fragment program,
which computes the final color for each pixel based on the initial color and the material
properties.

8.2.2 Adaptive transparency

In visualization applications, transparency is used in order to make occluded structures
visible. In the case of a tracking of the whole brain, important tract systems are often oc-
cluded by smaller, peripheral fibers. For this reason, transparent rendering of the fibers
with small FA value is applied in order to reveal the underlying major tract systems.
This is achieved by an adaptive transparency value, depending on the local FA features.

In general, the depth-buffer test is not sufficient for transparent rendering, since in
the case of transparency, occluded objects may be visible as well. For this reason, trans-
parent rendering requires depth-sorting in order to combine different objects correctly.
Additionally, intersecting objects must be divided into sub-objects which are sorted
anew. Since the sorting of objects depends on the view direction, the current sorting
order depends on the camera position.

For the streamlines obtained from fiber tracking, the objects which have to be sorted
are the line segments. Since the line segments are short and seldom overlap, an inter-
section test can be omitted. Specifically, in the case of fiber tracking based on evenly
spaced streamlines (Section 4.3), it is guaranteed that streamline segments do not inter-
sect. In order to sort the line segments, the Euclidean distance between the camera and
the center point of the line segment could be used as a distance measure. However, a
more efficient measure is provided by the point distance function based on the Hessian
normal form. The distance d of a point p to a plane E is computed by inserting p into
the plane equation of E in Hessian normal form:

d = 〈n|p〉 − 〈n|x0〉 . (8.7)

Thereby, the plane E with unit normal vector n and point x0 is taken as the reference
plane. The sign of d indicates, on which side of E the point p is located. In order to utilize
this equation for sorting the line segments, n is chosen parallel to the viewing direction.
For simplification, E is chosen as plane through the origin, i.e. 〈n|x0〉 = 0. As a result,
the distance of a fiber point p to the plane through the origin can be computed with
one single inner product d = 〈n|p〉, which is much more efficient than the Euclidean
distance and equally suited for sorting.
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Based on the computed distances, the segments are sorted using the STL sort algo-
rithm, which is based on introsort [101] with a worst case complexity of O (n log(n)).
In order to reduce the computational effort encountered for sorting and to provide
realtime-rendering, a popular technique is to precompute the sorting order for different
directions. During rendering, the precomputed sorting associated with the direction
closest to the current viewing direction is chosen. For this purpose, the fiber segments
are sorted for a set of eight viewing directions (aligned with the four diagonals of a
cube, with two possible orientations for each diagonal). As a result, frame rates of about
90 fps are achieved on a NVidia Geforce 6800 Ultra graphics card with 256 MB graphics
memory, compared to 7 fps without precomputed sorting sequences.

Instead of a constant transparency for all fibers, an adaptive value per fiber segment
is determined. As a result, small and peripheral tract systems which are less dense
and pronounced are rather transparent, whereas major tract systems are more opaque
and are visually dominant. The transparency ramp can be adjusted by the user, as
shown in Figure 8.4. As a result, dominant tract systems are no longer occluded by
small fiber bundles and regions with high local FA are visually emphasized, which is
clearly apparent in Figure 8.4 (see marked regions).

Figure 8.4: Streamlines visualized with adaptive transparency depending on the lo-
cal FA value, with a maximum alpha value of 0.5, 0.1 and 0.05 (from left to right).
Transparency depending on the FA value makes important tract systems visible, which
would otherwise be occluded by peripheral fibers (see marked areas).

The visualization technique based on adaptive transparency is therefore an alter-
native approach to color encoding based on FA and is also related to evenly spaced
streamlines with adaptive density, depending on the FA value (Section 4.3.2). In order
to intensify the perception of local FA variations, these techniques can also be combined.

8.3 Visualization based on triangle strips and point sprites

The line rendering technique presented in the previous section provides interactive ren-
dering times, which is of major interest for a large number of fibers. However, simple
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line rendering implies several disadvantages, such as gaps between neighboring seg-
ments which are visible if the lines are wider than one pixel. Additionally, the depth
perception is lost due to a constant width irrespective of the distance to the camera.
These limitations are not encountered using tubes, which provide a significantly im-
proved visualization. However, the complex geometry of tubes makes rendering much
more time-consuming and therefore restricts interactivity.

In order to overcome these limitations, an alternative visualization technique for
fiber bundles is presented in this section, which is based on a combination of textured
triangle strips and point sprites. As a result, a visualization very similar to tubes is
obtained and the number of primitives is significantly reduced enabling interactive ren-
dering. For this reason, the presented strategy is of major interest for medical applica-
tion in neurosurgery.

8.3.1 Previous work

The fiber bundles obtained from fiber tracking are commonly visualized using line-
based representations such as illuminated streamlines [162, 75]. To improve the visual
perception and in order to provide a better overall impression, lines were extended
to streamtubes [159]. Alternative approaches utilize hyperstreamlines [31, 156] to con-
vey further tensor information through the shape of the tube in order to increase the
information content. As a drawback, the resulting rendering times are considerably
slower than in the case of lines since complex geometry is necessary to model tubes
or hyperstreamlines. In recent work, a more efficient technique for a tube-like visual-
ization has been presented [141], combining a GPU-based approach using quad strips
with a CPU-based tessellation in regions where artifacts occur. A speed-up of about 2.4
was achieved in comparison to approaches solely based on tessellated tubes. However,
to meet the performance requirements encountered when rendering dense fiber tracts,
this approach is still not fast enough due to a time-consuming CPU stage. An alter-
native technique for interactive visualization of many streamlines employs cylindrical
billboards [124], which provides good results as long as thin streamlines are rendered.
However, artifacts due to flipping triangles occur in regions where the fiber direction is
nearly parallel to the viewing direction.

8.3.2 Hybrid visualization approach

Current visualization techniques for streamlines either provide high visual quality, but
are too slow to handle trackings of the whole brain, or reduced quality has to be ac-
cepted to obtain interactivity. For this reason, a hybrid approach combining triangle
strips and point sprites is presented which meets the clinical requirements for visualiz-
ing a large number of fiber tracts. As a result, real-time rendering is achieved and at the
same time the visualization quality is comparable to geometry-based tubes.
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Visualization using triangle strips

The crucial advantage of triangle strips over tube-based representations is the fact that
the geometry is considerably reduced. Instead of modeling a tracking segment with
triangles forming a tube, only two triangles per segment are required in our approach.
The triangles are rotated towards the camera by a vertex program and are textured in
order to obtain a tube-like appearance. Furthermore, the applied triangle strips provide
a depth-dependent width which supports the visual perception.

The reconstruction of the triangle strip is outlined in Figure 8.5. Starting from each
sampling point pi of the streamline, two new vertices are generated which are used
as boundary vertices of the triangle strip. For this purpose, the cross product di =
vi × ti between viewing direction vi and streamline tangent ti is computed providing
the direction di which is used to place the new nodes. The width of the tube is defined
by the user by choosing the radius r. di is normalized and the new nodes pi,north, pi,south
necessary to construct the triangle strip are generated:

pi,north/south = pi ± r · di with di =
vi × ti

|vi × ti|
(8.8)

ti

®

vi

®

pi

®

pi+1

®

pi-1

®

-r·di

®

+r·di

®

Figure 8.5: Construction of a triangle strip. Based on sampling nodes of streamline (yel-
low), nodes for modeling the triangle strip are generated.

The construction of the triangle strip is efficiently computed using graphics hard-
ware. For this purpose, the triangle strip contains each node pi twice since the shifted
node locations are computed for each frame within the vertex program. For each copy
of pi, a 2D texture coordinate is stored where the first coordinate corresponds to a 1D
texture used for simulating tube-like illumination. The second 2D texture coordinate
contains a flag which is 1 if the node is shifted to north resulting in pi,north, and -1 if the
node is shifted to south, respectively. In Figure 8.6, the texture coordinates are given in
brackets for each node of the triangle strip.



8.3 Visualization based on triangle strips and point sprites 119
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1D textures
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Figure 8.6: A 1D texture is used to simulate tube-like illumination. The luminance chan-
nel is used for diffuse illumination; the alpha channel stores the specular term.

An essential component for a tube-like appearance of a triangle strip is adequate
texturing which simulates illumination of a tube. For this purpose, a 1D texture with a
luminance and an alpha channel is employed. The luminance channel stores the diffuse
illumination whereas the alpha channel contains the specular term. In order to simulate
illumination of a tube, the textures have to get darker when approaching the border of
the triangle strip. In the case of diffuse illumination, a sine function for angles between
0 and 180 degrees provides an appropriate decay. For specular highlights, the bright
spot has to be focused. Natural results were obtained by raising the values for diffuse
illumination to a power of 16. Figure 8.6 shows both channels of the texture on the
left and a textured triangle strip segment on the right. In order to obtain a smooth
illumination effect, the normals in viewing direction at two adjacent sampling points pi

and pi+1 are interpolated.
The underlying color of the textures is based on one of the color transfer functions

outlined in Section 8.1. For efficient rendering using OpenGL, all tracked streamlines
are drawn by invoking GL_TRIANGLE_STRIP only once. In order to obtain separated
streamlines at the end, degenerate triangles are employed which connect two stream-
lines by positioning all triangle points on a line since OpenGL excludes these triangles
from rendering. For optimum rendering performance, the nodes and their attributes are
stored interleaved using a vertex buffer object (VBO).

The presented approach based on triangle strips provides good results as long as
the direction of a line segment does not come close to the viewing direction. Other-
wise, flipping artifacts occur when viewing and segment direction are nearly parallel.
Artifacts arising from flipping triangles are shown in Figure 8.11.

Visualization using point sprites

Point sprites are particularly suitable for the visualization of line segments which are
nearly parallel to the viewing direction. In this case, they provide a natural, tube-like
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visualization since they resemble the cross section of a tube. A point sprite corresponds
to a textured square which is always oriented towards the camera and which is effi-
ciently visualized based on the OpenGL extension for point sprites. Similar to textured
triangle strips, a 64×64 2D-RGB-texture is used to draw and illuminate them (see Fig-
ure 8.7). The R-channel is used as alpha channel to obtain a spherical shape of the point
sprite. The G- and B-channel are used to simulate diffuse and specular illumination.

r(ed) channel g(reen) channel b(lue) channel

alpha texture diffuse texture specular texture

rgb texture

Figure 8.7: The channels of a RGB-texture are used to draw and illuminate a point sprite.
The R-channel is used as alpha channel; the G- and B-channel are used to simulate
diffuse and specular illumination.

