
Anisotropy of HARDI Diffusion Profiles based
on the L2-Norm

Philipp Landgraf1, Mirco Richter1, Dorit Merhof1

1Visual Computing, University of Konstanz, Konstanz

Philipp.Landgraf@uni-konstanz.de

Abstract. The fractional anisotropy (FA) value for Diffusion Tensor
Imaging is widely used to determine the anisotropy of diffusion in a
given voxel. As the FA value is based on the tensor’s eigenvectors it is
not possible to calculate this quantity for HARDI diffusion profiles. In
this paper we introduce an anisotropy index for HARDI data that utilizes
the L2-norm as the most natural notion of distance for square-integrable
functions on the two-sphere such as HARDI diffusion profiles and show
that it is the limit of the generalized fractional anisotropy (GFA) index.
Our index is well-defined and rotationally invariant and thus resolves the
unsatisfactory issues with the GFA index.

1 Introduction

The gray matter in the human brain comprises about 10 billion neuronal cells
that use their axons to transmit information. These axons form bundles called
neuronal fiber tracts that connect functional areas.

The localization of white matter tracts is of great interest for neurological re-
search about brain structure and function, as well as for neurosurgery to preserve
important tract systems during surgical intervention.

The noninvasive and in vivo reconstruction of fiber tracts is possible with
Diffusion MRI. This is a medical imaging modality that is sensitive to the random
thermal movement of water molecules. This information allows for inference
about the structure of the tissue in the human brain because diffusion tends to
be hampered in directions orthogonal to fiber bundles.

A widely used model to describe the measured diffusion is the diffusion ten-
sor [1] which is the covariance matrix of a three-dimensional Gaussian distribu-
tion and is used to model the diffusion orientation distribution function (ODF).

The fractional anisotropy value (FA) is a scalar measure derived from the
diffusion tensor and quantifies the anisotropy of diffusion. As diffusion tends to
be more anisotropic in white matter this value can be applied to distinguish
white matter from gray matter within the brain. Tracking algorithms therefore
often operate with an FA threshold to prevent fiber tracking algorithms from
leaving regions of white matter as in [2].

However, the diffusion tensor can only resolve a single diffusion direction
per voxel. To overcome this deficit High Angular Resolution Diffusion Imaging
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(HARDI) techniques such as Q-Ball Imaging [3] or Higher Order Tensors [4]
have been developed that increase the number of gradients and reconstruct an
apparent diffusion coefficient (ADC) profile at each voxel.

The FA value is based on the eigenvalues of the diffusion tensor. Therefore,
it is not possible to calculate the FA value of a general ADC profile due to its
lack of eigenvalues. Several anisotropy indices for HARDI diffusion profiles can
be found in the literature, such as the indices of Frank [5] and Chen [6].

In this paper we generalize the popular GFA index [3] that for instance
was employed to investigate the genetic effects on brain fiber connectivity [7].
Nevertheless it has some theoretical limitations which are resolved in this work.

2 Materials and Methods

This section starts with the definition of the GFA index and its drawbacks.
Thereafter the L-index is defined.

2.1 The GFA index

The GFA index defined by Tuch [3] is a straightforward extension of the FA
value to HARDI ODFs. After picking directions {xi}i=1,...,n one can define

GFAn(f) :=

√
n
∑n

i=1(f(xi)− 〈f〉n)2
(n− 1)

∑n
i=1 f(xi)2

(1)

where 〈f〉n = 1
n

∑n
i=1 f(xi) is the mean value.

This index is automatically scaled to the unit intervall and maps isotropic
ODFs to zero. In the special case of diffusion tensors, GFA reduces to the FA
value if the chosen directions happen to be the eigenvectors of the tensor.

The GFA index has, however, some severe drawbacks. First of all, it is not
well-defined as it strongly depends on the number and choice of the directions in
which the function is evaluated. Secondly, GFA(f) is not rotationally invariant
as one would expect from an anisotropy index.

2.2 The L-Index

The basic idea of our anisotropy index is to measure how spherical the ADC-
profile is. The ODF is expressed as a linear combination of spherical harmonics
that are an orthonormal basis of the Hilbert space L2 of square-integrable func-
tions. The natural measure of distance in this space is the L2-norm ‖·‖2.

