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Abstract

With hippocampal atrophy both a clinical biomarker for early Alzheimer’s

Disease (AD) and implicated in many other neurological and psychiatric

diseases, there is much interest in the accurate, reproducible delineation of

this region of interest (ROI) in structural MR images. Here we present

Fast Marching for Automated Segmentation of the Hippocampus (FMASH):

a novel approach using the Sethian Fast Marching (FM) technique to grow

a hippocampal ROI from an automatically-defined seed point. Segmenta-

tion performance is assessed on two separate clinical datasets, utilising ex-

pert manual labels as gold standard to quantify Dice coefficients, false pos-

itive rates (FPR) and false negative rates (FNR). The first clinical dataset

(denoted CMA) contains normal controls (NC) and atrophied AD patients,

whilst the second is a collection of NC and bipolar (BP) patients (denoted

BPSA). An optimal and robust stopping criterion is established for the prop-
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agating FM front and the final FMASH segmentation estimates compared to

two commonly-used methods: FIRST/FSL and Freesurfer (FS). Results show

that FMASH outperforms both FIRST and FS on the BPSA data, with sig-

nificantly higher Dice coefficients (0.80±0.01) and lower FPR. Despite some

intrinsic bias for FIRST and FS on the CMA data, due to their training,

FMASH performs comparably well on the CMA data, with an average bi-

lateral Dice coefficient of 0.82±0.01. Furthermore, FMASH most accurately

captures the hippocampal volume difference between NC and AD, and pro-

vides a more accurate estimation of the problematic hippocampus-amygdala

border on both clinical datasets. The consistency in performance across the

two datasets suggests that FMASH is applicable to a range of clinical data

with differing image quality and demographics.

Keywords: Structural MRI, Hippocampus, Automated, Segmentation,

Region-growing

1. Introduction

Crucially involved in episodic and spatial memory processes, the hip-

pocampus has been implicated in the pathophysiology of many neurological

and psychiatric diseases [Konrad et al., 2009]. Hippocampal atrophy is a

clinical biomarker of both early Alzheimer’s disease (AD) and temporal lobe

epilepsy (TLE), with additional findings in post traumatic stress disorder and

schizophrenia, and affective disorders such as major depression and bipolar

disorder (BP). Consequently, there is much interest in the delineation and

quantification of this region of interest (ROI) on structural magnetic reso-

nance (MR) images, requiring accurate and reproducible segmentation meth-
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ods. These methods face a complicated task; arising from the complex shape

and large inter-subject variability of the hippocampus as well as the poor

contrast hippocampus-amygdala border. Conventionally used manual seg-

mentation requires expert knowledge and can be extremely time consuming,

thus impractical for large-scale clinical studies, fuelling the development of

semi-automated and automated segmentation methods for this purpose.

Previous hippocampal segmentation methods can be broadly classified

into three groups: region-growing, atlas-based, and parameterized-modelling

approaches. Whilst some methods may still be identified as belonging to one

particular classification [Taylor and Barrett, 1994; Carmichael et al., 2005;

Heckemann et al., 2006; Aljabar et al., 2007; Patenaude, 2007], there is a pro-

gressive trend towards ‘multi-approach’ segmentation methods that combine

aspects of two or more groups to achieve increased robustness and segmen-

tation accuracy [Fischl et al., 2002; Chupin et al., 2007; Colliot et al., 2008;

Morra et al., 2008; van der Lijn et al., 2008; Chupin et al., 2009b; Lotjo-

nen et al., 2010; Wolz et al., 2010]. This work will focus on region-growing

methods and parameterized-models, but will utilise aspects of atlas-based

approaches. In turn, the resultant segmentation performance will be com-

pared to two commonly-used methods: the parameterized model FIRST/FSL

[Patenaude, 2007; Woolrich et al., 2009], and the combined atlas-based and

parameterized-model Freesurfer (FS) [Fischl et al., 2002].

As the name suggests, region-growing methods typically grow a ROI from

an initial start or seed point manually defined on the target image. The

ROI grows and deforms according to various constraints (e.g. anatomical

landmarks, surface curvature, energy constraints) imposed by the respec-
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tive algorithms. Competitive region-growing from one or more seeds may

be performed by comparison of border voxels to the first-order statistics of

voxels that have already been absorbed (or added) to the ROI [Taylor and

Barrett, 1994]. Combining this concept with a deformable model, Ashton

et al. [1997] elastically deform a region from a line of seeds in the presence of

constraining forces (elastic surface tension, deviation from the expected sur-

face normal and resistance from surrounding tissue). Both the initial line of

seeds and the deformation constraint are derived from manually-segmented

contours in three orthogonal slices. In turn, a statistical model of hippocam-

pal geometry is combined with elastic deformations, utilising displacement

forces derived from matching local intensity profiles [Kelemen et al., 1999].