In order to obtain a tube-like appearance, the point sprites have to be rotated ac-
cording to the direction of the streamline segments. This is achieved by rotating the
texture coordinates of the point sprite. The rotation of a point sprite positioned at lo-
cation P1 depends on the direction of the tangent at this streamline point. In order to
obtain the factors needed for rotation, the tangent t at point P1 has to be projected to the
image plane resulting in tp (compare Figure 8.8). This is achieved by first multiplying P1
and P2 = P1 + t with the model view projection matrix M4×4:

P1p.xyzw = M4×4 · P1.xyzw , (8.9)
P2p.xyzw = M4×4 · P2.xyzw . (8.10)

The projection tp of the tangent vector t into the image plane is then obtained by deho-
mogenization and conversion to screen coordinates:
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tp.xy =

(
P2p.x/P2p.w − P1p.x/P1p.w
−P2p.y/P2p .w + P1p.y/P1p .w

)

. (8.11)
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Figure 8.8: Rotation of the 2D texture coordinates depending on angle α. The factors for
computing the rotation are obtained from the tangent vector t which is projected into
the image plane and normalized resulting in t 0

p .

Normalization of tp results in a vector t 0
p = (cos α

sin α) where the angle α denotes the rotation
of the segment with respect to the x-axis (see Figure 8.9). The components of t 0

p which
are computed by a vertex program are then used within a fragment program to compute
the rotation of the texture coordinates. Since the texture coordinates T.xy are defined
within [0; 1]2 and the rotation is defined within [−1; 1]2, each texture coordinate is first
translated by (−0.5;−0.5). Once the rotation has been applied, they are shifted back to
their original domain:

Tnew.x =
(

t 0
p .y · (T.y − 0.5) + t 0

p .x · (T.x − 0.5)
)

+ 0.5 ,

Tnew.y =
(

t 0
p .y · (T.x − 0.5)− t 0

p .x · (T.y − 0.5)
)

+ 0.5 .

The rotation is computed for each fragment resulting in correctly oriented point sprites.
The approach provides a good visual representation for segments where the viewing
direction is nearly parallel to the segment direction as illustrated in Figure 8.9.

Combined visualization using triangle strips and point sprites

As long as a streamline is oriented perpendicular to the viewing direction, the profile
of the tube is rectangular (Figure 8.10, left), which is appropriately visualized using
triangle strips. However, if the viewing direction is nearly parallel to the direction of a
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Figure 8.9: Visualization of fiber tracts
using point sprites. Good visual results
are obtained for segments nearly parallel
to the viewing direction, the quality de-
creases for more perpendicular segments.

t
®

v
®

v
®

t
®

Figure 8.10: Profile of a tube depending
on viewing direction: Rectangular when
viewing direction v perpendicular to fiber
tangent t (left), spherical in the case of
viewing direction v parallel to tangent t
(right).

segment, the profile of a tube is better represented using a circle (Figure 8.10, right) or a
point sprite, respectively. For this reason, the presented hybrid approach combines the
advantages of triangle strips and point sprites leading to a comprehensive and efficient
visualization.

Within the hybrid approach, the size of the point sprite is computed to fit the width
of the triangle strip. Accordingly, the point sprite is scaled to the required size within
the vertex program using glPointSize(). Depending on the scalar product < t, v >

between tangent vector t and viewing direction v, a decision is made as to whether
the point sprite is displayed or not. More precisely, the point sprite is visualized if
the scalar product is greater than 0.93, otherwise the homogeneous coordinate of the
point is set to zero and the point is clipped within the rendering pipeline. In order to
obtain an overlap region of point sprites and triangle strips, the latter are displayed if
the scalar product is less than 0.98. Otherwise, drawing of triangle strips is suppressed
by setting the A component of the RGBA color value to zero. The transparency value (A
value) is checked for each fragment using glAlphaFuncpreventing the visualization of
flipping triangles. As a result, rendering based on triangle strips alone leads to flipping
artifacts whereas the hybrid approach incorporating point sprites provides a tube-like
visualization without artifacts (see Figure 8.11).

The presented technique provides a natural appearance which is very similar to
tubes. However, at the beginning and the end of each fiber, the representation lacks
realism since a tube-like ending is missing and the flat geometry of the triangle strip
becomes apparent. In order to overcome this drawback, a terminating textured quad is
used at both ends of each fiber (compare Figure 8.12).
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8.3.3 Results

The algorithms developed in this work were implemented using OpenGL and GLSL.
For benchmarking a PC equipped with an Intel Pentium 4, 3.0 GHz, 2 GB RAM and a
NVidia Geforce 6800 Ultra graphics card with 256 MB graphics memory was used. The
viewport for all renderings was 600×800 pixels and the displayed set of lines, generated
by fiber tracking within the whole brain, consisted of approximately 300 000 segments
originating from about 4 500 fibers.

Table 8.2 gives a detailed overview of the performance results of the presented meth-
ods. Lines and tubes are the geometrical approaches where a single tube segment con-
sists of 16 triangles. They were compared to triangle strips, point sprites and the pre-
sented combination of these two techniques. All approaches were analyzed with respect
to Vertex Buffer Objects (VBOs) provided by OpenGL for optimized geometry transfer.
Illumination implemented in a fragment program was considered separately for each
strategy. According to the performance measurements provided in Table 8.2, the pre-
sented hybrid approach achieves interactive frame rates regardless of the massive load
of 300 000 segments encountered for a whole brain tracking.

Using geometrically modeled tubes, the geometry load was about 4.8 million trian-
gles per frame which led to 4.2 million vertices in the case of triangle strip rendering.
According to our observations, the sampling rate for tubes should not be less than 8
resulting in an octagon profile in order to obtain acceptable rendering quality. A further
increase of the resolution leading to a higher number of triangles would significantly
reduce the rendering performance since the vertex load becomes the limiting factor.
Similarly, a higher number of fibers, which is encountered in the case of probabilistic
tracking techniques or for dense fiber trackings, would decrease the rendering perfor-
mance even more if geometry-based tube representations are used.

In comparison to geometric tubes, rendering times are about six (with illumination)
to eight (no illumination) times faster using the suggested hybrid approach enabling

Figure 8.11: Flipping triangles for a seg-
ment in viewing direction (left). These ar-
tifacts are overcome with the hybrid ap-
proach incorporating point sprites (right).

Figure 8.12: More realistic representation:
Hybrid approach without (left) and with
terminating textured quads at both ends
of each fiber (right).
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Visualization technique Frame rate
Lines (no illumination) 242.5 fps
Lines (illuminated) 153.3 fps
Tubes (no illumination) 7.5 fps
Tubes (illuminated) 7.5 fps
Triangle strips (no illumination) 85.3 fps
Triangle strips (illuminated) 65.4 fps
Point sprites (no illumination, no rotation) 203.2 fps
Point sprites (illumination, rotation) 89.5 fps
Triangle strips & point sprites (no illumination) 57.5 fps
Triangle strips & point sprites (illumination) 42.5 fps

Table 8.2: Frame rates in fps (frames per second) depending on the visualization tech-
nique and illumination.

interactive visualization at high quality. The high number of triangles necessary in
the case of conventional tube representations is reduced by a factor of eight, which
leads to lower data requirements and consequently to improved performance. As a
result, the purely GPU-based approach presented overcomes the limitations of stan-
dard geometry-based approaches and provides a further speed-up compared to a hy-
brid CPU-GPU-based approach [141].

Considering practical application, accelerated rendering of tube-like streamlines is
an important prerequisite for a fusion with anatomical data based on direct volume
rendering (DVR). Since DVR is very demanding in terms of rasterization power, it is
essential to reduce the effort for additional rendering tasks (e.g. geometry) to a min-
imum. Due to the significantly reduced amount of data using the presented hybrid
visualization technique, multimodal inspection of functional and anatomical informa-
tion is possible in real-time. An important result is that functional data such as fiber
tracts are explored within their anatomical context. Critical areas (e.g. a tumor in the
immediate neighborhood of neuronal pathways) can be investigated in a convenient
way, which improves diagnosis and therapy planning.

As can be seen in Figure 8.13, multimodal visualization combining function and sur-
rounding anatomy were applied in a patient with a brain tumor. The overview figures
show the global location of the tumor whereas the zoomed views provide details of
white matter structures surrounding the tumor. Investigating such a multimodal repre-
sentation, the surgeon is able to verify whether important tract systems are located in
the vicinity of the tumor. Based on this information, an appropriate surgery plan can be
developed. Since the neuronal structures have to remain intact to avoid postoperative
neurological deficits, their real-time visualization together with anatomical data is an
important aid to safer surgery. Overall, the presented technique provides visualization
of high quality and at the same time enables better inspection due to high frame rates.
It is a valuable supplement for medical application in neurosurgery.
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Tumor

Tumor

Figure 8.13: Fiber tracking in a patient with a brain tumor (red) rendered with the pre-
sented hybrid approach. Additionally, direct volume rendering of anatomical data pro-
vides background information about the location of the neuronal pathways with respect
to the tumor and other anatomy. Close-up views of fibers surrounding the tumor (mid-
dle, right) and comparison of rendering with and without tumor (compare upper and lower
row) provide important information for surgery planning.

8.4 Discussion

In this section, different approaches for the visualization of fibers for medical applica-
tion have been presented. A major concern for the applied techniques are interactive
frame rates, which is important for integration into a clinical workflow. The line render-
ing approach as well as the hybrid technique based on triangle strips and point sprites
fulfill these criteria.

Additionally, different approaches for color encoding of the fiber bundles were pre-
sented in order to convey additional information such as local FA values. This approach
makes it possible to identify major tract systems where higher FA values are present. In
the case of fiber tracking, color encoding also helps to estimate the reliability of the
tracking result. In regions of major white matter tracts where dense, coherent fibers are
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located, the direction of the major eigenvector corresponds well with the fiber direc-
tion and results in a more reliable fiber-tracking result. Color encoding based on the
FA value provides information about the local tensor shape and consequently about the
reliability of the fiber-tracking result.

