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Abstract

In this paper a new indirect approach is presented for anisotropic quadrilateral mesh
generation based on discrete surfaces. The ability to generate grids automatically
had a pervasive influence on many application areas in particularly in the field
of Computational Fluid Dynamics. In spite of considerable advances in automatic
grid generation there is still potential for better performance and higher element
quality. The aim is to generate meshes with less elements which fit some anisotropy
criterion to satisfy numerical accuracy while reducing processing times remarkably.
The generation of high quality volume meshes using an advancing front algorithm
relies heavily on a well designed surface mesh. For this reason this paper presents
a new technique for the generation of high quality surface meshes containing a
significantly reduced number of elements. This is achieved by creating quadrilateral
meshes that include anisotropic elements along a source of anisotropy.

Key words: mesh generation, surface mesh, quadrilateral, anisotropy,
unstructured meshes, advancing front approach

1 Introduction

The generation of surface meshes has been a widely explored topic. Algorithms
for the generation of triangular surface meshes are currently used in many dif-
ferent industrial and research applications. Recently, attention has also been
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given to the generation of quadrilateral surface meshes (1; 2; 3; 4). The rea-
son is that for a given node density, quadrilateral meshes contain only half as
many elements as triangular meshes. The saving of elements continues when
a volume mesh is generated using, for example, an advancing front method. If
quadrilateral meshes serve as starting point for the volume mesh creation, the
resulting hexahedral meshes provide the same quality (node density) as the
equivalent tetrahedral mesh derived from a triangular surface but comprise
a significantly lower number of volume elements, which is a highly desirable
characteristic. For reasons of better accuracy and efficiency, many applications
prefer quadrilateral elements for two-dimensional meshes and hexahedral ele-
ments for three-dimensional meshes (5; 6).

A second possibility to reduce the number of surface elements, and as a re-
sult the number of volume elements, is to introduce anisotropic elements.
Anisotropic meshes have the property that the density of nodes is direction de-
pendent. Several previous attempts have been made for developing algorithms
to gain anisotropic triangular meshes (7; 8; 9; 10; 11). Lee (12) presented a
method to transform these meshes into quadrilateral meshes preserving the
anisotropic characteristic of the triangular mesh.

The goal of this paper is to extend the benefits of unstructured quadrilat-
eral meshes by including anisotropic elements in indirect mesh generation.
Contrary to the approach presented by Lee (12), our algorithm works on
isotropic triangular meshes and incorporates anisotropic quadrilaterals along
a line source of anisotropy defined by the user. Thereby, quasi-structured
rows of anisotropic quadrilaterals are generated along the source. This ap-
proach provides the possibility to generate application optimized quadrilateral
meshes with a significantly reduced number of elements. Based on these sur-
face meshes, hexahedral meshes may be generated according to the approaches
described by (13; 14; 15).

The paper is organized as follows: In Section 2, a smoothing approach for
surface meshes in 3D is presented. The method is based on a local Least
Square fit of the surface. In Section 3, the techniques for the generation of
anisotropic quadrilaterals along a source of anisotropy are described. Finally,
an example is presented demonstrating the benefits of our approach. Possible
future work is also discussed.

2 Method

The algorithm for anisotropic quadrilateral mesh generation presented in this
paper works on high resolution triangular meshes in 3D and is completely
independent of an analytic surface description. This is important especially
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when only legacy triangular meshes are available. The initial triangular meshes
are the base for the anisotropic quadrilateral mesh generation. In addition,
the user has to specify a source of anisotropy and a maximum anisotropy. The
source of anisotropy is given through a subset of initial front edges connected
to a line. Along the anisotropy source, quadrilateral elements with maximum
anisotropy will be found. With growing distance to the source the anisotropy
decreases depending on the mesh size of the underlying triangular mesh.

