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Abstract

Diffusion tensor imaging allows investigating white
matter structures in vivo which is of particular in-
terest for neurosurgery. A promising approach for
the reconstruction of neural pathways are stream-
line based techniques commonly referred to as fiber
tracking. However, due to the diverging nature of
tract systems, the density of streamlines varies over
the domain without control resulting in sparse ar-
eas as well as cramped regions. To overcome this
problem, we adapted the concept of evenly spaced
streamlines to fiber tracking providing streamlines
equally distributed over the domain. Additionally,
we incorporated evenly spaced streamlines into re-
gion of interest based tracking. We also investi-
gated an adaptive control of the distance between
separate streamlines depending on the magnitude of
anisotropic diffusion which provides a mechanism
to emphasize dominant tract systems.

1 Introduction

Diffusion tensor imaging (DTI) has shown potential
in providing information about the location of white
matter tracts within the human brain. In white mat-
ter the diffusion of water molecules is anisotropic
due to the long cylindric shape of myelinated nerve
fibers. Contrarily, in areas of grey matter the diffu-
sion probability is equally distributed since rather
round shaped grey matter cells dominate. DTI
thus allows reconstructing white matter structures
to study neural anatomy of the human brain.

The directional variation of diffusion has to be
measured for at least six non-collinear gradient di-
rections. These directional diffusion images serve
as a basis for the computation of diffusion tensors.

The resulting second order tensors characterize the
diffusion probabilities within tissue. To exploit the
contained information the eigensystem of each ten-
sor is evaluated. Thereby, the eigenvector corre-
sponding to the largest eigenvalue, in the following
referred to as major eigenvector, indicates the direc-
tion of highest diffusion which correlates with the
course of white matter fibers.

Tracking algorithms, which are based on stream-
line techniques known from flow visualization, uti-
lize the major eigenvector to compute streamlines
representing white matter anatomy. They often uti-
lize thresholds, angle criterions, regularization tech-
niques [1] and local filters [2] to improve tracking
results. Due to their effectiveness, these techniques
for the visualization of DTI data are subject of on-
going research [3, 4, 5, 6, 7].

Considering medical application, streamline
tracking is currently one of the preferred techniques
for planning in neurosurgery [8, 9]. It offers sup-
port to avoid postoperative neurological deficits by
providing information about the location of white
matter structures in vivo.

In spite of the benefits of streamline visualiza-
tions, they also have some drawbacks. In gen-
eral, spatial resolution techniques such as stream-
lines suffer from a limited spatial resolution which
constrain their significance. In regions containing
only a limited number of streamlines, features of
the data may remain concealed. Similarly, the ef-
fectiveness of the streamline methods critically de-
pends on the placement of the initial seed points.
To overcome these problems, evenly spaced stream-
lines for effective user-controlled streamline place-
ment have been presented in the literature [10, 11].
The benefits of this approach were adapted to fiber
tracking [7] to obtain uniformly distributed stream-
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lines. This is of special interest for fibers of the
corona radiata which ascend through the brain stem
and diverge as they reach the cortex. The distribu-
tion of generic streamlines becomes sparser as they
approach upper regions of the brain providing only
rare information about the location of white matter.
Adapting evenly spaced streamlines in the context
of fiber tracking allows better capturing of the fea-
tures contained within the data.

In this work an efficient 3D implementation of
evenly spaced streamlines for fiber tracking is pre-
sented comprising data structures for fast access,
a decider for streamline termination as well as a
scheme for placement of new seed points in 3D.
Furthermore, we extended the approach to enable
region of interest (ROI) based tracking as well. We
also added an adaptive control of the separating dis-
tance between evenly spaced streamlines which de-
pends on the magnitude of diffusion. In this way,
additional content within the data is visualized by
making dominant tract systems perceptually more
apparent and providing visual enhancement.

2 Method

In this section, the algorithm for evenly spaced
streamlines in the context of fiber tracking is de-
scribed. An introduction to DTI data and fiber
tracking is given in Section 2.1 and 2.2. General
features of the algorithm are outlined in Section 2.3.
A perceptual enhancement, where the density of
streamlines is controlled by the degree of diffusion,
is presented in Section 2.4. Special features for ex-
tracting separate tract systems using ROIs are cov-
ered in Section 2.5.