Another tool for visually emphasizing dominant tract systems is the presented ap-
proach for adaptive transparency. Depending on the local FA value, the opacity of the
fibers is adjusted and dominant tract systems are no longer occluded by small fiber bun-
dles. For this reason, the approach is an alternative to evenly spaced streamlines with
adaptive spacing. However, adaptive transparency addresses occlusion of dominant
tract systems during visualization, whereas the approach for evenly spaced streamlines
with adaptive spacing considers this issue during streamline generation.

The illumination of streamlines is another important topic covered in this chapter.
In general, illumination improves depth perception and is therefore a valuable tool in
visualization applications. However, illumination also adulterates the original colors,
which is an unwanted effect in conjunction with color encoding, where colors convey
additional information. For this reason, illumination should be used carefully, espe-
cially when color encoding is applied.



127

Chapter 9

Visualization of hulls

The generation of hulls is an initial step towards boundary curves which are displayed
in the focus plane of the OR microscope. Nevertheless, the visualization of hulls in 3D
is also helpful for different purposes: First of all, 3D visualization of hulls is required in
order to investigate the quality of the hull with respect to the reconstructed fiber bundles
which approximate the underlying white matter structures. Additionally, hulls provide
a more comprehensive representation of a fiber tract and the spatial relation between
anatomical structures and tract system is more easily estimated. In the visualization of
hulls, lighting as well as transparency play an important role, which is further outlined
in Section 9.1 and 9.2.

9.1 Lighting

Lighting plays an important role in investigating the structure of the hull surfaces. For
this reason, shading is essential for a meaningful visualization. In general, good shading
results are already obtained with Gouraud shading, due to the fine tesselation of the

Figure 9.1: No illumination (left), per-pixel Phong illumination (right).
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hulls. A better alternative is per-pixel shading, based on the Phong reflection model,
which is accomplished with shader programs which are supported by current graphics
hardware. Lighting results for per-pixel shading are shown in Figure 9.1.

9.2 Transparency

Transparency is applied for quality control and provides excellent support for compar-
ing the generated surfaces with the underlying streamlines. Furthermore, the inner hull
tightly wrapping the fiber tract and expanded hulls can be combined during visualiza-
tion, as shown in Figure 9.2.

For semi-transparent rendering using OpenGL, blending is used in order to combine
the color in the framebuffer with the color of an incoming primitive. In principle, cor-
rect rendering of opaque and semi-transparent objects requires two rendering passes.
Opaque objects are rendered first, and then transparent objects are rendered from back
to front in a second pass. Correct blending during rendering requires depth sorting of
the transparent objects on the triangle level. However, sorting causes significant addi-
tional costs which prevents interactive frame rates. For this reason, rendering of semi-
transparent hulls with different expansion levels enclosing the same tract is achieved
by performing front-face culling in a first pass and back-face culling in a second pass.
In the first pass, the surfaces are rendered in a descending order of expansion. After-
wards, ascending order and enabled back face culling are used. In this way, sorting
artifacts are only seldom visible and have no significant visual impact on the visualiza-
tion result. As a result, interactive visualization is possible, which is of great importance
for medical application. In Figure 9.2, semi-transparent visualization is demonstrated
for hulls wrapping the pyramidal tract.

Figure 9.2: Opaque hull of the pyramidal tract (left) visualized in combination with
a semi-transparent expanded hull with distance 4 mm (middle) and another semi-
transparent hull with distance 8 mm (right) to the inner hull.
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Chapter 10

Multimodal visualization of DTI- and
MR-Data

Fiber tracts and hulls reconstructed from DTI data provide a comprehensive represen-
tation of white matter structures. However, for application in surgical planning, a com-
bined visualization of fiber tracts and anatomy is necessary, which is outlined in more
detail in this chapter. The concurrent display of anatomy and fibers enables the sur-
geon to assess the location of fibers in relation to anatomical landmarks. This is of major
importance in patients with space-occupying lesions which may cause a displacement
of fibers and other anatomical structures. To avoid postoperative neurological deficits a
surgeon must be able to estimate the spatial relation between tumor and vital white mat-
ter structures. For this reason, an integrated visualization of fiber tracts and anatomical
data is a valuable contribution to safer surgery.

The visualization techniques applied for this purpose are described in Section 10.1
and comprise direct volume rendering incorporating tagged volumes (Section 10.1.1) as
well as volume clipping (Section 10.1.2). In Section 10.1.3, important aspects for the fu-
sion of the fibers and anatomical data are considered. Performance results are presented
in Section 10.2 and the benefit of the presented techniques for medical application is dis-
cussed in Section 10.3. The combination of the presented techniques and their benefit
for visualization in neurosurgery were published in [83].

10.1 Multimodal visualization based on direct volume ren-
dering

Direct volume rendering is applied in order to visualize anatomical MR data in com-
bination with fibers or hulls. It is supported by the capabilities of current PC graphics
hardware, which is capable of handling volume data as 3D textures for interactive visu-
alization. For this reason, 3D volume rendering of clinical data is suited for preoperative
planning and is therefore a valuable tool in brain tumor surgery.
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10.1.1 Tagged volumes

However, the visualization of MR data based on direct volume rendering is difficult for
different reasons: First of all, the dynamic range of the intensity values is low, mak-
ing separation of different tissues difficult. Additionally, different anatomical structures
such as skin and brain tissue are represented by the same intensity value which prevents
the separation of different structures using intensity-based transfer functions. There-
fore, tagged volumes are an alternative strategy for visualizing and investigating the
spatial relation of fibers and anatomy or brain tumors. For this purpose, relevant struc-
tures such as the ventricles or a brain tumor were segmented in a preprocessing step.
A second dataset containing tag IDs for each segmented structure is generated, which
makes it possible to assign specific transfer functions to each sub-volume. Figure 10.1
shows a brain tumor and the ventricles rendered as tagged volumes.

Figure 10.1: Tagged volume visualization makes it possible to apply separate transfer
functions for a tumor (blue) and ventricles (purple). Additionally, an axial slice of the
anatomical dataset is visualized as well as fibers of the pyramidal tract.

10.1.2 Volume clipping

In addition to tagged volumes, clipping is essential in order to suppress entire areas
from rendering, giving direct visual access to hidden structures. Therefore, hardware
accelerated clipping of arbitrary geometry as introduced by [149] was incorporated in
order to mask uninteresting areas. In comparison to rendering a 2D slice as shown in
Figure 10.1, volume clipping provides more flexible access to the underlying anatomical
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structures, as shown in Figure 10.2. As a result, tagged volumes in combination with
clipped volume rendering make it possible to investigate segmented structures and sur-
rounding anatomy. In addition, this method may be combined with rendered fibers.

Figure 10.2: Volume rendering based on tagged data and volume clipping combined
with fibers of the pyramidal tract. The resulting visualization supports orientation in
3D and shows the spatial relation between tumor and fibers as well as surrounding
anatomy.

10.1.3 Fusion

Rendering of fibers and hulls in combination with the volume is accomplished in a step-
by-step manner. After activating the depth buffer and rendering all opaque fibers and
hulls, the anatomical dataset is rendered back-to-front. The depth-test ensures that parts
of the volume which are concealed by fibers or hulls are suppressed.

Apart from the technical aspects of combined rendering, another important issue is
the coherence of the base datasets. For a combined visualization of the reference DTI
dataset with derived fibers, this coherence is granted per se. However, for true multi-
modal visualization where fibers from DTI data are rendered together with an anatom-
ical MR scan, registration has to be applied prior to visualization to adjust the datasets.
Rigid registration is thereby sufficient for many registration tasks dealing with undis-
torted image data. However, in the case of DTI data, non-linear registration has to be
performed to account for image distortions, as outlined in Chapter 7. Non-linear regis-
tration thus ensures that fibers computed from the distorted DTI images are positioned
properly within the undistorted dataset showing anatomy.
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10.2 Results

The approaches presented in this chapter for an integrated visualization of diffusion
tensor fiber tracts and anatomical data were adapted to the requirements for application
in surgery. An important aim therefore was to enable interactive manipulation and
comfortable handling of the tools. Due to extensive use of the programming capacities
of current graphics hardware, volume rendering and application of transfer functions,
tagged volumes and clipping run interactively. The frame rates for different setups
comprising datasets of varying resolution and different tract systems are presented in
Table 10.1.

For the measurements, fiber trackings of the pyramidal tract, the optic tract and the
corpus callosum were generated and rendered with the hybrid approach based on trian-
gle strips and point sprites presented in Section 8.3. For volume rendering, datasets of
different resolution levels were employed, namely a DTI reference dataset (128×128×60
voxel), and MPRAGE anatomical datasets at different resolutions (256×256×128 and
512×512×128 voxel). Based on this data, the frame rates for displaying different tract
systems in combination with a DTI reference dataset and MPRAGE anatomical datasets
were measured on a PC equipped with a P4 3.0 GHz, 2 GB RAM and a NVidia Ge-
force 6800 Ultra graphics card with 256 MB graphics memory. The viewport for all
measurements was 600×800 pixels.

The presented results show that multimodal visualization of anatomical data and
fibers is possible at interactive frame rates. For clinical application, this is of major
importance due to limited time in clinical workflows, which greatly influences the ac-
ceptance of medical tools.

Pyramidal tract Optic tract Corpus Callosum
7 443 sampling points 20 139 sampling points 70 352 sampling points

DTI 128 36.5 fps 32.2 fps 29.3 fps
MPRAGE 256 19.2 fps 18.5 fps 17.9 fps
MPRAGE 512 9.8 fps 8.7 fps 7.5 fps

Table 10.1: Frame rates for multimodal visualization in fps (frames per second), for
different setups including datasets of varying resolution and different tract systems.

10.3 Discussion

The presented approach for multimodal visualization of diffusion tensor fiber tracts in
combination with anatomical data was adapted to application in surgery. Compared
to the visualization of 2D slice images for planning in surgery, direct volume rendering
permits a better understanding of 3D anatomy.

However, it is hardly possible to discover inner structures of the human brain using
intensity-based transfer functions. This is due to the low dynamic range of the grey val-
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ues of MR data and also to the fact that different anatomical structures are represented
by identical grey values, such as different tissues. For this reason, volume clipping plays
an important role in the investigation of inner structures. Interactive adjustment of the
clip volume thereby provides fast and precise access to respective anatomical structures.
As a result, combined rendering of clipped anatomical data and fibers makes it possible
to investigate the course of fibers and nearby anatomy simultaneously.