For reasons of unrestricted applicability the algorithm was extended to curved
surfaces in 3D. For this purpose a local surface approximation was imple-
mented to enable smoothing during three-dimensional surface mesh gener-
ation. Smoothing operations may then be performed by moving nodes on
the approximated surface. Well established smoothing techniques commonly
used are designed for two-dimensional meshes, for this reason they had to be
adapted to three dimensions and combined with the surface approximation.

This paper therefore comprises two major contributions:

- An algorithm for the indirect generation of anisotropic quadrilateral meshes
and

- an approach for smoothing of arbitrary three-dimensional surface meshes.

In this section we continue with the presentation of the techniques developed
for smoothing of three-dimensional meshes. In Section 3, the algorithm for the
generation of anisotropic quadrilaterals is presented.

2.1 Surface Approximation

The presented approach for local surface approximation provides the possi-
bility to process three-dimensional surface meshes completely independent of
analytic CAD data. This is of special importance in case of legacy triangu-
lar meshes where a parametric representation is not available. Löhner (16)
designates a number of situations where this occurs.

The surface approximation is used to perform smoothing operations, i.e. to
move nodes on the approximated surface. For each node that has to be smoothed,
an analytic surface is determined by the following conditions: (a) The surface
intersects the given node and (b) the surface is a best (Least Squares) fit to the
fan of neighbor nodes around the given node, i.e. all direct neighbor nodes are
as close to the surface as possible. The analytic surface is locally approximated
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by a biquadratic Taylor polynomial (where u, v are the 2D parametric coordi-
nates of each node relative to the center node positioned at (us, vs) = (0, 0)):

F (u, v) = uFu + vFv +
u2

2
Fuu + uvFuv +

v2

2
Fvv

where the coefficients Fu, Fv, Fuu, Fuv and Fvv are the unknowns. They are
actually the derivatives of the biquadratic polynomial. With the help of an
exponential projection the 3D position of all neighbor nodes is transformed
into 2D parameter space. Afterwards, the coefficients of the biquadratic form
are computed using a Least Squares approach by solving an appropriate sys-
tem of linear equations. The required computations and processing steps are
given in detail in Section 2.1.1 and 2.1.2. The analytic surface approximation
is essential for performing smoothing operations in 3D.

2.1.1 2D Parameter Space Coordinates

Smoothing of a node Ns is performed by moving the node on an analytic sur-
face that runs through the node itself and best fits all surrounding neighbor
nodes connected to Ns by an edge. For a local surface approximation around Ns

the first and second partial derivatives of the approximating biquadratic poly-
nomial must be determined. To compute the derivatives Fu, Fv, Fuu, Fuv and
Fvv, an almost isometric parameterization F (ui, vi) = Ni of the neighborhood
of Ns with Ns = (0, 0, 0) = F (0, 0) = F (us, vs) is needed. A parameterization
is thereby called isometric if ‖Fu‖ ≈ 1, ‖Fv‖ ≈ 1 and FuFv ≈ 0.

The exponential projection that was selected as parameterization takes length
and angle of neighbor edges into account. Furthermore, the order of the nodes
around the center node is maintained. For every neighbor node Ni the co-
ordinates (ui, vi) in 2D parameter space are determined using the following
exponential projection:

exp(Ni) 7→ ‖Ni‖



cos(
i−1
∑

j=1

α̃j), sin(
i−1
∑

j=1

α̃j)





where Ni are the coordinates of node i in 3D and αi is the angle between the
neighbor nodes Ni, Ni+1. The angles α̃i are thereby computed by a function
flat that scales the angles αi so that the sum of the projected angles α̃i

amounts to 2π (Figure 1). These conditions together with the projection of
the central node Ns uniquely define a parameterization F (exp(Ni)) = Ni.
Do Carmo (17) showed that this is a local isometric parameterization.
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α i
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Fig. 1. Function flat scales the angles αi between two neighbor nodes Ni and Ni+1.
Resulting angles α̃i amount to 2π.

Regarding the choice of flat, there are several possibilities. The current im-
plementation uses uniform scaling:

α̃i = flat(αi) = αi

2π
∑

j αj

.

