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Abstract
Diffusion tensor imaging allows to investigate white matter structures in vivo which

is of particular interest for neurosurgery. However, due to the restricted resolution of
the data and due to noise artifacts the analysis of this kind of data is a challenging task.
A promising approach for the reconstruction of neural pathways are streamline based
approaches commonly referred to as fiber tracking. In this paper we present our tracking
algorithm as well as an integrated visualization approach for fibers and anatomical data
that takes into account the requirements for clinical application.

1 Introduction
Diffusion tensor imaging (DTI) provides the diffusion characteristics of water molecules
within tissue. Due to the long cylindric shape of axons, water diffusion is anisotropic within
fibrous material. Contrarily, in areas of grey matter the diffusion probability is equally
distributed since rather round grey matter cells dominate. DTI thus enables to reconstruct
white matter anatomy to study neural structures within the human brain. The directional
variation of diffusion is measured for at least six non-collinear gradient directions. These
diffusion images serve as a basis for the computation of diffusion tensors. The resulting
second order tensors characterize the diffusion probabilities within tissue. To exploit the
contained information most approaches utilize the eigensystem of each tensor:
2D slice images of diffusion measures derived from the eigensystem components such as
fractional anisotropy (FA) [BMP+01] or cl, cp, cs (linear, planar and spherical diffusion)
[WMM+02] already show diffusion characteristics of the material. However, direct volume
visualization of these diffusion measures [KWH00] does not lead to valuable representa-
tions for surgery. This also applies to the iso-surfaces of the data. A further 2D represen-
tation of diffusion are hue-balls [KW99] which color encode the deflection of a predefined
vector after multiplication with the tensor using a grey-scale or color-scale sphere.
Glyph-based approaches directly visualize eigenvectors and eigenvalues of the tensor us-
ing ellipsoids which may be drawn in real-time using hardware-acceleration [EIBH+05].
An even better shape for representing diffusion tensors are superquadrics [Kin04]. A se-
vere disadvantage of this approach is that superquadrics are computed in software which is
currently not possible in real-time.
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Fiber tracking which is maybe the most appealing and understandable technique for
representing white matter has been investigated by several groups [MCCvZ99, BPP+00,
SKvZ+01, MvZ02, ZB02, FGLG03, VBvP04]. All these approaches are based on stream-
line techniques known from flow visualization. Thereby, the respective vector field is de-
rived by taking the major eigenvector of each tensor. Fiber tracking algorithms often utilize
thresholds, angle criterions, regularization techniques and local filters to improve tracking
results.
However, all these visualization approaches for white matter structures should be evaluated
considering their capacities for surgical planning. 2D representations of FA and cl, cp, cs as
well as hue balls are already able to show spatial relations between lesions and white matter.
Volume visualization or iso-surfaces of these diffusion measures do not further improve
the quality of representation for clinical purposes. Glyph visualization on the other hand is
of interest for investigating tumor borders and infiltration of white matter tracts. A really
useful tool for surgical planning are fiber tracts computed by streamline based approaches
since they are a very comprehensive representation of the data. A combined visualization
of fiber tracts and anatomy which is outlined in more detail in this paper is a very promising
tool for assisting in surgical planning. The concurrent display of anatomy and fibers enables
the surgeon to assess the location of fibers in relation to anatomical landmarks. This is of
major importance in patients with space occupying lesions which may cause a displacement
of fibers and other anatomical structures.

2 Image Data
In addition to directional diffusion images required for computing fibers, anatomical data
is needed for fusion. A T1 weighted MR sequence such as MPRAGE (Magnetization Pre-
pared Rapid Acquisition Gradient Echo) provides the required anatomical detail. All im-
ages were acquired using a Siemens MR Magnetom Sonata Maestro Class 1.5 Tesla scan-
ner equipped with a gradient system with a field strength of up to 40 mT/m (effective 69
mT/m) and a slew rate of up to 200 T/m/s (effective 346 T/m/s). Regarding image acquisi-
tion for DTI, the scanner is able to generate images for six or alternatively twelve diffusion
directions.

DT image data: The diffusion images differed in the direction of the gradient that was
applied. For each slice a total amount of seven images was created: One reference image
was measured without any gradient direction which is equivalent to common T2 weighted
MR data. The remaining six or alternatively twelve images were acquired using different
gradient directions that correspond to the diffusion directions measured at that time. With
respect to anatomical information, the reference image represents anatomical structures
best though in poor detail. The other images show diffusion properties.

DT imaging parameters: TR = 9200, TE = 86 ms, bhigh = 1000 s/mm2, blow = 0 s/mm2,
field of view 240 mm, voxel size 1.875×1.875×1.9 mm3, 1502 Hz/Px bandwidth, acqui-
sition matrix 128×128, 60 slices. The diffusion-encoding gradients for the six diffusion
weighted images were directed along the following axes: (±1,1,0), (±1,0,1) and (1,±1,0).