Additionally, a 3D representation of certain structures is desirable in order to show
clearly the location and volume of these structures. For this purpose, the desired areas
are segmented by a clinical expert and are rendered as tagged volumes. For the visual-
ization of brain tumors, this approach is superior to a transfer-function-based visualiza-
tion, since brain tumors often have no clear border due to infiltration with other tissue.
Consequently, in order to show clearly the volume of the lesion, tumor visualization
based on segmentation and tagged volumes is more reliable. For this reason, render-
ing of tagged volumes is an important strategy for investigating the spatial relation of
tumor, fibers and anatomy.

Overall, multimodal visualization based on direct volume rendering, including well-
established techniques such as volume clipping and tagged volumes, provides a com-
prehensive representation of the complex 3D data and fiber anatomy. Additionally,
interactive frame rates are achieved, which meets the requirements for clinical applica-
tion.
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Part IV

Conclusion



136



137

Chapter 11

Summary

In recent years, neurosurgical procedures have been revolutionized by the invention
of navigation systems and preoperative planning software, which support the surgeon
during the planning process as well as intraoperatively. The neuronavigation system
tracks the operating microscope during the intervention and makes it possible to relate
preoperative planning data spatially with the operating site. In this way, the results
of comprehensive preoperative examinations, such as information about the location of
functional areas, are directly available during surgery. This makes it possible to conduct
the resection of diseased tissue more precisely and effectively and to reduce the risk of
postoperative deficits for the patient.

Further important developments supporting surgical planning are novel MR imag-
ing sequences, such as the DTI imaging technique developed about a decade ago. The
possibility of assessing information about the location and course of white matter tracts
in vivo thus available, provides a high degree of potential for neurosurgical planning
and intervention. Another important imaging technique applied in neurosurgery is
functional imaging based on fMRI, which was introduced about 15 years ago and which
is used for localizing functional areas. The use of DTI and fMRI data for preoperative
planning as well as intraoperatively in conjunction with the neuronavigation system,
enables precise planning and execution of interventions. However, for this purpose,
appropriate software tools are required for preparing and evaluating the data obtained,
in order to make it usable for clinical application.

This thesis presents a series of different approaches for reconstructing and visual-
izing neuronal pathways from DTI data, which were developed in order to support
neurosurgical interventions, including preoperative planning. In general, the working
areas in this thesis can be divided into two major stages: The reconstruction of neu-
ronal structures on the one hand, followed by the visualization of the reconstruction
results on the other. This provides the basis for the respective parts of this thesis, which
comprises the introduction and motivation (Part I), a section dealing with reconstruc-
tion approaches (Part II), and visualization techniques (Part III). In the following, the
contents of these parts are summarized, hereby focusing on the main contributions.
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The first part of this work provides fundamental knowledge about the medical back-
ground. Beginning with a short review of the history of neurosurgery, this part provides
an introduction to disease patterns necessitating neurosurgical intervention, followed
by information about neurosurgical interventions and neuroanatomy. Finally, the dif-
ferent MR acquisition techniques referred to in this thesis are described. The boundary
conditions and fundamentals presented in this part of the thesis are an important pre-
requisite for understanding the medical requirements.

The second part of this thesis starts with a review of tensor reconstruction and quan-
tification. Subsequently, a novel method for filtering the diffusion tensors is presented,
which follows the design of video filters.

Based on the reconstructed and filtered tensor data, fiber-tracking algorithms are
presented in the next chapter. For the reconstruction of single tract systems for clinical
application, an approach based on regions of interest (ROIs) with associated Boolean
operators was developed, which enables flexible and patient-specific extraction of sepa-
rate tract systems. Furthermore, an approach for oriented filters was implemented and
evaluated with respect to accuracy aspects. As a result, even though oriented filters
are potentially able to achieve better processing of fiber crossings, they proved to be
less appropriate for clinical application. This is due to the high computational cost en-
countered for only a slight gain in accuracy. In addition, a novel approach based on the
concept of evenly spaced streamlines is presented, which is used for adaptive distance
control between streamlines. From a clinical point of view this is of high value since
the tract systems relevant for the surgeon are clearly visible and are not occluded by
small peripheral fibers. Another approach developed for reconstructing neuronal path-
ways is directional volume growing. The approach can be regarded as a transition from
fiber tracking to connectivity analysis, since both approaches consider several potential
directions of expansion per voxel.

The subsequent chapter deals with connectivity analysis between speech areas. Since
these fiber tracts are part of the more peripheral tract systems and are difficult to recon-
struct using conventional approaches, an algorithm based on A∗-pathfinding was de-
veloped. Based on a cost function, it is possible to analyze multiple possible directions
per voxel, depending on the underlying tensor information. The advantage of the ap-
proach is an adequate representation of the information content provided by planar or
spherical tensors, where multiple directions of equal probability exist. In clinical appli-
cation, it was possible to provide a reliable reconstruction of speech pathways in tumor
patients. Currently, the approach is undergoing thorough evaluation in a clinical study.

The subsequent chapter addresses the generation of hull surfaces wrapping fiber
bundles. The reconstructed pathways serve as a basis for preoperative planning. How-
ever, for intraoperative visualization of boundary curves displayed in the focus plane of
the OR microscope, the tracts must at first be converted to hulls. For this purpose, two
alternative approaches are presented: On the one hand, a technique using tetrahedral-
ization and 3D alpha shapes; on the other hand an approach based on rasterization and
isosurfaces. For clinical application, the second approach is more appropriate, since it
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makes it possible to control the tightness of the resulting hull. These approaches are of
crucial importance in order to make the reconstruction results available for intraopera-
tive application.

Another important topic which is addressed in a further chapter, is the correction of
distortion artifacts. Due to susceptibility artifacts, the DTI data is distorted, resulting in
a misplacement of the reconstructed structures. With the help of non-linear registration,
the distortions were corrected and the influence of distortions on the position of tract
systems was measured. For clinical application, this correction approach is of major
importance in order to estimate the impact of distortions on the tract location and to
correct the distortion artifacts.

A further important part of this work deals with appropriate visualization strategies
in order to visualize the structures reconstructed in Part II. Essentially, this comprises
the visualization of reconstructed tract systems, the display of hulls, and the multimodal
visualization of anatomical MR data in conjunction with reconstructed structures.

An important issue for the visualization of pathways is coloring, which makes it
possible to convey additional information content. For this reason, a set of different
color transfer functions was developed. Furthermore, an efficient visualization of fiber-
tracking results in real-time is essential in order to assure acceptance by the clinical user.
A basic approach which meets this requirement is rendering of lines. In order to illumi-
nate the lines, the approach for illuminated streamlines was implemented and further
improved. In addition, it was possible to suppress small tract systems visually in re-
gions of low FA by means of adaptive transparency. As a result, attention is drawn to
the major tract systems, which are of superior relevance for surgery. As an alternative to
line rendering, a hybrid approach based on triangle strips and point sprites was devel-
oped and presented, which provides a number of visual advantages compared to lines.
The approaches provided for the visualization of fiber bundles enable flexible real-time
visualization of neuronal pathways for clinical application.

A further chapter addresses the visualization of hulls for preoperative planning.
Even though hulls are intended as an initial step towards a 2D representation of neu-
ronal pathways for the OR microscope, their 3D visualization is at least necessary for
quality control during hull generation. By means of semi-transparent visualization, it is
possible to compare the hull with the underlying fiber tract and to assess its accuracy.

The subsequent chapter is about multimodal visualization of reconstructed struc-
tures as well as anatomical or functional data. For the visualization of anatomical
MR data, direct volume rendering is used, whereby tumors are segmented in a pre-
processing step and rendered as tagged volumes with individual transfer functions, in
order to distinguish them from other types of tissue. For preoperative planning, mul-
timodal visualization is of major interest in order to visualize neuronal structures and
functional areas in their anatomical context.
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Most of the DTI data processing and visualization approaches developed in this the-
sis have been tested in clinical applications and have been partly evaluated by clinical
experts, providing encouraging results. Thus the investigations contribute to the re-
search efforts in this field, and help to lower the risk of neurosurgical interventions for
the patient.
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Chapter 12

Outlook

In spite of the intense research processes in the field of DTI, various open questions and
areas requiring further investigation remain. Two major spheres of activity can be dis-
tinguished: The field of imaging physics and sequence development on the one hand,
and data processing and visualization strategies on the other. In the following, future
challenges and possible fields of activity in both areas are summarized:

Origin of anisotropic diffusion in white matter: The varying diffusion properties of wa-
ter in tissue, in particular diffusion anisotropy, is the basic effect measured with DTI.
However, from the point of view of physics, the phenomenon of diffusion anisotropy
in white matter has not yet been fully understood. According to experimental results
reviewed in [112], myelination is not required for diffusion anisotropy, and cell mem-
branes are relatively permeable to water. For this reason, research into the origin of
these biophysical barriers is required in order to achieve a more precise interpretation
of the measured diffusion patterns and, in turn, of the biological structures.

Accuracy and reliability of reconstruction approaches: A closely related issue refers to the
accuracy of filtering and regularization techniques as well as to the reliability of tract-
reconstruction algorithms. Without knowing how reconstructed tract systems map to
neuronal structures, it is very difficult to assess their reliability. In the case of fiber-
tracking algorithms, the question remains as to the extent to which real neuronal struc-
tures are represented by reconstructed fiber bundles. A first step in this direction is a
paper published in [28], where reconstructed fiber tracts are compared to the pathways
identified by a neuronal-tract tracer in histological sections. Due to the complexity of
brain structure and due to biophysical limitations, it can be assumed that the recon-
structed models are merely an approximation of the real neuronal structures. Never-
theless, for the application of reconstruction algorithms, it is important to know the
limitations of the model compared to the real structures.

Improved resolution of DTI data: With respect to image acquisition in DTI, a higher res-
olution of the data is desirable in order to determine the local diffusion characteristics
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more precisely. However, an increased spatial resolution is associated with an increase
in noise, which reduces the reliability of the measurement. An alternative method to
improve the signal-to-noise ratio (SNR) is provided by MR scanners with an increased
field strength, such as the upcoming 3T scanners which are already installed at some
institutes.