This definition of flat scales the angles in a uniform manner so that the
sum of angles α̃i amounts to 2π. This approach works for any configuration of
neighbors around a node and maintains the order of neighbor nodes around
the center node (18).

2.1.2 Computation of Derivatives

After having determined a parameterization by computing the exponential
projection described above, the derivatives Fu, Fv, Fuu, Fuv and Fvv are ob-
tained by solving a linear system of equations

V ~F = N .

The rows of matrix V contain for each neighbor node i the coefficients

(ui, vi,
u2

i

2
, uivi,

v2

i

2
). The matrix N contains the 3D coordinates Ni of all neigh-

bor nodes. After solving the system of equations the vector ~F contains the
derivatives, i.e. ~F = (Fu, Fv, Fuu, Fuv, Fvv)

T . The solution of the system of
equations is computed using a Least Squares or Least Norm approach:

~F =



























VT (VVT )−1N : n < 5

V−1N : n = 5

(VTV)−1VTN : n > 5

where n is the total number of neighbor nodes Ni. A formal proof for issues
like invertability and numerical stability is not given at this point. However,
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depending on the number of neighbor nodes, several conditions for invertability
of the respective matrix are available:

- If the center node is surrounded by three neighbor nodes, the matrix is
invertible if the neighbor nodes are not identical.

- In case of four neighbor nodes, the matrix is invertible if the neighbor nodes
are not identical and do not lie on a line which is rather improbable and in
general not possible in a valid mesh.

- If the number of neighbor nodes amounts to five, the matrix is invertible
if the neighbor nodes are not identical and if Ns located at the origin does
not lie on a quadric defined by the neighbor nodes. In general, a quadric is
uniquely defined by five points in a plane. Again, the case that the center
node also lies on the quadric is very improbable and also not possible in a
valid mesh.

These conditions are derived by considering determinants of the respective
matrix. If no solution is found, the smoothing process is aborted and the center
node Ns remains at its original position. However, an empirical observation is
that these cases are so improbable or even impossible in a valid mesh that the
smoothing procedure always succeeded so far.

The solution of the system of equations provides the derivatives Fu, Fv, Fuu, Fuv

and Fvv of the biquadratic Taylor polynomial. After smoothing in 2D param-
eter space this polynomial allows to reposition nodes on the analytic surface
in 3D space. The following section gives a short overview of how this local
surface fit is used for smoothing of surface meshes in 3D.

2.2 3D Smoothing

For smoothing of two-dimensional quadrilateral meshes there exists a number
of well-established techniques (1; 2; 20). A selection of 2D smoothing tech-
niques were adapted to 3D by combining them with the local surface approx-
imation presented above. The current implementation of 3D smoothing uses
Laplacian, length, angle and isoparametric smoothing in combination with the
local surface fit.

A problem arising with the surface approximation approach is that the trans-
formation from 3D space to 2D parameter space by applying the exponential
projection does not preserve angles or lengths. For this reason the smooth-
ing operations had to be modified and adjusted if necessary. Furthermore,
decisions had to be made which part of the smoothing operation has to be
performed in 3D or in 2D, i.e. it has to be considered if it is more convenient
to perform the smoothing operation before the exponential projection or af-
terwards. Once a node movement has been carried out in 2D, the new node
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position in 3D is easily computed using the local surface fit, thus preserving
the geometric shape of curved surfaces. The accuracy of the approximation
is limited by the underlying triangular mesh which is assumed to be of high
resolution. In Figure 2 the quality of the 3D smoothing approach based on the
local surface approximation is demonstrated.

Fig. 2. Air plane engine, smoothing of three-dimensional surface. Left: Triangular
mesh. Right: Quadrilateral mesh, smoothing with local surface approximation.