More recently, several methods have focused on the simultaneous extrac-

tion of both the hippocampus and the amygdala [Yang and Duncan, 2004;

Yang et al., 2004; Chupin et al., 2007; Colliot et al., 2008; Chupin et al.,

2009b]. Specifically, a competitive region-growing approach based on homo-

topically deforming regions is used to segment both the hippocampus and the

amygdala in Chupin et al. [2007]. This initial development of the algorithm

requires manual definition of two seed points and a bounding box, with the

deformation constraint based on prior knowledge of anatomical features in

the vicinity of automatically-detected landmarks. Applied to clinical data

[Colliot et al., 2008], the algorithm detects significant hippocampal volume

reductions for both mild cognitively impaired (MCI) and AD patients with

respect to normal controls, facilitating accurate group classification. Subse-

quent development has given rise to an automated region-growing method

[Chupin et al., 2009b], imposing additional energy constraints and automated
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detection/correction of atlas mismatch for improved segmentation perfor-

mance, and similar group classification accuracy [Chupin et al., 2009a]. In-

stead of initializing the algorithm with a manually-defined seed point, Chupin

et al. [2009b] utilise the probabilistic atlas priors for automated intialization,

defining much larger hippocampal and amygdala objects from the maximal

probability zone of the respective atlases. As such, the method is essentially

a voxel re-classification approach on these initial objects.

Whilst the aforementioned region-growing methods can provide relatively

efficient segmentation accuracy and group classification, most require time-

consuming and knowledge-based manual intervention (for definition of a spe-

cific bounding box and seed points), with the resultant segmentation de-

pendent on good initialisation. Furthermore, the majority of studies focus

on development and evaluation of an individual segmentation method on a

single dataset, reporting a non-standardized selection of performance mea-

sures, such that direct comparison of hippocampal segmentation methods is

compromised.

Here we present Fast Marching for Automated Segmentation of the Hip-

pocampus (FMASH): a novel region-growing method for automated hip-

pocampal segmentation on structural MR data. The algorithm uses a 3D

Sethian Fast Marching (FM) technique (Section 2.5) to propagate a hip-

pocampal ROI from an automatically-defined seed point p0 (Section 2.4).

The propagating ROI is driven by a potential function (Section 2.7) com-

prised of both subject-specific intensity features and a model-based shape

prior. In contrast to Chupin et al. [2009b], the FMASH algorithm extracts a

subject-specific, single-voxel hippocampal seed from the structural MR data
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(based on local means analysis) and does not rely on competitive growth of

the neighbouring amygdala structure. The FMASH algorithm is applied to

two clinical datasets (Section 2.1) with segmentation performance assessed

according to three common measures (Section 2.9), providing both valuable

assessment of method performance on multiple datasets and ease of com-

parison with previous reported methods. An optimal and robust stopping

criterion is established for the propagating FM front (Section 3.3) and the

resultant FMASH segmentation compared to FIRST and FS (Section 3.4).

Additionally, Section 4 provides context based on the most recent literature.

2. Materials and methods

2.1. Clinical MR data

This work utilises two clinical datasets, consisting of T1-weighted MR

images and their corresponding expert manual labels. The first dataset con-

tains 9 normal control (NC) subjects and 8 atrophied AD patients (Figure

1), supplied by the Center for Morphometric Analysis (CMA), whilst the

second is a collection of 16 NC and 16 BP patients from the University of

Texas Health Science Center in San Antonio (denoted BPSA). Evaluation of

the FMASH algorithm on both of these datasets is motivated by the desire

to construct a general hippocampal segmentation method that works well for

a range of diseases.

The research sites that provided the data used their own expert raters and

semi-automated contouring tools to perform a similar manual definition of the

hippocampus in sequential coronal slices, based on intensity boundaries and

well-established geometrical rules of neuroanatomy [Kennedy et al., 1989].
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All experts underwent a period of training (of up to three months) until

they had reached a defined reproducibility. Inter-rater reliability (i.e. Dice

coefficient) for the BPSA and CMA data are 0.90 and 0.80, respectively, with

image resolution and demographics given in Table 1.

Data Size Age Resolution (mm) Subjects

CMA 17 65 - 83 0.94 x 1.50 x 0.94 9 NC, 8 AD

BPSA 32 20 - 58 0.8 x 0.8 x 0.8 16 NC, 16 BP

Table 1: Image resolution and demographics. Group size, age (years) and resolution of

the two clinical datasets, containing normal control (NC) subjects, Alzheimer’s Disease

(AD) and bipolar (BP) patients.

2.2. Software

Tools from the FMRIB Software Library (FSL, www.fmrib.ox.ac.uk/fsl)

are used to generate the hippocampal spatial priors (Section 2.3) and standard-

space performance maps (Section 2.9), with the remainder of the algorithm

currently implemented in MATLAB (www.mathworks.com).

2.3. Generation of hippocampal spatial priors

Atlas-based, label-propagation and decision-fusion approaches have pre-

viously provided segmentation estimates for the hippocampus, with label-

fusion performed either in the native (subject) space [Heckemann et al., 2006;

Aljabar et al., 2009; Bishop et al., 2010] or a standard reference space [Aljabar

et al., 2007]. Here, a similar approach is used to construct the hippocampal

spatial priors, propagating all subject data (MR images and corresponding

manual labels) to the standard MNI152 space via a multi-step registration
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scheme: an initial three-step affine registration with the FSL tool FLIRT,

followed by a multi-resolution non-linear warp with FNIRT. From this repos-

itory of spatially-normalized data, the target (to-be-segmented) image is ex-

cluded, manual labels are fused (summing trilinearly-interpolated values) and

averaged to generate a standard-space hippocampal prior for each individual

subject. Each inverted non-linear warp subsequently transfers the standard-

space hippocampal prior to the corresponding subject (native) space for use

in the FMASH algorithm. For all non-linear registrations with FNIRT, a

control point spacing of 10mm was specified, with a sub-sampling scheme of

4,4,2,2,1,1 and a bending energy model for regularisation of the warp-field.