Undistorted DTI data: Another issue for future research relates to improved imaging
sequences, which eliminate undesired effects such as the susceptibility artifacts outlined
in Chapter 7. The STEAM MR imaging technique [111] is an example of an MR sequence
which exhibits significantly fewer image distortions. For the application of imaging
data in neurosurgery in conjunction with a neuronavigation system, distortion-free se-
quences are of great interest since, in this case, complex correction procedures can be
circumvented.

More precise assessment of local diffusion characteristics: In current research, an imag-
ing technique denoted as high angular resolution diffusion imaging (HARDI) [145] was
presented, which aims at overcoming certain limitations of DTI. The main idea behind
this imaging sequence is to apply diffusion-weighting gradients in many directions,
distributed almost isotropically on the surface of a unit sphere. According to [41], the
measured distribution of diffusivities is used to reconstruct a higher-order tensor which
provides a better representation of the local diffusion characteristics. Even though some
techniques known from DTI reconstruction and processing can easily be adapted to suit
higher-order tensors, e.g. fiber tracking [49] or the approach for connectivity analy-
sis presented in Chapter 5, special requirements have to be considered. For example,
new scalar metrics characterizing areas of anisotropic diffusion are required, as well
as adequate tract-reconstruction algorithms which exploit the more precise information
content provided by HARDI tensors. The possiblity of obtaining more comprehensive
information about the local diffusion properties paves the way for more precise recon-
struction techniques, which is an interesting topic for future research.

Clinical evaluation of the approaches: Another important issue is the clinical evaluation
of the implemented algorithms. One neurosurgeon and two medical students currently
work with the DTI software developed in this thesis. Of special interest are the algo-
rithms for fiber tracking and for connectivity analysis as well as the hull-generation
approaches, which are currently being evaluated in retrospective studies. For the fu-
ture, additional evaluation studies are planned in order to further verify the accuracy
and reliability of the developed algorithms in clinical application.
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Kurzfassung

Für die Diagnose und die OP-Planung sind Aufnahmen mittels Magnetresonanz-To-
mographie (MRT) eine wichtige Informationsquelle. Vor etwa einem Jahrzehnt wurde
eine neue MRT-Technik entwickelt, die sogenannte Diffusionstensor-MRT (DT-MRT).
Dieses Bildgebungsverfahren ermöglicht Rückschlüsse auf die Lage und den Verlauf
von Gewebe mit faseriger Struktur, so z.B. den neuronalen Strukturen im Gehirn. Da
dies in vivo bisher nicht möglich war, ist das Interesse an DT-MRT in verschiedenen
Forschungsgebieten stark gewachsen.

In der Neurochirurgie ist DT-MRT von großem Wert, da zusätzlich zu den MRT-
Daten, welche anatomische Strukturen zeigen, Informationen über den Verlauf neuro-
naler Bahnen gewonnen werden können. Neuronale Bahnen sind wichtige Strukturen
im Gehirn, die integrativen Funktionen, z.B. im Bereich der Motorik oder Sensorik, zu-
geordnet sind. Bei einer Gehirnoperation im Falle pathologischer Veränderungen (Tu-
mor) dürfen diese Nervenbahnen nicht verletzt werden, um neurologischen Defizite zu
vermeiden.

Die Rekonstruktion neuronaler Strukturen aus DT-MRT-Daten ist jedoch aufgrund
der Komplexität der vorliegenden Tensor-Information nicht trivial. Aus diesem Grund
wurde in den letzten Jahren intensiv an Verfahren zur Rekonstruktion und Visualisie-
rung basierend auf DT-MRT-Tensordaten gearbeitet.

Die vorliegende Arbeit trägt zur aktuellen Forschung in diesem Bereich bei, indem
neue Techniken zur Rekonstruktion und Visualisierung neuronaler Bahnen vorgestellt
werden. Die verschiedenen Ansätze wurden in Zusammenarbeit mit Neurochirurgen
entwickelt mit dem Ziel, die präoperative Planung und die intraoperative Visualisie-
rung bei neurochirurgischen Operationen zu unterstützen. Zu diesem Zweck wurde
ein DT-MRT-Programmpaket mit einer Vielzahl an Algorithmen zur Verarbeitung von
DT-MRT-Daten entwickelt. Dazu zählen die Rekonstruktion von Tensoren, globale Fil-
terungstechniken, Fiber Tracking und Konnektivitätsanalyse, Algorithmen zur Generie-
rung von Hüllen und verschiedene Visualisierungstechniken.

Die in diesem Forschungsbereich erzielten Ergebnisse werden in Zukunft dazu bei-
tragen, die Planung neurochirurgischer Eingriffe weiter zu verbessern und das Risiko
postoperativer neurologischer Defizite für die Patienten zu verringern.
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Kapitel 1

Hintergrund und Forschungsbeitrag

1.1 Motivation

Die heute verfügbaren bildgebenden Verfahren in der Medizin sind ein wichtiges Werk-
zeug, um grundlegende anatomische und physiologische Zusammenhänge zu erken-
nen und um eine zuverlässige und reproduzierbare Diagnose zu ermöglichen. Aus
diesem Grund sind moderne bildgebende Verfahren für eine Vielzahl medizinischer
Anwendungen von großer Bedeutung. Die Magnet-Resonanz-Tomographie (MRT) ist
beispielsweise ein nicht-invasives Bildgebungsverfahren, mit dem vorzugsweise Orga-
ne und Gewebe dargestellt werden. Für diagnostische Zwecke, bei der Planung von
Operationen sowie für navigierte Eingriffe leisten MRT-Daten wertvolle Dienste. Für
die Verarbeitung und Visualisierung von MRT-Daten stehen eine Vielzahl verschiede-
ner Techniken zur Verfügung, beispielsweise Verfahren zur 3D Volumenvisualisierung
oder unterschiedliche Segmentierungsverfahren.

Während des letzten Jahrzehnts hat sich ein weiteres MRT-Bildgebungsverfahren
etabliert, die sogenannte Diffusions-Tensor-MRT (DT-MRT). Mit DT-MRT wird die Diffu-
sion von Wasser gemessen, die auf zufällige Bewegungen der Moleküle aufgrund ihrer
thermischen Energie zurückzuführen ist. In faserigem Gewebe wie beispielsweise der
weißen Substanz1 des zentralen Nervensystems ist die Diffusion auf eine Vorzugsrich-
tung beschränkt. Aus der Diffusionsmessung sind daher Rückschlüsse auf die Struktur
des darunter liegenden Gewebes möglich. Dies eröffnet die Möglichkeit, die Funktion
und Struktur des Gehirns in vivo zu analysieren, was für verschiedene Forschungsge-
biete und in der medizinischen Anwendung von großem Interesse ist. Die mittels DT-
MRT gemessenen Diffusionseigenschaften unterstützen die Diagnose von Schlaganfäl-
len, degenerativen Erkrankungen des Gehirns oder psychischen Erkrankungen wie bei-
spielsweise Schizophrenie. In der Neuroanatomie und Neurochirurgie dienen DT-MRT-
Messungen als Basis zur Rekonstruktion von Bahnsystemen der weißen Substanz.

Die Verarbeitung und Visualisierung von DT-MRT-Daten ist jedoch aufgrund der

1Die weiße Substanz enthält Nervenbündel (Axone), die der Weiterleitung von Informationen dienen.
Die Axone sind von Myelin umgeben, das eine weißliche Färbung besitzt.
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Komplexität der Daten sehr anspruchsvoll. Anstatt eines skalaren Wertes ist bei DT-
MRT pro Voxel ein kompletter Tensor verfügbar, der die lokalen Diffusionseigenschaf-
ten beschreibt. Die Herausforderungen bei der Rekonstruktion und Visualisierung neu-
ronaler Bahnen liegen darin, aussagekräftige skalare Metriken, sowie geeignete Rekon-
struktionsverfahren und umfassende Visualisierungstechniken zu entwickeln.

In dieser Arbeit werden Rekonstruktions- und Visualisierungsverfahren basierend
auf DT-MRT-Daten vorgestellt, welche auf die Anforderungen in der Neurochirurgie
zugeschnitten sind. DT-MRT-Daten bieten großes Potential zur Verbesserung von Dia-
gnose und Planung in der Neurochirurgie. Ziel dabei ist es, wichtige Strukturen der
weißen Substanz bei Operationen zu erhalten und so postoperativ neurologische Defizi-
te zu vermeiden. Aus diesem Grund haben erste Kliniken damit begonnen, im Rahmen
von Forschungsprojekten die DT-MRT-Bildgebung für die präoperative Planung und
auch zur intraoperativen Visualisierung im Rahmen der Neuronavigation einzusetzen.

Das Ziel dieser Arbeit war es, die sich widersprechenden Vorgaben der Neurochir-
urgie besser zu verbinden. Zum einen wird beispielsweise die möglichst vollständige
Resektion von Gehirntumoren angestrebt, zum anderen gilt es, wichtige Funktionen
wie Motorik oder Sprache zu erhalten. Zu diesem Zweck wurden neue Verfahren zur
Rekonstruktion und Visualisierung entwickelt, die den Neurochirurgen sowohl bei der
präoperativen Planung als auch intraoperativ unterstützen.

1.2 Beiträge der Arbeit

Die Beiträge der Arbeit umfassen verschiedene Techniken zur Rekonstruktion und Vi-
sualisierung von Traktsystemen der weißen Substanz. Die Forschungsergebnisse wur-
den auf einschlägigen Konferenzen und in Zeitschriften veröffentlicht [79-95]. Im We-
sentlichen werden folgende Beiträge in dieser Arbeit vorgestellt und diskutiert:

( 1 ) REKONSTRUKTION – FILTERUNG VON TENSOREN
Trotz der Verwendung von Bildgebungs-Protokollen, bei denen verschiedene Mes-
sungen gemittelt werden, sind DT-MRT-Daten mit Rauschen behaftet. Um das
Rauschen zu verringern, wurden Filter eingesetzt, die aus der Videoverarbeitung
bekannt sind. Da eine Videosequenz und eine Sequenz von Schichtbildern eine ge-
wisse Parallele aufweisen, wurden die Vorteile der Videofilter zur Filterung von
DT-MRT-Daten eingesetzt.