MPRAGE image data: The advantages of this modality are a high signal to noise ratio,
thin coherent slices and the possibility of multi-planar reconstruction.

MPRAGE imaging parameters: TR = 2020 ms, TE = 4.38 ms, field of view 250 mm,
voxel size 0.488281×0.488281×1.0 mm3, acquisition matrix 512×512, 128 slices.

3 Methods
The main challenge of medical visualization is to show the required information for diag-
nosis and therapy planning in an unambiguous and intuitive manner. In the case of DTI,
the visualization of fiber streamlines in combination with high quality anatomical data is
a promising step towards this objective. This kind of visualization is of special interest for
surgical planning in neurosurgery. To avoid postoperative neurological deficits a surgeon
must be able to estimate the spatial relation between tumor and vital white matter structures.
An integrated visualization of fiber tracts and anatomical data is a valuable contribution to
safer surgery.
This chapter starts with a short introduction to data processing (Section 3.1) and fiber track-
ing (Section 3.2). The main focus is on different visualization aspects which are treated in
Section 3.3.

3.1 Data processing
The different diffusion datasets and the slice numbering within each dataset have to be iden-
tified using the tags available within the DICOM (Digital Imaging and Communications in
Medicine) headers.
Taking the six datasets with different gradient directions and the dataset that was measured
without any gradient a second order diffusion tensor was computed for each voxel by solv-
ing the Stejskal-Tanner equations system [ST65]

Si = So e
−b ĝT

i
Dĝi .

Thereby, D is the diffusion tensor for a voxel that has to be computed, Si is the measured
diffusion value of this voxel for dataset i, So represents the value of this voxel within the
dataset without gradient, ĝ stands for the gradient direction of dataset i and b is LeBihan’s
b-factor which depends on several image acquisition parameters. Since the second order
diffusion tensors are symmetric, the six unknowns within each tensor are uniquely defined
in the case of six gradient directions. An efficient way for solving the equations system is
outlined in [WMM+02].
A set of filters was implemented to deal with imaging noise. The filters are applied
component-wise for all tensors. More precisely, the filter is first applied to all first en-
tries of the tensors, then to all second entries and so on. Currently, our set of filters com-
prises a Gaussian-filter as well as a non-linear edge enhancing filter and a best-neighbor
filter [ZPV02]. For all filters the kernel size may be defined by the user. In case of the
Gaussian-filter, the filter kernel components are derived by determining the correspond-
ing binomial coefficients. The non-linear edge enhancing filter computes the difference



between the tensor entry of a voxel and its neighboring voxels. Depending on the simi-
larity of these values each neighbor is weighted. In this way, similar values have a higher
contribution to the filtered value. The third filter, a best-neighbor filter, works in a similar
way. Surrounding neighbors are sorted according to the difference of values. Only the best-
matching third of the sorted neighbors is equally weighted and contributes to the filtered
value of the center voxel. A comparison of the filter results is shown in Figure 1 where
axial slice images of FA are presented.

Figure 1: Comparison of different filters, axial slices of FA dataset after filtering of diffusion
tensors are presented. Filters from left to right (filter kernel size 3): Original, Gaussian filter,
non-linear edge enhancing filter, best-neighbor filter

3.2 Fiber tracking
A very popular approach for visualizing diffusion tensors is to perform fiber tracking. The
streamlines extracted by tracking algorithms are assumed to represent the most likely path-
ways through the tensor field. Note that the term ’fibers’ is used for streamlines which
do not represent real anatomical fibers but provide an abstract model of neural structures.
Starting from seed voxels, the tracking is performed in forward and backward direction
with sub-voxel precision. For the selection of seed voxels and for aborting the streamline
propagation, FA is used as a threshold. FA represents the degree of anisotropic diffusion and
therefore is a proper measure for the probability of white matter. Following this assump-
tion, voxels with high FA are used as seed voxels. If FA falls below a certain threshold, the
tracking stops.
Accordingly, a single tracking step of the streamline propagation looks as follows: The
tensor at the current end point of the fiber is computed using trilinear interpolation which
is separately performed for each tensor entry. The eigensystem of the tensor is then de-
termined. The eigenvector belonging to the highest eigenvalue, in the following referred
to as principal eigenvector, correlates with the direction of highest diffusion. In case of
Euler integration, the next streamline propagation step would be in direction of this prin-
cipal eigenvector. For reasons of numerical accuracy, we apply a higher order integration
scheme (Runge-Kutta of order four) which needs repeated tensor interpolation and princi-
pal eigenvector computations until the direction of streamline propagation is determined.