2.4. Image preprocessing and seed extraction

For each subject, the minimum and maximum index of non-zero voxels

along each dimension of the hippocampal spatial prior defines a rectangular

box (i.e. cuboid) surrounding the hippocampus. Maroy’s Local Means Anal-

ysis (LMA) method for dynamic PET images [Maroy et al., 2008] is adapted

to extract a series of points with minimal local intensity variance within this

ROI. For all voxels n in the hippocampal ROI, the amplitude of local signal

variations are estimated by

Γn =
1

#Vn − 1
×
∑
j∈Vn

(Ij − µn)2

µn

(1)

where #Vn is the number of voxels contained within the local neighbourhood

Vn of voxel n, µn is the mean signal within Vn, and Ij is the signal at a

neighbouring voxel j. Spatial neighbourhoods of 5x5x5 and 5x3x5 voxels are

considered for the BPSA and CMA data, respectively, maintaining a similar

spatial extent (in mm) of Vn for differing voxel dimensions.
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We define Λ = {n | ∀j ∈ Vn,Γn < Γj} the set of locations of all local

minima of the resulting “Γ map” (i.e. the set of voxels that are local minima

with respect to the local intensity variance measure). These local minima

are points of stability in the hippocampal ROI, usually the least affected

by noise and image artefacts. Defining the most central local minimum as

the single hippocampal seed point m = p0 thus provides stable and robust

initialization of the FM algorithm.

2.5. Active contours: a global minimum

Classical deformable models are typically driven by an energy term com-

posed of both internal and external constraints, requiring precise initializa-

tion for extracting the path of minimum energy between two fixed extrem-

ities. Applied to aerial road images, angiographic images of the eye and

cardiac MR images, Cohen and Kimmel [1997] simplify this model to exter-

nal forces only and solve the minimal energy path problem in 2D, using the

Sethian FM algorithm for propagation of the initial front [Sethian, 1996].

Later, the FM method is extended to 3D images [Deschamps and Cohen,

2000] with application to path tracking in virtual endoscopy, computed to-

mography (CT) colonoscopy and extraction of brain vessels in a magnetic

resonance angiography (MRA) scan. These minimal energy path active con-

tour approaches aim to find the curve of minimum energy amongst all curves

joining a seed point p0 to any other point p. A path C(s) in the image is

found that minimises the energy

E(C) =

∫
Ω

P̃ (C(s))ds (2)
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where Ω is the curve domain [0, L], L is the length of the curve and P̃ is

the input potential. The arrival time surface or minimal action U , is then

defined as the minimal energy integrated along the path

U(p) = inf
Ap0,p

E(C) = inf
Ap0,p

{∫
Ω

P̃ (C(s))ds

}
(3)

with Ap0,p denoting the set of all possible paths between p0 and p. The arrival

time surface is so-called because it gives the arrival time of the propagating

front at any given point in space, illustrated in Figure 2 for a 2D problem.

The front progresses along the path of least resistance, adding voxels which

constitute the lowest potential P̃ , thus finding the minimum energy curve for

the structure of interest (in this case, the hippocampus).

2.6. FM resolution in 3D

Noticing that the arrival time surface U satisfies the Eikonal equation

‖∇U‖ = P̃ (4)

Sethian [1996] presents a fast and efficient method for its construction in

2D, based on the fact that information is propagating outwards from the

initial seed point (p0), needing only one pass on the image. Extended to 3D

[Deschamps and Cohen, 2000], the details of the FM algorithm are as follows

1. Initialization

• For each grid point p, let U(p) =∞ (large positive value). Label

all points as far.

• Set the start point p0 to be zero: U(p0) = 0 and label it trial.

2. Marching Loop
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• Let (imin, jmin, kmin) be the trial point with the smallest U value.

• Label the point (imin, jmin, kmin) as alive, and remove it from the

trial list.

• For each of the 6 neighbouring grid points (i, j, k) of (imin, jmin, kmin)

– if (i, j, k) is labelled as far, then label it trial;

– if (i, j, k) is not alive, then compute Ui,j,k according to the

following equation

(max {u−min {Ui−1,j,k, Ui+1,j,k} , 0})2 +

(max {u−min {Ui,j−1,k, Ui,j+1,k} , 0})2 +

(max {u−min {Ui,j,k−1, Ui,j,k+1} , 0})2 = P̃i,j,k (5)

and let Ui,j,k = u.

With each iteration through the Marching Loop, the seed point p0 propagates

outwards along the path of least resistance, adding a voxel which constitutes

the lowest potential P̃ , thus finding the (minimal action) arrival time sur-

face U . Here, U is computed for all voxels in the hippocampal ROI, before

thresholding to give the resultant segmentation estimate. Computation of an

accurate and robust stopping criterion is detailed in Section 2.10. Novelty

arises from automated initialization of the propagating front using a single-

voxel hippocampal seed derived from the structural MR data (Section 2.4),

and the potential function presented below.
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2.7. A novel potential function

We define a novel input potential P̃m at voxel n, associated with the curve

joining the seed point m to any other voxel n:

P̃m (n) =
(In − µm)2

µm
2

− λ log p (Hipp (n)) (6)

This potential utilises both image intensity features (first term) and prior

probabilities established from training data (second term) to compute the

path of lowest potential and least resistance for the propagating FM front.

The probability of voxel n being labelled as hippocampus in the training data

is p(Hipp(n)), with a weighting parameter λ for the prior term.