( 2 ) REKONSTRUKTION – FIBER-TRACKING
Zur Rekonstruktion von Traktsystemen aus DT-MRT-Daten werden für gewöhn-
lich sogenannte Fiber-Tracking-Verfahren verwendet. In diesem Zusammenhang
wurde das Konzept der Evenly-Spaced-Streamlines adaptiert und verwendet, um
die Dichte der einzelnen Strömungslinien in Abhängigkeit der lokalen Anisotropie-
Werten zu steuern. Außerdem wurde ein alternatives Verfahren zur Rekonstrukti-
on von Traktsystemen entwickelt, das auf gerichtetem Volumenwachstum basiert.
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( 3 ) REKONSTRUKTION – KONNEKTIVITÄTSANALYSE
In Bereichen nahe des Kortex sind kleinere, sich verzweigende Bahnen angesie-
delt, so dass die Richtungsinformation aus den Tensordaten weniger deutlich aus-
geprägt ist. Aus diesem Grund wurde ein alternatives Verfahren zur Rekonstrukti-
on von Bahnen zwischen funktionellen Zentren entwickelt. Der auf A∗-Pfadsuche
basierende Algorithmus sowie weitere Verbesserungen durch eine ausgereiftere
Kostenfunktion und ein verfeinertes Suchgitter werden vorgestellt und diskutiert.

( 4 ) REKONSTRUKTION – HÜLLEN
Fiber-Tracking- und Konnektivitätsanalyse-Verfahren erzeugen im Allgemeinen
Bündel von Kantenzügen, welche die Form eines Traktsystems approximieren.
Für die intraoperative Visualisierung in Verbindung mit einem Neuronavigations-
system sind jedoch Hüllflächen besser geeignet, da sie als Grundlage für Randkur-
ven dienen können, die ins OP-Mikroskop eingeblendet werden. Basierend auf Er-
fahrungen im Bereich Netzgenerierung [84-86] konnten verschiedene Techniken
zur Generierung von Hüllen entwickelt werden, darunter ein Ansatz basierend
auf Tetraedrisierung und ein Verfahren, das Isoflächen nutzt.

( 5 ) REKONSTRUKTION – VERZERRUNGSKORREKTUR
Für die Akquisition von DT-MRT-Daten werden im allgemeinen EPI-Sequenzen
verwendet, die jedoch zu Verzerrungsartefakten führen. Die rekonstruierten Trakt-
systeme sind daher ebenfalls verschoben. Um die Verzerrungen zu korrigieren
und die DT-MRT-Daten für die Neuronavigation nutzen zu können, wurde ein
Verfahren zur nicht-linearen Registrierung verwendet. Die Verarbeitungsschritte
und Ergebnisse aus dieser Vorgehensweise wurden evaluiert und werden disku-
tiert.

( 6 ) VISUALISIERUNG – FIBER-TRACKING
Zur Visualisierung der rekonstruierten Traktsysteme wurden verschiedene Ver-
fahren entwickelt. Abhängig von den Anisotropie-Werten der lokalen Diffusion
wurde die Transparenz der einzelnen Fibers reguliert, so dass dominante Trakt-
systeme visuell deutlicher hervortreten. Außerdem wurde in Verbindung mit dem
Verfahren zur Konnektivitätsanalyse verschiedene Farb-Transferfunktionen vor-
gestellt, welche die lokalen Kosten oder Anisotropie-Werte kodieren. Für die Vi-
sualisierung der Fibers wurde ein hybrides Verfahren entwickelt, das auf Drei-
ecksstreifen und Point-Sprites basiert. Die resultierende Visualisierung ist von ho-
her visueller Qualität, gleichzeitig kann aber auch eine große Menge von Fibers in
Echtzeit dargestellt werden.

( 7 ) VISUALISIERUNG – HÜLLEN
Zur Visualisierung der Hüllen wurden Per-Pixel-Lighting und Transparenz einge-
setzt. Dadurch ist es möglich, die Struktur der Hüllen genau zu analysieren und
die Qualität der Hüllen visuell zu überprüfen. Die Techniken zur Visualisierung
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von Hüllen wurden in Verbindung mit den Rekonstruktionsverfahren für Hüllen
entwickelt.

( 8 ) VISUALISIERUNG – MULTIMODALE VISUALISIERUNG
Um die rekonstruierten Traktsysteme, die zugehörigen Hüllen sowie funktionelle
Zentren aus fMRI gleichzeitig in ihrem anatomischen Kontext zu visualisieren,
ist eine multimodale Visualisierung mit anatomischen MR-Daten erforderlich. Die
entsprechenden Visualisierungstechniken und ihre Vorzüge für den Einsatz in der
Neurochirurgie wurden untersucht.

Die Entwicklung von Rekonstruktions- und Visualisierungstechniken für DT-MRT-Da-
ten ist ein aktives Forschungsgebiet. Aus diesem Grund sind die vorgestellten Algorith-
men und Visualisierungsverfahren nicht als endgültige Lösung bestehender Fragestel-
lungen zu verstehen, sodern als aktuelle Forschungsbeiträge im Rahmen einer fortlau-
fenden Entwicklung. Die einzelnen Kapitel stellen verschiedene Verfahren zur Verar-
beitung von DT-MRT-Daten vor, die im Hinblick auf Anwendungsmöglichkeiten in der
Neurochirurgie entwickelt wurden. Der potentielle Nutzen des jeweiligen Verfahrens
wird am Ende eines jeden Kapitels diskutiert. Die Ergebnisse sind vielversprechend,
eine umfassende klinische Evaluation befindet sich momentan jedoch noch in Bearbei-
tung.

1.3 Überblick

In dieser Arbeit wird eine Reihe neuer Methoden zur Rekonstruktion und Visualisie-
rung von Traktsystemen der weißen Substanz, basierend auf DT-MRT-Daten, vorge-
stellt. Die Arbeit gliedert sich in drei Hauptteile: Der erste Teil (Kapitel 1 and 2) beginnt
mit einer Einleitung und erläutert den medizinischen Hintergrund neurochirurgischer
Eingriffe. Der zweite Teil (Kapitel 3 bis 7) beschreibt verschiedene Rekonstruktionsver-
fahren basierend auf DT-MRT-Daten. Im dritten Teil (Kapitel 8 bis 10) werden Visualisie-
rungsverfahren vorgestellt, die der geeigneten Darstellung der rekonstruierten Struktu-
ren im medizinischen Umfeld dienen.

Teil I – Kapitel 2 behandelt den medizinischen Hintergrund neurochirurgischer Ein-
griffe. Das Kapitel beginnt mit einem kurzen Abriss der Geschichte der Neurochirurgie,
beschreibt dann verschiedene Krankheitsbilder, die eine neurochirurgische Behandlung
erfordern, und gibt einen Einblick in die Ausrüstung des OPs und zur Anwendung des
Neuronavigationssystem. Beendet wird das Kapitel mit einer Einführung in die ver-
schiedenen Bildgebungsmodalitäten, die in der Neurochirurgie bevorzugt Anwendung
finden.

Teil II – Kapitel 3 erläutert zunächst die Grundlagen der Tensor-Rekonstruktion. Im
weiteren Verlauf werden Verfahren zur Quantifizierung der Tensor-Form, zur Tensor-
Interpolation und zur Filterung vorgestellt. Dieses Kapitel beinhaltet fundamentale In-
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formationen zur Tensor-Rekonstruktion und -Verarbeitung, die als Grundlage für die
folgenden Kapitel dienen.

Teil II – Kapitel 4 bietet eine Einführung zu den sog. Fiber-Tracking-Algorithmen.
Dabei werden zwei grundlegende Verfahren vorgestellt: Zum einen die Verfolgung von
Strömungslinien, zum anderen ein Verfahren basierend auf Tensor-Deflection. Außerdem
werden verschiedene Möglichkeiten zur Selektion einzelner Traktsysteme aufgezeigt.
Im weiteren Verlauf des Kapitels werden fortgeschrittene Verfahren beschrieben, dar-
unter ein Konzept zur adaptiven Abstandskontrolle zwischen einzelnen Fibers, sowie
eine Alternative zum Fiber-Tracking basierend auf gerichtetem Volumenwachstum.

Teil II – Kapitel 5 beschreibt ein Verfahren zur Rekonstruktion neuronaler Verbin-
dungen zwischen funktionellen Zentren, wie z.B. zwischen dem Broca- und Wernicke-
Sprachzentrum. Da in kortikalen und subkortikalen Bereichen die anisotrope Diffusion
weniger ausgeprägt ist, wird ein alternatives Verfahren vorgestellt, das die komplet-
te Tensorinformation nutzt. Das Verfahren basiert auf Pfadsuche und verwendet einen
Suchbaum und eine Kostenfunktion, die auf der lokalen Tensor-Information basiert, um
mögliche neuronale Verbindungen zu rekonstruieren.

Teil II – Kapitel 6 widmet sich der Fragestellung, wie die rekonstruierten Bahnen aus
Kapitel 4 und 5 für den intraoperativen Einsatz genutzt werden können. Da das direk-
te Einblenden der Linienrepräsentation ins OP-Mikroskop eher verwirrend als nützlich
ist, wird eine alternative Darstellung benötigt. Zu diesem Zweck werden in diesem Ka-
pitel verschiedene Ansätze zur Generierung von Hüllen um die rekonstruierten Bahnen
vorgestellt. Die Hüllen dienen als Basis für Randkurven, welche in die Fokus-Ebene des
OP-Mikroskops eingeblendet werden und die für den intraoperativen Einsatz wesent-
lich besser geeignet sind.

Teil II – Kapitel 7 beschäftigt sich mit der Korrektur von Verzerrungen, welche durch
die Aufnahmetechik bei der DT-MRT-Bildgebung bedingt sind, da üblicherweise EPI-
Sequenzen verwendet werden. Zu Beginn des Kapitels werden die im Zusammenhang
mit EPI-Sequenzen entstehenden Bildgebungsartefakte beschrieben. Im weiteren Ver-
lauf des Kapitels wird ein nicht-lineares Verfahren zur Registierung erläutert, das zur
Verzerrungskorrektur eingesetzt wurde. Zum Abschluß des Kapitels werden Ergebnis-
se der Verzerrungskorrektur vorgestellt und diskutiert, welche die Vorteile der Korrek-
tur zeigen.