Since triangular meshes usually resolve geometric detail with an appropriate
resolution of the mesh, i.e. the resolution of the mesh is sufficiently high, in
most cases this approach provides adequate exactness. The divergence between
original triangular mesh and quadrilateral mesh was investigated in (19) by
measuring Hausdorff distances. These measurements showed that the shape
of the objects is well preserved even after repeated smoothing passes during
quadrilateral mesh generation.

3 Anisotropic Quadrilateral Meshes

The indirect generation of quadrilateral surface meshes reduces the number of
mesh elements to approximately fifty percent while keeping the original node
density which stands for quality of resolution. The number of elements can be
further reduced by introducing anisotropic elements. For a fluid flow compu-
tation anisotropic quadrilaterals may be used at parts of the mesh where a
lower resolution in one direction has no effect on the quality of the flow com-
putation, e.g. along the leading edge of an air plane wing. For the generation
of an anisotropic quadrilateral mesh the following steps are performed:

- The source of anisotropy is segmented according to the maximum anisotropy
that is required.

- Along the anisotropy source quasi-structured rows of isotropic quadrilaterals
are created.
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- These quadrilaterals are merged to obtain anisotropic quadrilaterals.
- A connection between the anisotropic quadrilaterals and the remaining tri-

angular mesh is established.
- The remaining triangular mesh is filled with isotropic quadrilaterals.

One major contribution of this work is an advancing front algorithm for the
generation of quasi-structured rows of isotropic quadrilaterals aligned to the
line source of anisotropy which are suitable for anisotropic merging. The re-
maining triangular mesh is transformed into an isotropic quadrilateral mesh
using our implementation of the Q-Morph algorithm (2). Both algorithms
make use of the surface approximation described in Section 2 which is essen-
tial for the required smoothing operations. The steps that are necessary for
anisotropic quadrilateral mesh generation are described in more detail in the
following sections.

3.1 Source of Anisotropy

A source of anisotropy that serves as origin of anisotropic elements has to be
specified by the user. Any series of initial front edges connected to each other
may be chosen as anisotropy source as long as the edges form a line. The
maximum anisotropy has to be specified by the user, too. The aim is to have
a maximum anisotropy at the source that decreases with growing distance
to the source depending on the actual mesh size of the underlying triangular
mesh.

3.2 Anisotropic Quadrilaterals

Anisotropic elements are generated using a novel approach which we called
Three-Step-Method. Starting with a triangular mesh, first isotropic quadrilat-
erals are created in a structured manner (step one). The anisotropic elements
are obtained by merging isotropic quadrilaterals (step two) and are connected

Fig. 3. Three-Step-Method. Left to right: Triangular mesh. Structured rows of
isotropic quadrilaterals. Anisotropic merge of quadrilaterals. Deletion of upmost
row of anisotropic quadrilaterals. Transition layer to triangular mesh.
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to the remaining triangular mesh (step three). The outlined three steps are
shown in Figure 3.

In more detail, the generation of anisotropic elements works as follows: The
line source of anisotropy is treated as initial front and several structured rows
of isotropic quadrilaterals are generated. The algorithm for the generation
of quadrilaterals for anisotropic merging thereby enforces the generation of
structured rows aligned to the boundary. Otherwise complications would oc-
cur when anisotropic merging is performed. The source is then segmented,
i.e. it has to be specified which source edges will be replaced by a single
anisotropic edge. At the beginning of the source and the end of the source
anisotropy slowly increases and decreases to avoid sudden changes in element
size. Figure 4 shows a segmented source for a maximum anisotropy of 1:3.

3

3

3

2
1

Fig. 4. Arrows indicate segmentation of anisotropy source (dashed line) for a max-
imum anisotropy of 1:3.

The isotropic structured quadrilaterals are then merged according to the seg-
mentation of the source to obtain anisotropic quadrilaterals. The uppermost
row of isotropic quadrilaterals is replaced by triangles that provide a transition
from the anisotropic quadrilaterals to the remaining triangular mesh. This is
necessary to keep the mesh closed and to avoid hanging nodes. After hav-
ing transformed all structured rows of isotropic quadrilaterals into anisotropic
quadrilaterals, the remaining triangular mesh is filled with isotropic quadri-
laterals.