Initial work, utilising only an intensity-based potential function, demon-

strated the need for the hippocampal spatial prior; providing further con-

straint of the propagating FM front at poor contrast intensity boundaries,

such as the hippocampus-amygdala border. The form of the potential func-

tion is based on the observation that the first term takes the form of a log

Gaussian likelihood probability, and thus the natural Bayesian formulation

for a log posterior probability involves the addition of a log prior probability

term. The weighting parameter λ provides a relative normalisation of the

likelihood and prior terms, as is common in such posterior probabilities. In

addition, as each term is dimensionless, λ is independent of the scale of the

image intensities and should therefore remain constant over a large range of

datasets.

2.8. The weighting parameter λ

Where possible, we wish the propagating FM front to be driven by subject-

specific intensity features, only incorporating model-based shape features
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when intensity contrast is lacking. Consequently, we search for the minimum

value of the parameter λ that constrains the FM front at these poor-contrast

boundaries. For a given λ and seed point m, we can compute the potential

at every voxel n in the hippocampal ROI (Equation 6) and use this informa-

tion to generate a 3D potential map. By empirically tuning the value of λ

(searching over the range 0 to 100 using increments of 10, then 1, then 0.01),

a series of 3D potential maps are generated for a small subset of test subjects

(2 NC and 2 patients) in each dataset. Section 3.1 describes the impact of

λ on these 3D potential maps and its determined value. The value of λ is

subsequently fixed for all subjects.

2.9. Performance measures

Due to the vast array of published performance measures, with no univer-

sal standard agreed upon, it is often difficult to formulate direct comparisons

of segmentation methods. Here, we report a combination of metrics used in a

recent online resource for validation of brain segmentation methods [Shattuck

et al., 2009] and the MICCAI 2008 competition workshop on MS lesion seg-

mentation: Dice coefficient, false positive rate (FPR) and false negative rate

(FNR). Additionally, these three metrics are combined to give an indication

of overall segmentation performance, as described below. The performance

measures serve two purposes: firstly, during development of the FMASH al-

gorithm, they are used to compute the FM stopping criterion (Section 2.10),

and secondly, they evaluate the resultant FMASH segmentation (Section

2.11).

If X is the set of all voxels in the image, we define the gold standard

(i.e. truth set) T ⊂ X as the set of voxels labelled as hippocampus by the
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expert manual rater. Similarly, we define the set S ⊂ X as the set of voxels

labelled as hippocampus by the segmentation algorithm or method being

tested.

Success and error rates

The true positive set is the set of voxels common to both T and S, defined

as TP = T ∩ S. The true negative set is the set of voxels that are labelled

as non-hippocampus in both sets, defined as TN = T ∩ S. Similarly, the

false positive set is defined as FP = T ∩ S and the false negative set is

FN = T ∩ S. From these four sets, we can compute various success and

error rates for image segmentation:

FPR =
| FP |

| FP | + | TN |
= 1− specificity (7)

FNR =
| FN |

| FN | + | TP |
= 1− sensitivity (8)

It is worth noting that the size of the image field of view (FOV) affects

the FPR but not the FNR, such that the FPR are very low when considered

over the whole image as opposed to a hippocampal ROI. Since we define the

hippocampal ROI as the minimum and maximum index of non-zero voxels

along each dimension of the hippocampal spatial prior, the size of the ROI

(and FOV) varies across individuals. To maintain a constant FOV, we con-

sider the whole MR image in our calculations of the TN set and therefore

the resultant FPR are extremely low.
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Standard-space FP and FN maps

Standard-space maps are generated to assess the spatial distribution of FP

and FN voxels for each segmentation method. The three-step affine trans-

formation, computed during generation of the hippocampal spatial priors,

propagates all subjects’ FP and FN voxels from their native space to MNI152

space. Here, the average FP and FN maps are computed (summing trilinearly-

interpolated values), with voxel values corresponding to the fraction of sub-

jects showing a FP or FN result at that voxel.

Similarity metric: Dice coefficient

The Dice coefficient is defined as the size of the intersection of two sets

divided by their average size:

D(T, S) =
2 | T ∩ S |

(| T | + | S |)
(9)

Combined Performance Measure (CPM)

Segmentation estimates of the left and right hippocampi are obtained for

each segmentation method, and the corresponding performance measures

computed. These measures are normalized to 0-1 (inverting FPR and FNR

such that a high normalized measure corresponds to better segmentation per-

formance) and summed to give the combined performance measure (CPM).

The CPM can take any value between 0 and 3, corresponding to the minimum

and maximum obtainable segmentation performance, respectively.
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2.10. FM stopping criterion

During development of the FMASH algorithm, we compute the stopping

time, U , for the propagating FM front using the following approach. Firstly,

we threshold each subjects’ left and right hippocampal arrival time surface

at a range of different arrival times (0.12 ≤ U ≤ 0.30 in increments of 0.02),

generating a series of left and right segmentation estimates for each subject,

from which the corresponding performance measures are computed. The ar-

rival time corresponding to the segmentation with the maximum combined

performance measure (CPM: Section 2.9) defines the optimal stopping cri-

terion for the propagating FM front. In this way, we compute the optimal

stopping time for the left and right hippocampus of each subject.

Within each clinical dataset, we then adopt a leave-one-out approach

to compute an independent (i.e. unbiased) stopping time for each subject.

This involves excluding the target (to-be-segmented) subject and averaging

the remaining optimal stopping times for the other subjects in that dataset.