Teil III – Kaptiel 8 stellt verschiedene Verfahren zur Visualisierung von Bahnen
vor, die durch Fiber-Tracking oder Konnektivitätsanalyse gewonnen wurden. Zunächst
wird adaptive Transparenz in Abhängigkeit von den lokalen Diffusionseigenschaften
vorgestellt, wodurch dominante Bahnsysteme visuell hervortreten, während kleine Bah-
nen transparenter werden. Auf diese Weise wird die Aufmerksamkeit auf die wichtigen
Bahnsysteme gelenkt und sichergestellt, dass sie nicht durch kleine Bahnen verdeckt
werden. Ein weiterer Aspekt der in diesem Kapitel betrachtet wird, ist die Farbgebung
der Bahnen. Um Informationen wie beispielsweise die Werte der lokalen Anisotropie
oder Kostenfunktion visuell zu vermitteln, werden geeignete Farbschemata vorgestellt.
Abgerundet wird das Kapitel durch ein hybrides Verfahren zur Visualisierung von Bah-
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nen, das auf Dreiecksstreifen und Point-Sprites basiert und das sich durch visuelle Qua-
lität bei gleichzeitig hohen Frameraten auszeichnet.

Teil III – Kapitel 9 beschreibt die Visualisierung von Hüllen. Beleuchtung und Trans-
parenz sind wichtige Werkzeuge, um die Form und Qualität der Hülle bezüglich der
zugrunde liegenden Fiber-Tracking-Ergebnisse darzustellen.

Teil III – Kapitel 10 präsentiert und diskutiert Ansätze zur multimodale Visuali-
sierung, bei der anatomische MR-Daten zusammen mit Bahnen und Hüllen aus DT-
MRT sowie funktionellen Arealen dargestellt werden. Für die präoperative Planung lie-
fert die gleichzeitige Visualisierung anatomischer MR-Daten mit Strukturen der weißen
Substanz wichtige Informationen über die Lage und den Verlauf der Bahnen bezüglich
benachbarter Anatomie.



175

Teil IV

Abschließende Bemerkungen



176



177

Kapitel 11

Zusammenfassung

In den letzten Jahren wurden neurochirurgische Eingriffe durch die Entwicklung von
Navigationssystemen sowie durch Software für die präoperative Planung revolutio-
niert, welche den Chirurgen sowohl bei der Planung als auch intraoperativ unterstüt-
zen. Das Neuronavigations-System nutzt optisches Tracking, um die Position des OP-
Mikroskops während der OP zu verfolgen. Damit wird es möglich, den räumlichen Be-
zug präoperativer Planungsdaten zum OP-Situs herzustellen. Auf diese Weise können
die Ergebnisse umfangreicher Untersuchungen direkt während der OP genutzt werden,
z.B. Informationen über die Position funkioneller Zentren. Somit kann tumoröses Ge-
webe präziser und effektiver entfernt und das Risiko postoperativer Defizite für den
Patienten erheblich vermindert werden.

Weitere wichtige Entwicklungen zur Unterstützung neurochirurgischer Eingriffe
sind neue MR-Bildgebungsverfahren wie beispielsweise das DT-MRT-Verfahren, wel-
ches vor ungefähr einem Jahrzent entwickelt wurde. Die sich damit eröffnenden Mög-
lichkeiten, die Lage und den Verlauf neuronaler Bahnen in vivo zu ermitteln, stellen ein
großes Potential für die neurochirurgische Planung und OP-Durchführung dar. Ein an-
deres wichtiges Bildgebungsverfahren in der Neurochirurgie ist die funktionelle Bildge-
bung mit fMRI, die vor ungefähr 15 Jahren eingeführt wurde und die der Lokalisation
funktioneller Zentren dient. Der Einsatz von DT-MRT und fMRI für die präoperative
Planung und intraoperativ in Verbindung mit dem Neuronavigations-System ermög-
licht eine zielgenaue Planung und Durchführung von OPs. Zu diesem Zweck ist jedoch
geeignete Software zur Aufbereitung und Auswertung der Daten erforderlich, mit der
die gemessenen Daten erst klinisch nutzbar werden.

In dieser Arbeit werden eine Reihe verschiedener Ansätze zur Rekonstruktion und
Visualisierung neuronaler Bahnen aus DT-MRT-Daten vorgestellt, welche die Planung
und Durchführung neurochirurgischer Eingriffe unterstützen. Generell lassen sich die
Arbeitsbereiche in zwei aufeinander aufbauende Stufen unterteilen, die einerseits die
Rekonstruktion neuronaler Strukturen, andererseits die Visualisierung der Rekonstruk-
tions-Ergebnisse umfassen. Daraus ergeben sich die Teile dieser Arbeit, welche eine Ein-
führung und Motivation (Teil I), die Rekonstruktions- (Teil II) sowie die Visualisierungs-
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verfahren (Teil III) beinhaltet. Im Folgenden werden die einzelnen Teile zusammenge-
fasst, mit Fokus auf den wesentlichen Beiträgen der Arbeit.

Im ersten Teil der Arbeit wird fundamentales Wissen zum medizinischen Hinter-
grund vermittelt. Beginnend mit einem kurzen Rückblick in die Geschichte der Neuro-
chirurgie, bietet dieser Teil eine Einführung zu Krankheitsbildern, neuro-anatomischen
Strukturen und neurochirurgischen Eingriffen. Schließlich werden die verschiedenen
MR-Bildgebungsverfahren vorgestellt, auf die in der Arbeit verwiesen wird. Die in die-
sem Teil präsentierten Randbedingungen und Grundlagen sind eine wichtige Voraus-
setzung für das Verständnis der medizinischen Fragestellungen.

Der zweite Teil der Arbeit beginnt mit einer Ausführung über Tensor-Rekonstruktion
und -Quantifizierung. Im Anschluss daran wird ein neues Verfahren zur Filterung von
Tensoren vorgestellt, das in Anlehnung an Video-Filter entwickelt wurde.

Basierend auf den rekonstruierten und gefilterten Tensoren werden im darauffolgen-
den Kapitel Fiber-Tracking-Algorithmen zur Rekonstrukton von Bahnsystemen vorge-
stellt. Zur Rekonstruktion einzelner Bahnsysteme für den klinischen Einsatz wurde ein
Verfahren basierend auf Regions-of-Interest (ROIs) entwickelt, welche mit Bool’schen
Operatoren verknüpft werden. Damit wurde eine flexible, patientenspezifische Extrak-
tion einzelner Bahnsysteme möglich. Des Weiteren wurde das Verfahren der orientier-
ten Filter implementiert und in einer Auswertung der Genauigkeitsgewinn beim Fiber-
Tracking untersucht. Als Fazit lässt sich festhalten, dass orientierte Filter aufgrund der
hohen Rechenzeiten im Verhältnis zum Genauigkeitsgewinn für den klinischen Einsatz
eher weniger geeignet sind, auch wenn Kreuzungsstellen potentiell besser berücksich-
tigt werden. Außerdem wird ein neues Verfahren vorgestellt, das auf dem Konzept der
Evenly-Spaced-Streamlines beruht und zur adaptiven Abstandskontrolle zwischen ein-
zelnen Fibers eingesetzt werden kann. Aus klinischer Sicht ist dies von großer Bedeu-
tung, da die für den Chirurgen relevanten Bahnsysteme auf diese Weise gut sichtbar
sind und nicht von kleinen, peripheren Bahnen verdeckt werden. Als weiteres Verfahren
zur Rekonstruktion von Bahnen wurde das Directional-Volume-Growing entwickelt.
Das Verfahren stellt einen Übergang zur Konnektivitätsanalyse dar, da in beiden Fällen
pro Voxel mehrere mögliche Expansionsrichtungen in Betracht gezogen werden.

Das nächste Kapitel beschäftigt sich mit der Verbindungsanalyse zwischen Sprach-
zentren. Da es sich hierbei um kleine Bahnsysteme handelt, die mit konventionellen
Verfahren nur schwer zu rekonstruieren sind, wurde ein Algorithmus basieren auf A∗-
Pfadsuche entwickelt. Mit Hilfe einer Kostenfunktion ist es möglich, pro Voxel mehre-
re geeignete Richtungen zu analysieren, je nach lokaler Tensor-Information. Der Vor-
teil des Verfahrens ist, dass der Informationsgehalt planarer und sphärischer Tensoren
adäquat wiedergegeben wird, indem mehrere gleich wahrscheinliche Expansionsrich-
tungen ausgewertet werden. Im klinischen Einsatz konnten damit bei Tumor-Patienten
zuverlässig Sprachbahnen rekonstruiert werden. Das Verfahren wird momentan noch
eingehend klinisch evaluiert.

Im darauf folgenden Kapitel wird die Generierung von Hüllen behandelt. Die re-



Zusammenfassung 179

konstruierten Bahnen dienen als Grundlage für die OP-Planung. Um die Bahnen jedoch
auch intraoperativ im OP-Mikroskop in Form von Randkurven darstellen zu können,
werden zunächst Hüllen um die Bahnen benötigt. Zu diesem Zweck wurden zwei al-
ternative Verfahren vorgestellt: Zum einen eine Technik, die Tetraedrisierung und 3D-
Alpha-Shapes nutzt, zum anderen ein Ansatz basierend auf Rasterisierung und Isoflä-
chen. Für den klinischen Einsatz ist das zweite Verfahren besser geeignet, da der Benut-
zer mehr Einflussmöglichkeiten auf die Passgenauigkeit der resultierenden Hülle hat.
Diese Verfahren sind von entscheidender Bedeutung, um die Rekonstruktionsergebnis-
se auch intraoperativ verfügbar zu machen.

Ein anderes wichtiges Thema, das in einem weiteren Kapitel behandelt wird, ist die
Korrektur von Verzerrungsartefakten. Aufgrund von Suszeptibilitätsartefakten sind die
DT-MRT-Daten verzerrt, so dass die rekonstruierten Strukturen nicht korrekt platziert
sind. Mit Hilfe von nicht-linearer Registrierung wurden die Verzerrungen korrigiert
und der Einfluss der Verzerrungen auf die Lage von Bahnen gemessen. Für die kli-
nische Anwendung sind diese Messergebnisse und Korrekturmöglichkeiten von großer
Bedeutung, um die Auswirkungen der Verzerrungsartefakte einschätzen und korrigie-
ren zu können.

