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Abstract. Diffusion tensor and functional MRI data provide insight into function
and structure of the human brain. However, connectivity analysis between func-
tional areas is still a challenge when using traditional fiber tracking techniques.
For this reason, alternative approaches incorporating theentire tensor information
have emerged. Based on previous research employing pathfinding for connectiv-
ity analysis, we present a novel search grid and an improved cost function which
essentially contributes to more precise paths. Additionally, implementation as-
pects are considered making connectivity analysis very efficient which is crucial
for surgery planning. In comparison to other algorithms, the presented technique
is by far faster while providing connections of comparable quality. The clinical
relevance is demonstrated by reconstructed connections between motor and sen-
sory speech areas in patients with lesions located in between.

1 Introduction

In recent years, medical imaging techniques such as diffusion tensor imaging (DTI) and
functional MRI (fMRI) have emerged enabling the exploration of function and structure
of the human brain. DTI measures the diffusion of water whichis anisotropic in tissue
with a high degree of directional organization. For the computation of diffusion tensors,
diffusion-weighted images for at least six non-collinear gradient directions are acquired.
The respective diffusion tensors provide information about the location and orientation
of white matter structuresin vivo. The localization of active brain areas such as motor
and sensory speech areas is accomplished with fMRI.

In neurosurgery, the localization of functional areas on the cortex and their white
matter connectivity is of great importance for preoperative planning. With respect to
the motor and sensory speech areas, the Broca’s and Wernicke’s areas located in the
cerebral cortex, it is generally accepted that these areas are functionally related in
speech processing. To avoid neurological deficits after neurosurgical procedures, elo-
quent structures such as the speech areas as well as connecting white matter structures
have to remain intact. For this reason, analysis of white matter connectivity between
functional areas is of high interest for neurosurgery and other disciplines in neuro-
science.
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Standard techniques for the reconstruction of white matterstructures from DTI data
rely on the orientation of the major eigenvector of the diffusion tensor [1]. Thereby,
streamline-based techniques are employed to propagate thefiber. These approaches en-
able the reconstruction of major tract systems such as the pyramidal tract or the corpus
callosum. However, the reliability of standard tracking techniques is affected by imag-
ing noise and partial volume effects in case of crossing or branching fibers.

For this reason, standard tracking algorithms are not suited for a connectivity anal-
ysis involving sub-cortical or cortical regions. First approaches addressing this prob-
lem used probabilistic or regularization techniques [2, 3]. Over a large number of itera-
tions, the process yields a connectivity probability related to the number of probabilistic
streamlines found in a volume element. Another class of algorithms derived from level
set theory considers arrival times of diffusion fronts [4, 5]. In most recent work based on
level sets, the problem of white matter connectivity is modeled as wavefront evolution
based on a cost function which depends on the entire diffusion tensor [5]. Considering
the arrival times of the wavefront, connections are derivedby minimizing the cumula-
tive travel cost along the path. Another recent approach uses global optimization and
dynamic programming for fiber reconstruction [6]. A graph isspanned over the do-
main with assigned cost for each edge connecting two voxels.By means of dynamic
programming, connections with highest probability are computed.

In this work, we extend previous research for connectivity analysis based on pathfind-
ing [7]. Basically, pathfinding algorithms are highly efficient techniques commonly
used in artificial intelligence for problems associated with a state space search using
cost functions. They are applied to derive the minimum-costpath between a start and a
target region. To investigate neuronal connectivity, a cost function based on the proba-
bility distribution function of each tensor is employed. Similarly to other connectivity
algorithms [5, 6], the entire tensor controls the pathfinding procedure to circumvent
biasing of the major eigenvector in isotropic regions. We present several crucial en-
hancements of the basic algorithm such as an improved cost function, a novel search
grid and an optimized implementation. As an important result for clinical application,
the presented algorithm is considerably faster than other recently presented connectivity
algorithms and provides at the same time comparable accuracy.

2 Method

Pathfinding algorithms are commonly used in computer science for different types
of search problems. Since there are highly efficient solutions such as the A∗ algo-
rithm [8], it is straightforward to apply pathfinding in the context of white matter
connectivity analysis which can be considered as an instance of a minimum-cost path
problem [5–7].