2.1 Diffusion tensor data

DTI is an imaging technique which is capable to
measure the diffusion properties of water molecules
within tissue. Diffusion images are acquired for at
least six different gradient directions. Additionally,
a reference image without gradient direction is mea-
sured. These datasets enable to compute a diffusion
tensor for each voxel. An efficient way for com-
puting diffusion tensors is outlined in [12]. Each
resulting diffusion tensor D
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is a real Hermitian positive definite matrix, i.e. the
matrix is symmetric with real and positive eigen-
values. The evaluation of the eigensystem of a
tensor yields the major eigenvector which corre-
lates with the direction of highest diffusion and
consequently with the mean fiber direction within
the voxel. Eigenvectors and respective eigenval-
ues serve as a basis for most DTI visualization ap-
proaches.

2.2 Fiber tracking

A very descriptive and popular approach for visual-
izing diffusion tensor data is fiber tracking. The tra-
jectories extracted by integrating the major eigen-
vector field are assumed to coincide with white mat-
ter fiber bundles. Note that the term ’fibers’ is used
for streamlines which do not represent real anatom-
ical fibers but provide an abstract model of neural
structures. Starting from seed voxels, the track-
ing is performed in forward and backward direction
with sub-voxel precision. For the selection of seed
voxels and for aborting the streamline propagation,
fractional anisotropy (FA) [13] is used as threshold:
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where 〈D〉 is a measure for the mean diffusivitiy
which characterizes the overall amount of diffusion
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the degree of anisotropic diffusion and therefore is
considered to be a proper measure for the presence
of white matter. Following this assumption, voxels
with high FA are used as seed voxels. If FA drops
below a certain threshold, the tracking stops.

Accordingly, a single tracking step of the stream-
line propagation looks as follows: The tensor at
the current end point of the fiber is computed us-
ing trilinear interpolation which is separately per-
formed for each tensor component. Subsequently,
the eigensystem of the tensor is calculated provid-
ing the major eigenvector which correlates with the
direction of highest diffusion. In case of Euler inte-
gration, the next streamline propagation step would
be in direction of the major eigenvector. For rea-
sons of numerical accuracy, we apply a higher or-
der integration scheme (Runge-Kutta of order four)
which needs repeated tensor interpolation and ma-
jor eigenvector computations until the direction of
streamline propagation is determined. The step size

666



is set to a fixed value which is a quarter of the
voxel size. Since the field of the major eigenvec-
tors does not correspond to a flow field we found it
more convenient to choose a sufficiently low fixed
step size instead of adaptive adjustments. In con-
trast to nerves, flows consisting of particles possess
physical properties such as inertia which ensure that
sudden changes of direction do not occur. For fiber
tracking a fixed step size is better to prevent missing
turnoffs. Apart from the FA threshold for the termi-
nation of fiber tracking, fiber propagation is aborted
if a streamline has reached a maximum length. If a
minimum length is not reached, the fiber is rejected.
Beside these thresholds one may choose between a
tracking encompassing the whole brain and a track-
ing extracting fibers that run through user-defined
ROIs. The latter approach enables the reconstruc-
tion of separate tract systems which is of special in-
terest for medical applications.

2.3 Evenly spaced streamlines

The basic principle of evenly spaced streamlines is
to calculate streamlines until a user-defined density
level is reached. Thereby, a regular distribution of
the streamlines is achieved and areas with a sparse
distribution of streamlines are filled. In the context
of fiber tracking, this is a highly desirable property
to capture all features, i.e. the location of white mat-
ter, of the diffusion tensor field.

The basic algorithm for evenly spaced stream-
lines computes an initial streamline and chooses
new seed points in its vicinity with distance dseed.
Starting at these seed points, the new streamlines
are propagated in both forward and backward direc-
tion until they come closer than dsep to each other
or the boundary of the volume is reached. Thereby,
dseed is slightly higher than dsep to avoid the new
streamline to terminate instantly in the first step.