If the mean value 〈f〉 of f defined by

〈f〉 := 1

2π2

∫ π

0

∫ 2π

0

f(θ, ϕ)dϕdθ (2)
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and the corresponding constant function (which we also denote by 〈f〉) is taken
as the closest approximation of f by a sphere, the L2 distance ‖f − 〈f〉‖2 be-
tween f and 〈f〉 contains the information about how close f resembles a sphere.
Normalizing with the L2 norm of f yields the L-index

L(f) =
‖f − 〈f〉‖2

‖f‖2
. (3)

3 Results

The main result of this paper is that the L-index is the limit of the GFAn index
as n increases if one chooses the xi as rectilinear gridpoints in the [0, π)× [0, 2π)
domain.

Theorem 1. limn→∞ GFAn(f) = L(f).

Proof. Let f : [0, a]× [0, b] → R be a real valued function on a rectangle. Define

gridpoints x
(n)
ij := (i an , j

b
n ), i, j = 0, . . . , n for each n ∈ N. Furthermore let

Φ(f, n) :=
n∑

i=1

n∑
j=1

ab

n2
f
(
x
(n)
ij

)2

. (4)

Now consider the characteristic functions 1 χ
A

(n)
ij

: [0, a]× [0, b] → {0, 1} for the

sets A
(n)
ij := [(i− 1) an , i

a
n )× [(j − 1) b

n , j
b
n ). Then we have

Φ(f, n) =

∫ a

0

∫ b

0

n∑
i=1

n∑
j=1

f(x
(n)
ij )2χ

A
(n)
ij

(x, y)dydx (5)

1 The characteristic function χA of a set A is defined by χA(x) = 1 if x ∈ A and
χA(x) = 0 otherwise.
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Fig. 1. (a) FA values of a single slice from the dataset, (b) L-Index values from the
same slice capped at 0.5 for enhancement of contrast.
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which converges to ‖f‖22 =
∫ a

0

∫ b

0
f(x, y)2dydx as the sum describes a step func-

tion that converges to f2.
A similar argument shows that limn→∞〈f〉n = 〈f〉. Together this yields the

convergence because

lim
n→∞

GFAn(f) = lim
n→∞

√
n

n− 1

√
Φ(f − 〈f〉n, n)√

Φ(f, n)
=

‖f − 〈f〉‖2
‖f‖2

. (6)

So basically GFAn(f) is an approximation to the true anisotropy value L(f)
using the rectangle rule for numerical integration. Note that GFAn(f) ∈ [0, 1]
implies L(f) ∈ [0, 1] as well. Furthermore, this index is invariant under scaling
with a scalar, i.e. L(cf) = L(f) as one would expect from a measure of shape.
Additionally, it is well defined and rotationally invariant since it is defined by
integration over the sphere and thus resolves the drawbacks of the GFA index.

3.1 Application to human brain data

The Diffusion MRI dataset used in this work was provided for the IEEE Visual-
isation Contest 2010. It is courtesy of Prof. B. Terwey, Klinikum Mitte, Bremen,
Germany and was acquired on a Siemens 3T Verio MR scanner. 30 gradient
directions and two averages per gradient were acquired with b = 1000 s/mm2.

ADC-profiles were reconstructed with maximal order M = 6 as in [8] with
regularization parameter λ = 0.5. Subsequently, diffusion tensors were recon-
structed by a least squares fit to calculate FA values.

Figure 1 shows the FA values (a) and L-index values (b) of a single slice in the
dataset. Note that due to the fact that the distribution of the L-index is relatively
narrow the values have been thresholded at 0.5 for contrast enhancement. The
distributions of the values can be seen in Figure 2 which shows histograms over
the whole dataset for FA values and the L-index. This also shows that 0.5 is a
reasonable threshold.
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Fig. 2. Histogram of the FA values (left) and L-index (right) over the entire dataset.
For the sake of clarity, zero voxels were left out.
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The correlation coefficient corr(L-index,FA) = 0.9576 shows a strong (posi-
tive) linear correlation between the L-index and the FA value.

4 Discussion

We showed that the L-index resolves the unsatisfactory issues with the GFA
index not being well-defined nor rotationally invariant. Moreover the GFA index
can be interpreted as approximation of the L-index by numerical integration.

Due to the strong linear correlation between the FA value and the L-index
the latter can be used to segment white matter in the brain or serve as a stopping
criterion for tracking algorithms based on HARDI data.
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