2.1 Pathfinding

The A∗ algorithm was designed to efficiently compute the path with lowest cost between
a start and a target region. For this purpose, the algorithm builds up a graph with nodes
and edges, where the edges are assigned a local cost. In each iteration, the path with
lowest cost is expanded until the target region is reached. An important fact about the



A∗ algorithm is its optimality [9] which guarantees that the best possible solution is
found with the smallest computational effort.

For performing the search, the algorithm maintains two lists, an open list comprising
all nodes currently under consideration and a closed list containing nodes that have
already been processed. In the beginning, the open list comprises all nodes from the
start region and the closed list is empty. Each node stores the movement costgi required
to travel along the path to the respective nodei. The cost functionfi = gi + hi is
evaluated for each node of the open list to decide which one toprocess next. Thereby,hi

denotes an estimate of the remaining cost (also called heuristic) to the target which may
optionally be added to direct the search towards the target making the algorithm more
efficient. Otherwise, the search would equally spread in alldirections. It is important
to note thathi does not affect the optimality of A∗ as long ashi is not higher than the
actual cost necessary to reach the target.

To compute the minimum cost path, the algorithm repeatedly selects the node with
lowestfi from the open list, adds all its neighbors to the open list andmoves the selected
node to the closed list. These processing steps continue until the target node is added to
the open list and the path with the lowest cost is found.

2.2 Grid for partitioning the search space
For navigating in three-dimensional space, the search algorithm requires a grid which
should provide a regular structure uniformly covering the search space and a small
step-size between neighbor nodes. The angle between edges should be small to provide
enough flexibility to follow the direction of anisotropic diffusion. For this reason, we
use a hexahedral grid connecting each node to 74 neighbors asshown in Figure 1(left).
In comparison to a grid with 26 neighbors, further directions are provided reducing the
angle between neighbor edges and offering a considerably improved choice of different
directions thus fulfilling the flexibility criterion. The grid size has to be chosen suffi-
ciently small to guarantee a small maximum step-size which should not exceed 2 mm.
The resulting grid is of high resolution and enables a dense sampling of the search space
as outlined in Figure 1(middle, right).
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Fig. 1. Octant of a grid with 26 and 74 neighbors(left). Expansion of the search space between
Broca’s and Wernicke’s speech areas using a grid with 74 neighbors and a maximum edge length
of 1.5 mm in a brain tumor patient(middle). Close-up view showing details of search grid(right).



2.3 Cost function

The cost function is an integral part for all types of connectivity algorithms since it con-
trols the process of path evolution. To overcome the limitations encountered with fiber
tracking arising from the reduction of the tensor information to the principal eigenvec-
tor, the cost function for connectivity algorithms has to incorporate the entire tensor
information. For this reason, the surface of the tensor ellipsoid, with half-axes aligned
to the eigenvectors of the tensor and scaled according to thelength of the respective
eigenvaluesλi,i=1,2,3, is commonly used as probability profile [5–7]. Thereby, theprob-
ability of a fiber following a certain direction correspondsto the distance between the
center of the ellipsoid located at(0, 0, 0)T and the intersection pointr on the surface
of the ellipsoid. To obtain probabilities between 0 and 1, the tensor ellipsoid is nor-
malized usingλ1 resulting in a maximum length of 1 for any segment connectingthe
center of the ellipsoid with its surface. As a result, the diffusion probabilitypi(r) for
any direction can be directly obtained from the profile of thenormalized ellipsoid:

pi(r) =
‖r‖

λ1

. (1)

However, the resulting probability profile results in a biastowards spherical ellip-
soids since they are traversed more easily due to a high probability for all directions.
In [5], this is addressed by incorporating fractional anisotropy (FA) [10] into the cost
function. In this work, we propose to model the anisotropic characteristic of a tensor by
subtracting the isotropic part represented byλ3 before normalization:

pi(r) =
‖r‖ − λ3

λ1

. (2)

This is motivated by considering the probability profile of the tensor. In Figure 2, the
probability profiles for a linear and a spherical tensor are plotted as a function of the
azimuthal and polar angle of the corresponding ellipsoid. In case of Equation 1(left
plot in each section), the almost spherical tensor yields very high probabilities for all
directions resulting in a bias of isotropic tensors. This iscircumvented by the probability
profile resulting from Equation 2(right plot in each section)which on the one hand
perfectly maintains the shape of the probability profile butcuts the isotropic fraction.
In this way, the probability function is solely based on the tensor probability profile
and no additional term in the cost function is necessary. Theresulting cost function is
thus defined asci(r) = 1 − pi(r) with pi(r) derived from Equation 2. Based on this
approach, a more comprehensive probability profile is provided which better captures
the tensor properties making the incorporation of FA into the cost function redundant.