The step size is set to a fixed value which is a quarter of the voxel size. Since the field of
the principal eigenvectors does not correspond to a flow field we found it more convenient
to choose a sufficiently low fixed step size instead of adaptive adjustments. Contrarily to
nerves, flows consisting of particles posses physical properties such as inertia which ensure
that sudden changes of direction do not occur. For fiber tracking a fixed step size is safer to
prevent missing turnoffs. Apart from the FA threshold for aborting fiber tracking, stream-
line propagation is aborted in the subsequently described cases. If a streamline has reached
a maximum length or if the angle between the last two steps is above a certain threshold,
tracking stops. A further criterion for accepting a fiber is its length. Streamlines are rejected
if they are below a minimum length. Beside these thresholds the user may choose between
a tracking encompassing the whole brain or a tracking extracting fibers that run through
user-defined regions of interest (ROIs). The latter approach enables the reconstruction of
separate tract systems which is of special interest for medical applications.

3.3 Visualization
The visualization of neural pathways for medical applications has to fulfill several criteria.
For planning of brain tumor surgery one has to investigate the spatial relation between
tumor and fibers. This was achieved using a concurrent display of fibers and anatomical
data which was either represented in a single slice or with direct volume rendering. The
rendering of fibers is discussed in Section 3.3.1, the direct volume rendering is described
in Section 3.3.2. Important aspects for the fusion of fibers and anatomical data are outlined
in Section 3.3.3.

3.3.1 Fibers

The OpenGL API was used for rendering the fibers. Thereby, each tract was stored as
a vertex array and drawn as a set of lines. The standard strategy for color encoding of
fibers [CLV+94, JWH97, PP99] is to utilize the normalized principal eigenvector compo-
nents of the local trilinear interpolated tensor as RGB values. Here, we used a simplified
approach employing the components of the normalized vector which connects two subse-

Figure 2: Closeups of a pyramidal tract. Standard color encoding is achieved using vector
between adjacent tracking points.



quent fiber points to avoid trilinear tensor interpolation and eigen analysis. Since the step
size for tracking is sufficiently small, the visual impression remains the same.
A further strategy to improve streamline visualization could be to incorporate illumina-
tion of the fibers. However, practical experience has shown that it is better to omit any
illumination. It modifies color encoding and thus falsifies the color information which in
combination with the 3D representation of fibers already provides a good spatial impres-
sion. Any contribution to a better estimation of the shape of fibers using illumination is
hardly observable.

Figure 3: Illumination of fibers modifies color information and is therefore not recom-
mended in case of single track visualization. Left: Fiber without illumination. Right: Illu-
minated fiber.

3.3.2 Volume Rendering

The concurrent display of anatomical MR data and fibers is achieved with direct volume
rendering. This is supported by the capabilities of current PC graphics hardware. It is capa-
ble to handle volume data as 3D textures and enables interactive visualization. Apart from
investigating slice images of the data, 3D volume rendering of clinical data is suited to get
an intuitive impression of the spatial relations of anatomical landmarks. Therefore, it is a
valuable tool for investigation and planning in brain tumor surgery.
However, visualizing MR data using direct volume rendering is difficult due to the low
dynamic range of intensity values. Additionally, different anatomical structures such as skin
and brain tissue are represented by the same intensity value which prevents the separation
of different structures using intensity based transfer functions. Therefore, an alternative
strategy for visualizing and investigating the spatial relation of fibers and anatomy or brain
tumors are tagged volumes. For this purpose, relevant structures such as the ventricles or a
brain tumor were segmented in a preprocessing step. Thereby, a second dataset containing
tag ids for each part was generated which allowed assigning specific transfer functions to
each sub-volume. Figure 4 shows a brain tumor that is rendered as tagged volume.



Figure 4: Tagged volume visualization applying separate transfer functions for a tumor
(blue), ventricles (red) and surrounding tissue combined with closely related fibers repre-
sented with lines.

In addition to tagged volumes clipping is essential since it allows suppressing entire areas
from rendering and thereby gives direct visual access to hidden structures. Therefore, hard-
ware accelerated clipping of arbitrary geometry as introduced by Weiskopf [WEE02] was
incorporated in order to allow masking of uninteresting areas. Combining tagged volumes
with clipped volume rendering allows investigating segmented structures and surrounding
anatomy which may be combined with rendered fibers. This led to clear visualizations as
shown in Figure 5.

3.3.3 Fusion

The current restriction to opaque fibers allowed a simple step-by-step rendering. After ren-
dering the fibers, back-to-front rendering of the volume with activated depth buffer was
sufficient. Parts of the volume which were concealed by the fibers were suppressed by the
depth-test. Further extensions towards semi-transparent fiber representations will be com-
putationally more expensive since depth sorting has to be applied.
High accuracy with respect to showing the spatial relation of fibers and anatomy is a com-
mon goal for all visualization strategies. While merging fibers with the corresponding ref-
erence dataset is trivial, for other image data such as MPRAGE this is a difficult task. In
this case, registration has to be applied prior to visualization to adjust the datasets. Rigid
registration is thereby sufficient for many registration tasks dealing with undistorted image
data. In the case of DTI, non-linear registration has to be performed to account for image
distortions of the DTI sequence. Non-linear registration thus ensures that fibers computed
from the distorted DTI images are positioned properly within the undistorted dataset show-
ing anatomy [MHS+04]. Alternatively, if non-linear registration is omitted, the observer
has to take into account that fibers are positioned with a certain error.