This approach has two limitations: The wing of an airplane typically has a high
curvature at the leading edge leading to a dense sampling of surface points
and therefore a high number of triangular elements. Contrary, the more planar
parts of the wing are modeled with large triangles. This variation in element
size restricts the number of structured rows that can be generated starting
at the leading edge chosen as anisotropy source. A second limitation is that
the maximum anisotropy that can be achieved is 1:3 or 1:4. Otherwise, the
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transition from the anisotropic to the isotropic area would produce neighboring
elements that differ significantly in size as can be seen in Figure 5. As flow
computations require a smooth transition of size between neighboring mesh
elements, this is an undesirable feature. To overcome these limitations the
method was extended which is described below.

Fig. 5. Sudden transition from anisotropic to isotropic area appears in combination
with higher anisotropy.

3.3 Multi-Pass Approach

The multi-pass approach provides more flexibility with regard to the number
of anisotropic rows and allows a much higher anisotropy at the source. With a
growing distance to the source the anisotropy declines according to the current
mesh size of the underlying triangular elements. This is achieved by applying
the Three-Step-Method several times (Multi-Pass Three-Step-Method): The
first pass is identical to the Three-Step-Method described above, i.e. the source
of anisotropy is used as initial front, a number of structured rows of isotropic
quadrilaterals is generated and the isotropic quadrilaterals are merged to ob-
tain anisotropic quadrilaterals. The second and all further passes operate in
the same way with one essential difference: The top edges of the last row
of anisotropic quadrilaterals are used as new initial front. This guarantees
that the edge length fits better the actual edge size within the mesh so that
further structured rows can be generated. However, the merging of quadrilat-
erals starts for each pass at the anisotropy source, i.e. all quadrilateral rows
existing at this point receive a higher anisotropy. The final anisotropy at the
source is hence multiplicative and is obtained by computing the product of the
anisotropy relations of each pass (Figure 6). Each pass may have a different
anisotropy but the last pass should have a small anisotropy, i.e. 1:2, to obtain
a fluent transition to the remaining isotropic area.
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Fig. 6. Multi-Pass Three-Step-Method. Two left Figures: First pass, anisotropy 1:4.
Two right Figures: Second pass, anisotropy 1:2. Resulting anisotropy at source: 1:8.

3.4 Isotropic quadrilaterals

As soon as the generation of structured rows of anisotropic quadrilaterals is
accomplished, the remaining triangular mesh is transformed into an isotropic
quadrilateral mesh using an implementation of the Q-Morph algorithm (2).
The algorithm carefully converts and combines triangles of the background
mesh to obtain quadrilateral elements. Starting with an initial front enclos-
ing the domain to be gridded, the algorithm proceeds into interior regions by
constantly generating new quadrilaterals. For the creation of each new quadri-
lateral, the following processing steps are performed: The algorithm selects an
advancing front edge and chooses side edges from the mesh by considering
angle criterions. The top edge is then created using swap operations if neces-
sary. The triangles within this new quadrilateral are removed from the mesh,
the new element consisting of the processed advancing front edge, the side
edges and the top edge is inserted into the mesh and the advancing front is
updated. These operations are repeated until the whole domain is covered
with quadrilaterals. Thereby, a precondition for an all-quadrilateral mesh is
an even number of initial front edges which has to be considered when patches
are defined (otherwise, a single triangle remains).