In addition to standard streamline propagation,
the algorithm for computing evenly spaced stream-
lines comprises additional processing steps, namely
distance control between adjacent streamlines (Sec-
tion 2.3.1) and selection of additional seed points
(Section 2.3.2).

2.3.1 Distance control

The density of a streamline bundle is actually a
global feature. To obtain a uniform density, this

global feature has to be locally determined dur-
ing streamline reconstruction. Therefore, a tech-
nique for local distance control is needed to en-
sure that streamlines do not come closer to each
other than the separating distance dsep. In order
to obtain acceptable computation times for distance
control, only the sample vertices of the streamline
are considered for distance computations. For each
propagation step, the distance check is performed
to verify whether the streamline gets too close to
another one. A simple check would test the new
streamline vertex p against all sample vertices of all
other streamlines which would be rather inefficient.
This is circumvented by using a Cartesian grid with
voxel size dsep superimposed on the domain. Each
voxel of this grid provides a list of pointers to the
sample points located within this voxel. For each
computed streamline vertex this data structure is
updated and the new vertex is inserted. This data
structure is shown in Figure 1.

(x,y,z) (x,y,z) (x,y,z) (x,y,z) (x,y,z)

Voxels

Vertex coordinates

Vertices within voxel

Neighbor voxels
...

...

...

Figure 1: Data structure for fast access to neighbor
vertices of a given voxel.

In order to obtain all vertices that are potentially
closer than dsep to p, the voxel containing p as
well as all 26 surrounding neighbor voxels are de-
termined within the Cartesian grid. The distance
between p and each vertex referred to by the sur-
rounding voxels is computed. If this distance is less
than dsep, streamline propagation is aborted.

To efficiently decide whether a streamline has to
be aborted, the number of distance computations
has to be minimized. Therefore, we optimized the
order in which the surrounding voxels and the re-
ferred vertices are processed. For vertices contained
within the center voxel, the probability that p is
closer than dsep is very high and this voxel is pro-
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cessed first. The voxels sharing a face with the
center voxel are processed next, followed by vox-
els sharing an edge. Finally, the diagonal adjacent
voxels only sharing a vertex with the center voxel
are examined.

Another point to mention is that the step size for
streamline integration and dsep are not fully inde-
pendent. Since only the distance between sample
vertices of the streamlines is computed and not the
actual distance to the segments of another stream-
line, dsep should not be smaller than the step size
for fiber tracking. This guarantees that a vertex will
not be located much closer to a fiber segment than
dsep. If dsep equals the step size, a vertex is not
closer to a fiber segment than

√
3

2
dsep, which is the

worst case as shown in Figure 2.

worst case distance

dsep

dsep

dsep

Figure 2: If dsep equals the step size for streamline
propagation, the worst case and minimum distance
between fibers is

√
3

2
dsep.

2.3.2 Selection of seed points

The basic principle for seed point selection is to de-
termine all seed points which can be found from
an existing streamline before continuing with an-
other one. Thereby, seed points at a distance
d = dseed from the sample vertices are used for
initiating streamline propagation. A queue is used
to store the streamlines and to control the order in
which streamlines are processed.

The algorithm for evenly spaced streamlines was
originally designed for 2D [10, 11]. For the visu-
alization of neural pathways using streamlines this
approach was extended to three dimensions. Con-
sidering seed point selection, this was accomplished
as follows (Figure 3): To obtain new seed points in
the vicinity of a sample vertex with adjacent stream-
line segments ~s1 and ~s2, these segments are aver-
aged to obtain the normal ~n of the plane where the

new seed points will be placed. To obtain a vector
~v1 perpendicular to ~n, the component of ~n which is
closest to zero is set to zero, the other components
are swapped and one of them is negated. The re-
sulting vector ~v1 in the plane is scaled to the length
dseed. Another vector ~v2 in the plane perpendicu-
lar to ~v1 is obtained by computing the cross prod-
uct between ~n and ~v1. Analogous to ~v1, ~v2 is also
scaled to dseed. To avoid patterns and moire effects
in regular datasets, new seed positions are selected
at random directions depicted by ~v1