2.4 Minimum cost path

Based on the cost function, minimum-cost connections representing neuronal structures
are derived. For this purpose, minimum-cost paths are determined by summing up all
local costscj encountered along the path to nodei resulting in a global costgi for the
whole path [5–7]:

gi =
i∑

j=1

cj → min . (3)



Fig. 2.Tensor probability profiles (z-axis) of a linear and an almost spherical tensor for Eq. 1(left
in each section)and Eq. 2(right in each section), plotted as a function of the azimuthal and polar
angle (x- and y-axis) of the corresponding ellipsoid.

In this way, connections are derived fulfilling the global optimum condition. Thereby,
the pathfinding algorithm preferably propagates paths withlow global cost by compar-
ing the cost of all nodes on the open list. As a result, the computed connections between
all voxels of the start region and the target region are guaranteed to be optimal.

2.5 Efficient search

To ensure that the search is oriented towards the target, theA∗ algorithm takes ad-
vantage of an estimatehi of the remaining cost (heuristic). If no heuristic is used, the
algorithm expands equally in all directions resulting in a greater search space and an
increased computational cost. Ifhi is admissible, i.e. it never overestimates the cost to
the target, then A∗ is guaranteed to find the path with lowest cost. For this purpose, a
gradienthi is employed in the cost functionfi = gi + hi to direct the search towards
the target:

hi =
di

smax

· ĉ . (4)

Thereby,di denotes the Euclidean distance of nodei to the target which is normalized
according to the maximum step lengthsmax within the grid. The minimum number
of steps to the targetdi/smax is multiplied with the estimated average cost per stepĉ
which is determined by sampling the data for short connections in regions with high
FA. The smallest cost among the samples is then assigned toĉ. This additional term of
the cost functionfi directs the search towards the target. According to our observations,
it can be empirically approved that the heuristic is admissible since the resulting paths
did not differ from paths computed without heuristic. The computing time for the search
could be reduced considerably which is outlined in more detail in Section 3.

3 Results and Discussion

For evaluation purposes, two proband and three patient DTI datasets (voxel size:
1.875×1.875×1.9 mm3, 128×128×60 voxels) were acquired with a Siemens Sonata
1.5 Tesla scanner. For all datasets, seed regions corresponding to the Broca’s and Wer-
nicke’s speech areas derived from fMRI were available. All computations were per-
formed on a PC equipped with an Intel Pentium 4, 3.4 GHz, and 2 GB RAM. For
pathfinding, we used the 74-neighbor grid (see Section 2.2) with a maximum step length



of 1.5 mm. Similarly to [5–7], we emploed a FA thresholdTFA to restrict the search to
regions of white matter only. In all our experiments,TFA amounted to 0.3 excluding
nodes with an FA value below the threshold from further processing. Our evaluation
investigates the quality of the obtained paths, the computing time is analyzed and a
comparison with other techniques is drawn.

Quality analysisTo investigate the accuracy of the proposed cost function (Equation 2)
in comparison to a cost function based on the product of the normalized probability pro-
file (Equation 1) and the local FA value [5], we employed the validity index introduced
by Jackowski [5]. The validity index computes the scalar product between path tangent
and major eigenvector for each segment and returns the average value for the whole
path. Accordingly, we also recorded the average probability according to the probabil-
ity profile of Equation 2 and the average FA value for each path. Table 1 shows the
minimum, maximum and average value for the connections derived between speech ar-
eas in two of our datasets. As a result, our cost function achieves better results compared
to the normalized tensor profile commonly employed [5–7]. Inaddition to that, our ap-
proach reaches equal accuracy with respect to the validity index compared to wavefront
evolution [5].