These independent stopping times are extremely stable across all subjects and

both clinical datasets (Section 3.3). Consequently, we compute the dataset-

average of these independent stopping times, which is identical for both clin-

ical datasets. This single stopping time is subsequently used to threshold

every subjects’ arrival time surface, with the resulting FMASH segmenta-

tions used for validation of the algorithm, as described below.

2.11. Segmentation evaluation

Following development of the FMASH algorithm and computation of the

FM stopping criterion, FMASH segmentation performance is compared to
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FIRST and FS using the aforementioned performance measures and a statis-

tical analysis technique: analysis of variance (ANOVA). The left and right

hippocampal performance measures (Dice, FPR, FNR and CPM) are com-

puted for each method on both clinical datasets. For each of these measures,

we test for overall difference across the segmentation methods and clinical

group-by-method interactions using a 3*2 (method*group) mixed ANOVA

design, with method as the within-subjects factor and clinical group as the

between-subjects factor. Where Mauchly’s test indicates that the assumption

of sphericity for method has been violated (p<.05), degrees of freedom are

corrected using Greenhouse-Geisser estimates of sphericity. Paired-sample

t-tests with Bonferroni correction for multiple comparisons are used to iden-

tify between-method differences; Lpd, Rpd, Lpfp, Rpfp, Lpfn, Rpfn, Lpcpm,

Rpcpm denote bilateral corrected p-values for Dice coefficient, FPR, FNR and

CPM, respectively.

Finally, to investigate the dependence of the FMASH algorithm on the

hippocampal spatial prior, segmentation estimates are obtained for both clin-

ical datasets using a series of different priors, and performance measures

computed. For the results presented herein (Figures 3 - 7), a leave-one-

out approach is adopted for generation of a general, mixed-dataset prior

(representative of differing labelling protocols and expert raters) with no

bias towards the target (to-be-segmented) image anatomies. In addition,

we explore the cross-dataset performance; segmenting the CMA data using a

single-dataset prior generated from the BPSA labels only, and vice versa. For

both clinical datasets, the left and right hippocampal performance measures

are computed, and the aforementioned ANOVA designs repeated to evaluate
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FMASH performance using the single-dataset priors.

3. Results

The results may be considered in two parts: Sections 3.1 - 3.3 refer to the

development of the FMASH algorithm, whilst Sections 3.4 - 3.5 detail the

segmentation evaluation results. For both datasets, we present box plots of

FMASH segmentation performance at the ten arrival time thresholds and 3D

scatter plots of the normalized performance measures for the left and right

hippocampus (Figures 3 and 4, respectively), computing the FM stopping

criterion. In turn, Figures 5 - 7 compare the resultant FMASH segmentation

with those obtained from FIRST and FS.

3.1. Determination of the weighting parameter λ

The weighting parameter λ controls the contribution of the hippocam-

pal spatial prior towards the FM input potential. At λ = 0, the potential

function depends only on image intensities (first term), with features on the

potential map corresponding to intensity features in the MR image. Conse-

quently, at good contrast boundaries in the MR image, the potential map

is similarly well-defined, showing the intricate details and complexity of the

hippocampus boundary and providing sufficient resistance for the propagat-

ing FM front. However, at poor contrast intensity boundaries, such as the

hippocampus-amygdala border, there is inconsistent contrast on the poten-

tial map and therefore insufficient resistance to stop region growth; regions

of lower contrast can be thought of as holes in the hypothetical barrier pro-

vided by high contrast regions on potential map, such that the FM front

spills-out across the true hippocampal boundary. As the value of λ increases
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from zero, previously well-defined features on the potential map are smoothed

by incorporation of probabilistic shape features (second term), whilst poor

contrast boundaries become more defined. We therefore search for a value

of λ that provides sufficient resistance (i.e contrast) on the potential map at

ill-defined intensity boundaries in the MR image, whilst maintaining subject-

specific features at good contrast hippocampal borders. Visual assessment of

the 3D potential maps for a small subset of test subjects (Section 2.8), and

the contrast at the hippocampal borders, estimates the value of λ at 0.05 for

both datasets.

3.2. FMASH performance at varying arrival times

As shown in Figures 3 and 4, FMASH segmentation performance de-

pends on the arrival time threshold applied to the corresponding arrival time

surface. In the lower range, Dice coefficients increase with U , peaking at

0.16-0.18 on both datasets (Figures 3 and 4 (A): first row) before subse-

quently decreasing. As U increases, the FM front propagates further and

obtains progressively larger estimates of hippocampal volume, with a resul-

tant increase in FPR (Figures 3 and 4 (A): second row). On the other hand,

a progressively larger hippocampal volume reduces the tendency for FN find-

ings, with FNR showing an inverse dependency on U (Figures 3 and 4 (A):

third row). Clearly, no single arrival time is optimal for all three performance

measures; there is always a trade-off or compromise to be made. In Section

3.3 below, we present the results of combining these performance measures

and computing the FM stopping criterion.
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3.3. An accurate and robust stopping criterion

3D plots of the left and right hippocampal normalized performance mea-

sures are given in Figures 3 and 4 (B) for the CMA and BPSA data (left

and right columns, respectively). A good arrival time threshold corresponds

to high Dice coefficients, low FPR and low FNR, and will therefore cluster

in the top, right-back corner of the plots. As previously described (Section

2.10), we define the arrival time corresponding to the maximum combined

performance measure (CPM) as the optimal stopping criterion for the prop-

agating FM front, before utilising a leave-one-out approach to compute an

independent (i.e. unbiased) stopping time for each subject. The (left, right)

mean±SD of these independent stopping times are 0.18±0.00, 0.18±0.00 and

0.18±0.01, 0.17±0.01 for the CMA and BPSA data, respectively, giving the

same bilateral-average stopping time of 0.18 for each dataset. Consequently,

the stability of the stopping criterion, across all subjects and both clinical

datasets, justifies thresholding every subjects’ arrival time surface at this

single stopping time of 0.18. We compare the resultant segmentation perfor-

mance of FMASH with that of FIRST and FS below.