′ and ~v2
′ (α is

some random angle):

~v1

′ = cos(α)~v1 + sin(α)~v2

~v2

′ = cos(α + 90o)~v1 + sin(α + 90o)~v2

In addition to the seed points denoted by ~v1
′ and ~v2

′,
two further seed points are obtained by negating all
components of ~v1

′ and ~v2
′, respectively. Afterwards,

streamline propagation is started provided that the
FA value at these seed points is high enough for
tracking.

n
v2

s1

s2

1v

Figure 3: 3D seed point selection. The directions of
adjacent segments are averaged to obtain the normal
vector of the plane containing the new seed points.

2.4 Adaptive control of the separating dis-
tance for visual enhancement

Beside the major eigenvector indicating the direc-
tion of main diffusion, the eigenvalues of the ten-
sor provide information about the magnitude of
anisotropic diffusion. Different scalar measure-
ments for this quantity have been presented. A com-
monly used metric is FA [13] which is related to the
presence of oriented structures and describes a di-
rectional bias. An approach presented by Westin
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et al. [12] characterizes the shape of a tensor by
assigning coordinates in a barycentric space. This
space is spanned by three basis tensor shapes which
are linear, planar and spherical diffusion. The lin-
ear component cl thereby reveals the information
whether the largest eigenvalue of a tensor domi-
nates, which corresponds to strong anisotropic dif-
fusion.

For each tensor, these scalar metrics provide fur-
ther information about diffusion characteristics. To
incorporate this additional information into a more
comprehensive streamline visualization, an alterna-
tive distance scheme was developed. An adaptive
density control was implemented to obtain fibers
of higher density in areas of high anisotropic diffu-
sion as indicated by the diffusion metrics. Thereby,
thick and dominant fiber structures with a high
anisotropic diffusion are visualized with denser
streamlines. Consequently, major fiber bundles be-
come visually much more apparent.

The scalar measure of FA as well as the barycen-
tric coordinates are in the range of 0 and 1. The val-
ues dsep−a and dseed−a for adaptive density control
are obtained by multiplying the initial distance con-
trol values dsep and dseed with the distance control
value obtained from the metric. Since a high FA or
cl value indicate anisotropic diffusion, (1−FA) or
(1 − cl) are used as distance weights. In addition
to that, a lower bound for dsep−a and dseed−a has
to be specified to prevent dsep−a and dseed−a from
dropping below the step size for streamline propa-
gation. The maximum value of dsep−a equals dsep,
the maximum value of dseed−a equals dseed.

From an implementation point of view, this adap-
tion is easily combined with the original approach.
Since the distance measure varies between the
tracking step size (minimum value) and dsep (max-
imum value), the superimposed grid remains the
same. However, for regions of high density, the grid
is coarser than actually required which leads to a
higher number of distance chekcs than necessary.

2.5 Region-of-interest-based tracking us-
ing evenly spaced streamlines

ROIs are an essential technique to obtain separate
tract systems for analyzing and separating white
matter anatomy within the human brain. Based on
FA maps or anatomical landmarks, ROIs are defined
which either serve as seed regions for the track-

ing [2] or are used to distinguish and display the
relevant streamlines during visualization [6, 14]. In
case of multiple ROIs, only fibers crossing all ROIs
are maintained.

However, the approach for evenly spaced stream-
lines is originally not adequate for the combination
with ROI tracking because of the following rea-
sons: First of all, the approach for evenly spaced
streamlines may cause streamlines running through
the ROI to terminate early if they get too close to
each other. Additionally, shorter streamlines filling
gaps between the streamlines running through the
ROIs are not maintained since they do not cross the
ROIs.