Cost Function Equation 1, FA Equation 2
Patient 1 Patient 2 Patient 1 Patient 2

Number of fibers 17 21 19 23
avg min max avg min max avg min max avg min max

Validity Index 0.75 0.69 0.870.83 0.82 0.860.77 0.70 0.880.86 0.85 0.87
Probability Profile 0.68 0.65 0.700.63 0.62 0.640.75 0.73 0.820.70 0.69 0.70
Fractional Anisotropy 0.58 0.54 0.610.56 0.55 0.570.61 0.57 0.680.56 0.55 0.57

Table 1. Evaluation based on validity index, probability profile andFA represented by average,
maximum and minimum value of all fibers.

For illustration, the local probability according to Equation 2 is visualized in each
step by color encoding assigning red to a low and green to a high value of the probability
profile from Equation 2. In Figure 3, color coding is used to compare standard fiber
tracking based on streamline propagation [1] (RK-4 integration, step size 0.5 mm) and
pathfinding with regard to their exactness. The red segmentsencountered in case of
fiber tracking indicate that spherical tensors were crossed. Contrarily, a more reliable
path was obtained using pathfinding which takes into accountthe entire probability
profile of the local tensor which resulted in paths includinganisotropic tensors.

Computing time Since the algorithm aims at clinical application requiringfast interac-
tion times, computational cost is of major concern in addition to accuracy (see Table 2).
Implementation features essentially contributing to highprocessing times are an effi-
cient implementation of the open and closed list since they encounter frequent access
and have to administrate a high number of nodes. For this reason, we used a combina-
tion of buckets and sorted vectors for the open list and a hashmap for the closed list.
Incorporation of the heuristic resulted in a speed up of approximately 70%, compared
to pathfinding solely using the cost function. In each case, the resulting paths remained
the same, since the heuristic is admissible according to empirical observations.
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Fig. 3. Upper row (Patient 1):Patient with a cavernoma.Lower row (Patient 2):Patient with a
glioblastoma multiforme (WHO grade IV) having speech dominance on the right hemisphere.
The respective lesion is shown in red in each patient. Pathfinding (left) vs. fiber tracking(right),
color coding shows that pathfinding provides more precise results.

Performance Computing Time Number of Grid Nodes
Patient 1 Patient 2 Patient 1 Patient 2

fi = gi 42.0 sec 82.8 sec 240 705 318 163
fi = gi + hi 14.9 sec 19.5 sec 106 414 163 586

Table 2. Computing time and size of search grid (number of nodes) for search based on global
costgi (Eq. 2) and speed up encountered with heuristichi.

Comparison with other approachesAs outlined in Figure 3, standard fiber track-
ing is inappropriate for connectivity analysis in subcortical areas requiring alternative
approaches. Since it is anticipated that neuronal connections are kept optimal [11],
minimum-cost approaches have been developed to model connectivity [5–7]. In com-
parison to the normalized tensor profiles employed in recentwork [5–7], connectivity
results were significantly improved using our novel cost function characterizing both
shape and anisotropy of the local tensor. From the algorithmic point of view, pathfind-
ing is computationally more efficient than other graph-based techniques such as [6],
since it can be proven that no other search algorithm which isguaranteed to find the
minimum-cost path requires less computational expense than A∗ [9]. Apart from that,
the presented grid structure provides high resolution and aconsiderably increased num-
ber of neighbor nodes to sample the search space very denselywhich is superior com-
pared to the grid used in [6]. Overall, the presented approach provides comparable or
even better accuracy compared to other approaches and is, atthe same time, by far faster
than other current approaches.



4 Conclusion and Future Work

Based on previous work introducing pathfinding for the problem of neuronal connectiv-
ity within the human brain, we presented an improved cost function, a high resolution
grid for sampling the search space and an efficient implementation enabling interac-
tive application. Accurate paths according to different quality measures were obtained.
The approach has several advantages over existing methods,such as highly efficient
processing times which is important for clinical application.

Since the quality of the obtained connections would furtherbenefit from tensor
field regularization or higher-order tensor representations derived from high angular
resolution diffusion images, future work will aim at incorporation of these techniques.
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