3.4. Comparison to FIRST and FS

Using the statistical analysis technique, ANOVA, FMASH segmentation

performance is compared to FIRST and FS. In general, results of the ANOVA

designs reveal a significant effect of method for each performance measure,

but no clinical group-by-method interaction or group effect for either clin-

ical dataset. The only exceptions to this trend are a slightly significant

group-by-method interaction (F(1.95,29.3)=4.65, p=.02) and group effect

(F(1,15)=7.35, p=.02) for the right hippocampal FPR on the CMA data,
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and no significant method effect for the right hippocampal FNR on the CMA

data. Whilst FMASH FPR shows negligible bilateral group effect on the

CMA data, both FIRST and FS have considerably higher FPR for NC com-

pared to AD patients: a bilateral increase of 23% is observed for FIRST, but

the effect is even more pronounced for FS, with a 63% increase for the left

hippocampus and a two-fold increase for the right hippocampus.

On the CMA data (Figure 5: top row), FMASH obtains significantly

higher Dice coefficients (left: 0.82±0.01; right: 0.82±0.01) and lower FPR

(left: 7.38±0.00 x10−5; right: 6.33±0.00 x10−5) compared to FS (Lpd <0.001,

Rpd=0.009, Lpfp <0.005, Rpfp <0.001), with FNR comparable to FIRST.

Furthermore, FMASH outperforms both FIRST and FS on the BPSA data

(Figure 5: bottom row), with significantly higher Dice coefficients (left:

0.79±0.01; right: 0.80±0.01) and lower FPR (left: 1.03±0.25 x10−4; right:

1.11±0.24 x10−4; FIRST: Lpd=0.01, Rpd, Lpfp, Rpfp all <0.005; FS: Lpd,

Rpd, Lpfp, Rpfp all <0.005).

Just as we used the CPM at different arrival times to find the FM stop-

ping criterion, the CPM for each segmentation method reveals a strict overall

ranking of the methods on each dataset. Considering both the left and right

hippocampus of all subjects, we have 34 segmentation estimates with cor-

responding CPM for each method on the CMA data, and an additional 64

measurements for the BPSA data. FMASH has significantly higher CPM

on the BPSA data compared to both FIRST and FS (FIRST: Lpcpm=0.06,

Rpcpm <0.005; FS: Lpcpm, Rpcpm both <0.005), obtaining the highest CPM

for 86% of segmentations (left: 2.54±0.17; right: 2.62±0.14), with FIRST

performing best for the remaining 14%. The ordering of FIRST and FMASH
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is reversed on the CMA data: FMASH performs best for 15% of segmenta-

tions, whilst FIRST obtains the highest CPM for 85% (left: 2.08±0.28; right:

2.28±0.36). Consequently, FIRST has significantly higher CPM than both

FMASH and FS on the CMA data (FMASH: Lpcpm, Rpcpm both <0.005;

FS: Lpcpm, Rpcpm both <0.005). We discuss this heightened performance of

FIRST on the CMA data in Section 4. Of final note here is the failure of FS

to obtain a maximum CPM for any subject in either dataset, with a reduced

average CPM of 33% and 16% relative to the best performing method on the

CMA and BPSA data, respectively.

The standard-space FP maps for the CMA data (Figure 6: left panel)

show a low frequency of FP voxels for FIRST, with only slight over-estimation

(or spillover) at the most medial-inferior boundary of the hippocampus head;

a pattern similarly displayed by the FMASH algorithm. FS, on the other

hand, displays FP voxels in the body of the hippocampus and more se-

vere spillover in the most anterior-superior regions of the hippocampus head

(i.e. hippocampus-amygdala border). On the BPSA data (Figure 6: right

panel), both FIRST and FS show a marked increase in FP findings, with

severe spillover at the hippocampus-amygdala border. In contrast, FMASH

displays a low frequency of FP voxels at this boundary, and reduced spillover

at the most medial-inferior boundary compared to both itself and FIRST on

the CMA data.

Additionally, the standard-space FN maps for the CMA data (Figure 7:

left panel) show that medial boundaries and posterior regions of the hip-

pocampus head are underestimated by FIRST (top row) and to a lesser

extent FS (second row), whilst FMASH displays FN voxels at the most ante-
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rior tip of the hippocampus head (third row). FS maintains a low frequency

of FN voxels on the BPSA data (Figure 7: right panel, second row). How-

ever, FIRST severely underestimates medial-inferior borders (top row) and

FMASH has a propensity for FN voxels in the most posterior-superior regions

of the hippocampus tail (third row).