To integrate evenly spaced streamlines into stan-
dard fiber tracking, we pursued the following ap-
proach: The density threshold dsep introduced in
the context of evenly spaced streamlines is used
as additional criterion for aborting fiber propaga-
tion. This initial set of fibers serves as a basis for
the generation of evenly spaced streamlines filling
sparse regions. In a first iteration, initial stream-
lines are generated and seed points with distance
dseed to the sample vertices are determined as de-
scribed in Section 2.3.2. Then, the first generation
of evenly spaced streamlines is computed based on
these seed vertices. A second generation of evenly
spaced streamlines may be computed based on the
first generation, and so on. This iterative process en-
ables to fill areas of white matter between the initial
streamlines. However, the number of generations
of evenly spaced streamlines should be low to avoid
expansion to undesired areas.

3 Results and Discussion

The approach for evenly spaced streamlines includ-
ing adaptive step size and ROI based tracking was
tested with 2 DTI datasets of healthy volunteers.
All computations were performed on a PC equipped
with an AMD Athlon (1.2 GHz). A number of se-
tups were considered and compared:

Tracking of the whole brain with and without
evenly spaced streamlines: In Figure 4 a standard
fiber tracking of the whole brain (left) in compar-
ison to fiber tracking using evenly spaced stream-
lines (middle, right) is shown. Figure 4 clearly
shows that standard fiber tracking produces re-
gions of sparse fiber density as well as cramped ar-
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eas. Contrarily, fiber tracking incorporating evenly
spaced streamlines provides a constant fiber density
and therefore an unbiased representation of the data.

The computation time for standard tracking (left)
amounted to 8 sec. In case of evenly spaced
streamlines, the computation time for a spacing of
dsep = 0.5 mm (middle) was 134 sec. For a spac-
ing of dsep = 1.5 mm (right) the computation time
amounted to 23 sec.

Tracking of the whole brain, evenly spaced
streamlines with and without adaptive distance
control: Contrary to Figure 4 where a constant
spacing was used between streamlines, in Figure 5
the density of streamlines was adaptively adjusted
according to the local FA value. Similarly to stan-
dard flow visualization where dense streamlines
indicate that velocities and pressure gradients are
high, the approach for adaptive spacing ensures that
major tract systems with a high anisotropic diffu-
sion are represented with dense streamlines. The
pyramidal tract denoted in blue as well as the fiber
bundles of the corpus callosum in red can be clearly
identified.

In each image, the density dsep−a varies between
0.5 mm which is the step size for tracking and 2 mm
(left), 3 mm (middle) and 5 mm (right). Computa-
tion times were 142 sec, 98 sec and 58 sec, respec-
tively.

ROI tracking with and without evenly spaced
streamlines: Figure 6 shows a ROI tracking of
the pyramidal tract. In a first step, an initial ROI
tracking taking into account dsep for streamline
termination is computed (left). In a second pass,
the first generation of evenly spaced streamlines
is generated (middle). Based on the initial tract,
sparse regions are filled with streamlines. A third
pass (right) based on the initial streamlines and the
first generation of evenly spaced streamlines further
fills the volume. With this technique, the concept
of evenly spaced streamlines was adapted to ROI
tracking providing dense tracts capturing the fea-
tures within the data.

4 Conclusion and Future Work

The concept of evenly spaced streamlines was
adapted to streamline visualization of DTI data.
An adaptive distance control was added to obtain

a varying density of fibers depending on the lo-
cal anisotropic diffusion characteristic. Dominant
tract systems become much more apparent with this
technique. Additionally, approaches for incorpo-
rating evenly spaced streamlines into ROI tracking
were presented. Overall, evenly spaced streamlines
proved to be an adequate technique for comprehen-
sive streamline-based visualization of DTI data.

Future work will consider and vary the pa-
rameters to produce streamline visualizations of
DTI data ranging from hand-drawing style to
LIC-like [15] style.

5 Acknowledgments

This work was supported by the Deutsche
Forschungsgemeinschaft in the context of SFB 603,
Project C9 and the Graduate Research Center “3D
Image Analysis and Synthesis”.

We would like to thank Helwig Hauser, VRVis
Research Center (VRVis), Vienna, Austria, for in-
teresting discussions and valuable suggestions on
the topic of streamline visualization.