Figure 5: Improved anatomical orientation using visualization of tagged data based on vol-
ume clipping combined with fibers represented with lines.

4 Results
The presented approach for an integrated visualization of diffusion tensor fiber tracts
and anatomical data was adapted to application in surgery. In addition to 2D slice im-
age sequences, direct volume rendering provides a better understandable representation
of 3D anatomy. Volume clipping is thereby an essential tool for investigating inner struc-
tures which are hardly discoverable with intensity based transfer functions. Since different
anatomical structures occupy identical grey values and the differences between grey values
are low, volume clipping has prior importance compared to transfer functions. Interactive
adjustment of the clip volume thereby provides fast and precise access to inner structures.
A combined rendering of clipped anatomical data and fiber lines thus allows investigating
the course of fibers and nearby anatomy simultaneously. If a 3D representation of certain
structures is recommended, the desired areas are segmented by an clinical expert and ren-
dered as tagged volumes. Regarding the visualization of brain tumors, this approach is
superior compared to a transfer function based visualization as brain tumors often have no
clear border due to infiltration with other tissue. A tagged volume approach clearly shows
the volume of the tumor. Thus, it is much more appropriate for investigating the spatial
relation of tumor, fibers and anatomy which is essential for surgery. The integrated visual-
ization approach hence provides a comprehensive representation of the complex 3D data
and fiber anatomy.
Regarding performance aspects the aim was to enable interactive manipulation and com-
fortable handling of the tools. The computation of fibers which lasts up to one minute for
a whole brain is the most time consuming part. The volume rendering and application of
transfer functions, tagged volumes and clipping run interactively due to extensive use of



graphics hardware. The frame rates for a number of setups using different graphics cards
are presented in Table 1. We measured the frame rates for displaying two different tract
systems and a tracking of the whole brain in combination with a DTI reference dataset and
MPRAGE anatomical datasets. The tract systems (pyramidal tract and optical tract) con-
tained about 240 and 330 fibers, the tracking of the whole brain resulted in 3980 fibers.
The average number of tracked points for each fiber was about 160. The dimensions of
the datasets were 128×128×60 voxel for the DTI reference dataset and 256×256×128
and 512×512×128 voxel for the MPRAGE anatomical datasets. For measuring frame
rates we used PCs equipped with an Intel Pentium 4 (3 GHz) and GeForce FX 5700,
GeForce FX 5950, GeForce 6800 Ultra and GeForce Quadro FX 1000 graphics cards.
These results show that investigating anatomy and fibers interactively is possible. This is of
major importance for clinical application due to limited time in clinical workflows which
highly influences the acceptance of medical tools.

GeForce FX 5700 Pyramidal tract Optical tract Whole brain
DTI 128 12.4 12.1 4.7
MPRAGE 256 7.8 7.7 3.7
MPRAGE 512 3.3 3.3 2.4

GeForce FX 5950 Pyramidal tract Optical tract Whole brain
DTI 128 46.1 45.0 6.6
MPRAGE 256 24.0 23.6 5.9
MPRAGE 512 9.8 9.8 4.4

GeForce 6800 Ultra Pyramidal tract Optical tract Whole brain
DTI 128 125.0 122.0 5.8
MPRAGE 256 47.8 47.5 5.5
MPRAGE 512 20.5 20.2 4.8

GeForce Quadro FX 1000 Pyramidal tract Optical tract Whole brain
DTI 128 36.8 36.8 7.5
MPRAGE 256 22.3 22.0 6.4
MPRAGE 512 8.2 8.1 4.3

Table 1: Frame rates in fps for different setups and different graphics cards.

5 Conclusion
In neurosurgery, extensive pre-operative planning is performed to minimize the risk of
surgery. In this context, it is of major importance for the physician to collect information
about the spatial relation between a tumor or aneurysm and neural pathways, major veins or
speech areas. An appropriate visualization of neural fibers in addition to volume rendering



of anatomical data enhanced with clipping or tagged volumes provides the needed flexibil-
ity for obtaining a meaningful visualization. Overall, the presented visualization techniques
are capable to support diagnosis and planning in surgery.
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Figure 6: Combined visualization of fibers and anatomy in a healthy volunteer. Pyrami-
dal tract (blue) and optical tract (green) represented with lines. Ventricles (magenta) are
displayed utilizing tagged data.