3.5. Evaluation of the hippocampal spatial prior

Investigating the dependence of the FMASH algorithm on the hippocam-

pal spatial prior reveals that, on average, the single-dataset prior results in a

1% drop in Dice coefficients for the CMA data and a 4% drop for the BPSA

data, compared to the results presented in Figure 5 (left column) for the

mixed-data prior. Despite this reduction in Dice coefficients using the single-

dataset prior, FMASH still obtains significantly lower FPR and higher CPM

than FS on the CMA data (FS: Lpfp, Rpfp, Lpcpm, Rpcpm all <0.005), with

FNR comparable to FIRST. For the BPSA data, FMASH retains the high-

est mean Dice coefficient and lowest FPR of all methods, with significance

achieved against the FPR of FS (Lpfp, Rpfp both <0.005). Furthermore,

FMASH still has the highest CPM of all methods on the BPSA data (left:

2.33±0.18; right: 2.46±0.15), with significantly improved segmentation per-

formance compared to FS (Lpcpm, Rpcpm both <0.005).

4. Discussion and conclusions

We find that FMASH segmentation performance depends on the arrival

time threshold applied to the corresponding arrival time surface. No single

arrival time is optimal for all three performance measures; there is always
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a trade-off or compromise to be made. We presented the results of combin-

ing these performance measures and computing the stopping time for the

propagating FM front (Section 3.3). With the same value of λ (0.05) and

the same bilateral-average stopping time (0.18) computed for both datasets,

results suggest that we have a robust stopping criterion that is applicable

to a range of clinical data with differing image quality, disease-status and

demographics.

As previously reported [Bishop et al., 2010], both model-based methods

FIRST and FS have an inherent bias towards their training data, of which

this CMA data forms a small subset. Excluding this CMA subset from a

re-trained FIRST model did not alter its segmentation performance (results

not shown), suggesting that FIRST results are dataset dependent, rather

than biased explicitly by inclusion of this particular CMA subset. Neverthe-

less, we expect FIRST and FS to dominate on this CMA data, but results

presented herein demonstrate that this is not the case. FMASH still obtains

significantly higher Dice coefficients and lower FPR compared to FS, lower

FNR than FIRST, and a maximum CPM for 15% of segmentations on the

CMA dataset. In contrast, FS fails to obtain a maximum CPM for any sub-

ject in either dataset, most likely due to a slight “greedy labelling” tendency

yielding a higher FPR.

Comparing FMASH performance with that of FIRST and FS also reveals

a surprising group-wise discrepancy in FPR for the two parameterized mod-

els: both FIRST and FS have considerably higher FPR for NC compared to

AD patients, with this effect even more pronounced for FS, and in particu-

lar, the right hippocampus. This finding suggests that these commonly-used
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methods exaggerate the true hippocampal volume difference between NC and

AD patients, by as much as two-fold, and that FS has a tendency to exag-

gerate these differences more for the right hippocampus; providing a strong

argument for using the proposed FMASH method instead.

Previous studies comparing FIRST and FS [Morey et al., 2009; Pardoe

et al., 2009], report Dice coefficients in the range of 0.71-0.80 for FIRST and

0.73-0.82 for FS on NC data. The variability in Dice coefficients for FIRST

and FS on the CMA and BPSA data (0.71-0.85 and 0.74-0.80, respectively)

are therefore in-line with previous studies, with the exception of the high

Dice coefficients for FIRST on the CMA data (discussed above).

Here we provide context for the FMASH algorithm based on the most cur-

rent literature, comparing FMASH Dice coefficients with those of recently-

published methods. In the literature, mean Dice coefficients are either sepa-

rately reported for NC and diseased patients, or as reported herein, for mixed-

cohorts (containing both NC and diseased patients). Recent atlas-based ap-

proaches report Dice coefficients in the range 0.75-0.83 for NC [Carmichael

et al., 2005; Heckemann et al., 2006; Aljabar et al., 2007, 2009], 0.74-0.76

for TLE patients (diseased side) [Hammers et al., 2007; Avants et al., 2010]

and 0.80 for mixed-cohorts [Leung et al., 2010]. However, values as high

as 0.86 for NC [van der Lijn et al., 2008] and 0.82-0.88 for mixed-cohorts

[Lotjonen et al., 2010; Wolz et al., 2010] can be achieved with graph-cuts,

embedded learning, and intensity modelling, respectively. Lotjonen et al.

[2010] suggest differences in image quality, manual protocol, clinical status

and demographics as possible causes of discrepancy between their two clini-

cal datasets, which may also be contributing factors herein. The aforemen-
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tioned semi-automated region-growing method of Chupin et al. [2007] finds

an average Dice coefficient of 0.84 for NC data, whilst their more recent au-

tomated method utilises a probabilistic prior, with automatic detection and

correction of atlas mismatch to achieve Dice coefficients of 0.87±0.03 for NC

and 0.84±0.05 for a mixed-cohort of NC and TLE patients [Chupin et al.,

2009b]. The improved segmentation performance of Chupin et al. [2009b] on

the NC data is not surprising given that the probabilistic prior is generated

from NC subjects, segmented by the same investigator and using the same

manual labelling protocol. The FMASH bilateral-average Dice coefficients

of 0.82±0.01 and 0.80±0.01 for the CMA and BPSA dataset, respectively,

are nevertheless comparable with the current literature for mixed-cohorts.

This said, there are possible improvements and extensions to be made to

the FMASH method. For example, automated detection and correction of

atlas mismatch, as implemented in Chupin et al. [2009b], and generation of

hippocampal priors using alternative registration algorithms, could provide

improved segmentation performance. FMASH group classification accuracy

could be investigated with application of the algorithm to publicly avail-

able data, such as the Alzheimer’s Disease Neuroimaging Initiative (ADNI,

www.loni.ucla.edu/ADNI). Additionally, with an appropriate spatial prior,

the FMASH algorithm has the ability to segment other brain structures, such

as the neighbouring amygdala.