References

[1] M. Björnemo, A. Brun, R. Kikinis, and C.-F.
Westin, “Regularized Stochastic White Matter
Tractography Using Diffusion Tensor MRI,”
in Proc. MICCAI, pp. 435–442, 2002.

[2] L. Zhukov and A. Barr, “Oriented Tensor Re-
construction: Tracing Neural Pathways from
Diffusion Tensor MRI,” in Proc. IEEE Visual-
ization, 2002.

[3] S. Mori, B. Crain, V. Chacko, and P. van Zijl,
“Three-dimensional tracking of axonal projec-
tions in the brain by magnetic resonance imag-
ing,” Ann Neurol 45, pp. 265–269, February
1999.

[4] P. Basser, S. Pajevic, C. Pierpaoli, J. Duda,
and A. Aldroubi, “In Vivo Fiber Tractogra-
phy Using DT-MRI Data,” Magn. Res. Med.
44, pp. 625–632, 2000.

[5] S. Mori and P. van Zijl, “Fiber tracking: prin-
ciples and strategies – a technical review,”
NMR Biomed 15, pp. 468–480, 2002.

[6] P. Fillard, J. Gilmore, W. Lin, and G. Gerig,
“Quantitative analysis of white matter fiber
properties along geodesic paths,” in Proc.
MICCAI, 2003.

666



[7] A. Vilanova, G. Berenschot, and C. van Pul,
“Dti visualization with streamsurfaces and
evenly-spaced volume seeding,” in Proc. Joint
EG/IEEE TCVG VisSym, pp. 173–182, 2004.

[8] C. Clark, T. Barrick, M. Murphy, and B. Bell,
“White matter fiber tracking in patients with
space-occupying lesions of the brain: a new
technique for neurosurgical planning?,” Neu-
roimage 20(3), pp. 1601–1608, 2003.

[9] C. Nimsky, O. Ganslandt, P. Hastreiter,
R. Wang, T. Benner, A. Sorensen, and
R. Fahlbusch, “Preoperative and Intraoper-
ative Diffusion Tensor Imaging-based Fiber
Tracking in Glioma Surgery,” Neurosurgery
56(1), pp. 130–138, 2005.

[10] B. Jobard and W. Lefer, “Creating evenly-
spaced streamlines of arbitrary density,” in
Visualization in Scientific Computing, Proc.
of the 8. Eurographics Workshop, pp. 43–56,
1997.

[11] G. Turk and D. Banks, “Image-guided
streamline placement,” in Proc. SIGGRAPH,
pp. 453–460, ACM Press, 1996.

[12] C. Westin, S. Maier, H. Mamata, A. Nabavi,
F. Jolesz, and R. Kikinis, “Processing and vi-
sualization for diffusion tensor MRI,” Med Im-
age Anal 6(2), pp. 93–108, 2002.

[13] P. Basser and C. Pierpaoli, “Microstructural
and physiological features of tissues eluci-
dated by quantitative-diffusion-tensor MRI,”
J Magn Reson B 111(3), pp. 209–219, 1996.

[14] D. Akers, A. Sherbondy, R. Mackenzie,
R. Dougherty, and B. Wandell, “Exploration
of the brain’s white matter pathways with dy-
namic queries,” in Proc. IEEE Visualization,
pp. 377–384, 2004.

[15] B. Cabral and L. Leedom, “Imaging vector
fields using line integral convolution,” in Proc.
SIGGRAPH, pp. 263–270, ACM Press, 1993.

666



Figure 4: Comparison of standard fiber tracking (left) and tracking based on evenly spaced streamlines with
density dsep = 0.5 mm (middle) and dsep = 1.5 mm (right).

Figure 5: Adaptive distance control for tracking using evenly spaced streamlines emphasizes dominant tract
systems with dense streamlines. The spacing dsep−a between adjacent streamlines is adjusted depending
on the local FA and varies between 0.5 mm and 2 mm (left), 3 mm (middle) and 5 mm (right).

Figure 6: ROI tracking of the pyramidal tract (left), first (middle) and second (right) generation of evenly
spaced streamlines. Incorporation of evenly spaced streamlines into ROI tracking provides dense tracts.
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