4 Results

The quadrilateral mesh generator was tested with a series of triangular meshes
and proved to be capable to handle quite different geometries. With regard
to anisotropic elements, the focus was on the air plane application area where
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anisotropic elements along the leading edge of a wing are highly desirable.
The reason is that along the leading edge the air flow changes little, thus a
coarse sampling is sufficient. Contrary, strong air flow gradients are observed
when following the air flow across the wing. These are optimal preconditions to
introduce anisotropic quadrilaterals. Regarding the geometry of an air plane
wing, a high curvature of the surface is observed perpendicular to the leading
edge. This leads to a high number of surface elements in an isotropic mesh.
By introducing anisotropic quadrilaterals along the leading edge, the quality
of the flow computation is maintained but the number of surface elements is
reduced dramatically, which is a highly desirable characteristic.

Figure 7 shows a wing example, the leading edge was chosen as anisotropy
source. The Multi-Pass Three-Step-Method is applied using three passes with
anisotropy 1:4, 1:2 and again 1:2. The first pass is shown in the first row:
Beginning at the source of anisotropy, structured rows of isotropic quadri-
laterals are created. Subsequently the isotropic quadrilaterals are merged to
anisotropic quadrilaterals using an anisotropy of 1:4. The next pass starts from
the top of the first pass. Again, structured rows of quadrilaterals are created.
The anisotropic merging of elements with anisotropy 1:2 starts at the source,
so the anisotropy at the source is 1:8 after pass two. The third pass produces a
final anisotropy of 1:16 at the source while supplying a smooth 1:2 transition
to the remaining triangular mesh. The last row shows the completed wing.

The reduction of elements achieved by using anisotropic quadrilaterals is re-
markable: A mesh containing quadrilaterals instead of triangles only has about
half as much elements. Introducing anisotropic quadrilaterals again lowers the
number of elements significantly so that in the end less than twenty percent
of elements remain.

Table 1 shows the reduction of elements within a quadrilateral mesh depending
on the degree of anisotropy that was applied. Anisotropy further reduces the
number of elements. Meshes with anisotropy 1:2 to 1:5 were created using the
Three-Step-Approach, for all other cases a Multi-Pass Three-Step-Approach
was applied.

Anisotropy 1:1 1:2 1:3 1:4 1:5 1:6 1:8 1:16

No. of quads 4540 3327 2793 2452 2202 2064 1915 1658

% 100 73 62 54 49 45 42 37

Table 1
Depending on the degree of anisotropy the number of quadrilaterals is reduced
significantly by using anisotropic elements. The original triangular mesh contained
8802 elements.
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These results are of major interest for the air plane industry. As flow compu-
tations for air planes last up to several days (in transient cases even weeks),
there is urgent need for application optimized meshes such as the anisotropic
quadrilateral meshes generated with the algorithm presented in this work.

5 Conclusions and Future Work

In this paper a new indirect approach for anisotropic quadrilateral mesh gen-
eration was presented. The quadrilateral generator was equipped with 3D
smoothing techniques that provide the possibility to process three-dimensional
triangular meshes. The local surface approximation introduced for this pur-
pose is well suited to maintain the geometry of curved surfaces. The Multi-Pass
Three-Step-Method developed for the creation of anisotropic quadrilaterals
provides a smooth transition from anisotropic to isotropic parts of the mesh.
Using a multi-pass approach a much higher anisotropy may be achieved than
with a single-pass Three-Step-Method. The presented approach is of special
interest for the air plane industry where anisotropic quadrilaterals along the
leading edge of an air plane wing are highly desirable. The presented example
demonstrates that the number of mesh elements is reduced considerably by
including anisotropic quadrilaterals.

Future work will include the development of more sophisticated smoothing
techniques that are optimized for anisotropic quadrilaterals. The creation of
hexahedral boundary layers for anisotropic volume meshes will also be of in-
terest as well as the parallelization of the techniques developed in this context.
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Fig. 7. Multi-Pass Three-Step-Approach. First to third row: Subsequent passes, for
every pass the generation of structured rows of isotropic quadrilaterals is shown on
the left, anisotropic merging is shown on the right. Last row (left): The remaining
triangular mesh is filled with isotropic quadrilaterals. Last row (right): Completed
air plane wing. Maximum anisotropy of 1:16 at leading edge.
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