Finally, even with a small weighting parameter λ, we appreciate that

there is a dependence of the FMASH algorithm on the hippocampal spatial

priors, generated from a set of manually-labelled images. The leave-one-

out approach, used to generate the mixed-dataset priors and the results in
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Figures 3 - 7, ensures no bias towards the target (to-be-segmented) image

anatomies, whilst incorporation of labels from both datasets aims to generate

more general priors that are representative of differing labelling protocols and

expert raters. We do, however, also explore the cross-dataset performance;

segmenting the CMA data using a spatial prior generated from the BPSA

labels only, and vice versa. These single-dataset priors favour a specific la-

belling protocol and expert raters, so we expect differences in segmentation

performance compared to using the mixed-dataset hippocampal priors. Dice

coefficients are reduced using the single-dataset priors, but FMASH cross-

dataset performance is still superior to FS on the CMA data and has the high-

est overall performance of all methods on the BPSA data. Furthermore, the

observed difference in performance (between the mixed- and single-dataset

priors) is comfortably within the range of inter-rater variability, differences in

labelling protocol and registration error, although it does not rule-out bias of

the mixed-dataset priors towards the two clinical datasets. Future work will

look to explore this effect further. Nevertheless, for the aforementioned rea-

sons, we recommend use of a mixed-data hippocampal prior for the FMASH

algorithm and we are confident that this will result in a more robust and

accurate segmentation method.

Overall, this novel hippocampal segmentation method shows extremely

good, consistent performance on the two clinical datasets compared to the

most widely-used alternatives, with more accurate estimation of the prob-

lematic hippocampus-amygdala border. This fully-automated approach also

performs comparably well against the most recently-published methods, as

described above. Primarily driven by subject-specific intensities in the MR
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image, this method is capable of capturing both subject- and disease-specific

features, with results suggesting no inherent bias towards either dataset. We

envisage accurate and robust hippocampal segmentation estimates using this

fully-automated method on a range of clinical datasets, with differing image

quality, disease-status and demographics.
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7. Figure captions

Figure 1: Clinical MR data. Coronal- (left) and sagittal- (right) view images of an

Alzheimer’s Disease (AD) patient from the CMA dataset, showing ventricular enlarge-

ment and hippocampal atrophy.
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Figure 2: The Fast Marching (FM) arrival time surface. Schematic illustration of the

minimal energy path active contour approach in 2D, with the initial curve shown in blue

and pixels represented by red dots. On the left, we present a hypothetical isotropic propa-

gation of the FM front across a homogeneous image field, with a later arrival time surface

U(i, j) shown on the right. The arrival time surface is so-called because it gives the arrival

time of the propagating front at any given point in space. Conceptually similar to level-set

methods, a slice through the arrival time surface at any given height (or time) gives the

spatial extent of the propagating front at that time.
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Figure 3: FMASH performance: left hippocampus (LHipp). (A) Plots of Dice coefficient

(top row), FPR (second row) and FNR (third row) for the left hippocampus showing

FMASH performance on the CMA data (left column) and BPSA data (right column) at

varying arrival time thresholds. Boxes have lines at the lower quartile, median, and upper

quartile values, with whiskers extending to 1.5 times the inter-quartile range. Outliers are

indicated by a plus sign. (B) 3D scatter plot of the normalized performance measures,

with the optimal arrival time clustering in the top, right-back corner of the plot.36
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Figure 4: FMASH performance: right hippocampus (RHipp). Plots of right hippocampal

FMASH performance on the CMA data (left column) and BPSA data (right column) at

varying arrival time thresholds. Please refer to Figure 3 for more details.
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Figure 5: Method comparison. Box plots comparing FMASH segmentation performance

with that of FIRST and FS on the CMA data (top row) and BPSA data (bottom row),

showing Dice coefficients (left column), FPR (middle column) and FNR (right column)

for both the left hippocampus (left) and right hippocampus (right). Although all FPR

are extremely low (of the order 10−5 − 10−4), due to the high TN count in the calcula-

tion of FPR (Equation 7), statistically significant and important differences between the

segmentation methods are observed.
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Figure 6: False positive (FP) maps. Each panel shows coronal- (left), sagittal- (middle)

and axial- (right) view images of the left hippocampus (LHipp) standard-space FP maps

for FIRST (top row), FS (second row) and FMASH (third row) on the CMA and BPSA

data (left and right panel, respectively). A voxel-wise threshold of 20% FP finding across

the dataset is applied to all FP maps. To aid visual comparison, the hippocampal boundary

defined by FIRST on the MNI152 standard image is shown (fourth row) and the cursor

position is the same for all images.
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Figure 7: False negative (FN) maps. In a similar layout to Figure 6, each panel shows

coronal- (left), sagittal- (middle) and axial- (right) view images of the left hippocampus

(LHipp) standard-space FN maps for FIRST (top row), FS (second row) and FMASH

(third row) on the CMA and BPSA data (left and right panel, respectively). A voxel-wise

threshold of 15% FN finding across the dataset is applied to all FN maps. The hippocampal

boundary defined by FIRST on the MNI152 standard image is shown (fourth row) and

the cursor position is the same for all images.
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