Ein weiterer wichtiger Teil der Arbeit ist die geeignete Visualisierung der in Teil II
rekonstruierten Strukturen. Im Wesentlichen geht es dabei um die Visualisierung der re-
konstruierten Bahnen, die Darstellung der Hüllen und die multimodale Visualisierung
von anatomischen MR-Daten mit rekonstruierten Strukturen.

Bei der Visualisierung von Bahnen spielt zum einen die Farbgebung eine Rolle, mit
der zusätzliche Informationen vermittelt werden können. Aus diesem Grund wurden
eine Reihe verschiedener Farb-Transferfunktionen entwickelt. Des Weiteren ist die effi-
ziente Visualisierung von Fiber-Tracking-Ergebnissen in Echtzeit essentiell, um die Ak-
zeptanz durch die klinischen Benutzer zu gewährleisten. Ein einfaches Verfahren, das
dieser Anforderung entspricht, ist das Rendern von Linien. Zur Beleuchtung der Linien
wurde das Verfahren der Illuminated-Streamlines implementiert und weiter verbessert.
Durch adaptive Transparenz ist es außerdem möglich, kleine Bahnsysteme in Bereichen
mit niedriger FA visuell zu unterdrücken, so dass das Augenmerk auf die besonders
relevanten Bahnen gelenkt wird. Alternativ zum Linien-Rendering wurde ein hybrides
Verfahren basierend auf Dreiecksstreifen und Point-Sprites entwickelt und vorgestellt,
das gegenüber den Linien eine Reihe visueller Vorteile besitzt. Mit den verfügbaren
Verfahren ist eine flexible, echtzeitfähige Visualisierung von Bahnen für die klinische
Anwendung gewährleistet.

Ein weiteres Kapitel behandelt die Visualisierung von Hüllen für die präoperative
Planung. Auch wenn das Ziel der Hüllen darin besteht, rekonstruierte Bahnen geeignet
im OP-Mikroskop darzustellen, ist eine 3D Visualisierung für die Qualitätskontrolle bei
der Erstellung der Hülle notwendig. Durch Transparenz ist der Vergleich einer Hülle
mit der umhüllten Bahn noch besser möglich.

Das darauf folgende Kapitel beschäftigt sich mit der multimodalen Darstellung re-
konstruierter Strukturen und anatomischer oder funktioneller Daten. Zur Visualisie-
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rung der anatomischen MR-Daten wird direktes Volumen-Rendering verwendet, wobei
Tumore vorsegmentiert und als Tagged-Volumes durch eigene Transferfunktion hervor-
gehoben werden können. Für die präoperative Planung ist eine multimodale Visuali-
sierung von großer Bedeutung, um neuronale Strukturen und funktionelle Zentren in
ihrem anatomischen Kontext betrachten zu können.

Ein Großteil der in dieser Arbeit entwickelten Verfahren zur Verarbeitung und Vi-
sualisierung von DT-MRT-Daten wurde im klinischen Umfeld getestet und teilweise
durch klinischen Experten evaluiert, mit vielversprechendem Ergebnis. Die vorgestell-
ten Verfahren leisten damit einen Beitrag zur Forschung in diesem Gebiet, wodurch in
Zukunft das Risiko neurochirurgischer Eingriffe für den Patienten verringert werden
kann.
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Kapitel 12

Ausblick

Trotz der exzessiven Forschungsaktivitäten im Bereich DT-MRT gibt es eine Reihe of-
fener Fragen sowie weiterführende Betätigungsfelder. Im Wesentlichen können zwei
große Forschungsbereiche unterschieden werden, zum einen das Gebiet der Bildge-
bungsphysik und Sequenzentwicklung, zum anderen die Verarbeitung und Visualisie-
rung der resultierenden Tensor-Daten. Im Folgenden werden zukünftige Herausforde-
rungen und mögliche Betätigungsfelder in beiden Gebieten vorgestellt:

Ursache der gerichteten Diffusion in der weißen Substanz: Mit Hilfe von DT-MRT werden
Variationen der Diffusion von Wasser im Gewebe gemessen, insbesondere die Rich-
tungsabhängigkeit der Diffusion, was das Grundprinzip dieser MR-Technik darstellt.
Nach dem Stand heutiger Literatur ist das Phänomen gerichteter Diffusion in der wei-
ßen Substanz aus physikalischer Sicht jedoch noch nicht vollständig erforscht. Entspre-
chend den Versuchsergebnissen, die in [112] zusammengefasst sind, ist die Umhüllung
der Nerven durch Myelin keine Voraussetzung für gerichtete Diffusion, ebensowenig
wie das Vorhandensein von Zellmembranen, die sich durchaus als wasserdurchlässig
erwiesen. Aus diesem Grund ist es wünschenswert, den genauen Ursprung dieser bio-
physikalischen Barrieren zu erforschen, um wiederum genauere Rückschlüsse von den
gemessenen Werten auf die biologischen Strukturen ziehen zu können.

Genauigkeit und Zuverlässigkeit von Rekonstruktionsverfahren: Ein benachbartes For-
schungsgebiet ist die Bestimmung der Genauigkeit von Filterungs- und Regularisie-
rungstechniken, ebenso die Analyse der Zuverlässigkeit von Rekonstruktionsalgorith-
men. Ohne Kenntnis darüber, ob die rekonstruierten Strukturen mit den neuronalen
Strukturen übereinstimmen, lässt sich schwer eine Aussage über ihre Zuverlässigkeit
treffen. Im Fall von Fiber-Tracking-Algorithmen besteht die Fragestellung darin, in wel-
chem Umfang neuronale Bahnen durch die rekonstruierten Strukturen repräsentiert
werden. Ein erster Schritt in diese Richtung wird von einer Arbeit geleistet, die in [28]
publiziert wurde. Darin werden rekonstruierte Bahnsysteme mit den neuronalen Bah-
nen verglichen, die im Rahmen einer Tracer-Untersuchung in histologischen Schnitten
identifiziert werden konnten. Aufgrund der Komplexität der Strukturen im Gehirn und
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aufgrund biophysikalischer Grenzen kann jedoch davon ausgegangen werden, dass die
rekonstruierten Modelle nur eine Annäherung an reale Strukturen sind. Trotzdem ist es
für den Einsatz von Rekonstruktionsverfahren wichtig zu wissen, wie gut diese Annä-
herungen die realen Strukturen widerspiegeln.

Verbesserung der Auflösung von DT-MRT-Daten: Im Hinblick auf die Bildgebung ist ei-
ne höhere Auflösung der Daten wünschenswert, um die lokalen Diffusionseigenschaf-
ten genauer bestimmen zu können. Eine Verbesserung der räumlichen Auflösung geht
jedoch einher mit einem Anstieg des Rauschens, was die Zuverlässigkeit der Mess-
werte verringert. Eine Alternative zur Verbesserung des Signal-zu-Rausch-Verhälntisses
(SNR) bieten MR-Scanner mit höheren Feldstärken, wie z.B. die neuen 3T Scanner, wel-
che bereits an einigen Instituten installiert wurden.

Verzerrungsfreie DT-MRT-Sequenzen: Ein weiterer Punkt für zukünftige Forschung
sind verbesserte Bildgebungs-Sequenzen, bei denen unerwünschte Effekte wie die Sus-
zeptibilitätsartefakte in Kapitel 7 vermieden werden. Die STEAM-Sequenz [111] ist ein
Beispiel für eine solche MR-Sequenz, die wesentlich geringere Verzerrungsartefakte
aufweist. Für den Einsatz der Bilddaten in der Neurochirurgie sind verzerrungsfreie
Sequenzen von großem Interesse, da in diesem Fall auf aufwändige Korrekturverfah-
ren verzichtet werden kann.

Lokale Diffusionseigenschaften präziser erfassen: In der aktuellen Forschung wurde ein
Bildgebungsverfahren vorgestellt, das mit High Angular Resolution Diffusion Imaging
(HARDI) bezeichnet wird [145]. Dabei handelt es sich um ein Verfahren, bei dem die
Gradienten zur Diffusionsmessung in viele verschiedene Richtungen ausgerichtet wer-
den, welche möglichst gleichmäßig auf der Oberfläche einer Einheitskugel verteilt sind.
Nach [41] werden die gemessenen Diffusionswerte zur Rekonstruktion eines Tensors
höheren Rangs verwendet, der die lokalen Diffusionseigenschaften besser repräsentiert.
Auch wenn sich einige aus der DT-MRT-Rekonstruktion und -Verarbeitung bekannten
Verfahren ohne weiteres auf Tensoren höherer Ordnung übertragen lassen, z.B. Fiber
Tracking [49] oder das Verfahren zur Konnektivitätsanalyse in Kapitel 5, müssen beson-
dere Anforderungen berücksichtigt werden. Beispielsweise werden neue skalare Me-
triken zur Charakterisierung von Regionen mit anisotroper Diffusion benötigt, ebenso
adäquate Rekonstruktions-Algorithmen, welche den höheren Informationsgehalt von
HARDI-Tensoren nutzen. Die Möglichkeit, umfassendere Informationen über die loka-
len Diffusionseigenschaften zu gewinnen, ebnen den Weg für präzisere Rekonstruktions-
Verfahren, was ein interessantes Aufgabengebiet für die zukünftige Forschung ist.

Klinische Evaluierung der Verfahren: Ein weiterer wichtiger Aspekt ist die klinische
Evaluierung der implementierten Algorithmen. Damit wurde bereits durch einen Neu-
rochirurgen und zwei Medizinstudenten begonnen, welche mit der DT-MRT-Software
arbeiten, die im Rahmen dieser Arbeit entwickelt wurde. Von besonderem Interesse
sind dabei die Algorithmen für Fiber-Tracking und Konnektivitätsanalyse, ebenso das
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Verfahren zur Generierung von Hüllen, die momentan in einer retrospektiven Studie
evaluiert werden. Für die Zukunft sind weitere Auswertungen geplant, um die Genau-
igkeit und Zuverlässigkeit der Algorithmen im klinischen Einsatz zu überprüfen.
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