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Abstract

Hippocampal atrophy is a clinical biomarker of Alzheimer’s disease (AD) and is implicated in many other neuro-
logical and psychiatric diseases. For this reason, there is much interest in the accurate, reproducible delineation of
this region of interest (ROI) in structural MR images. Here, both current and novel MR hippocampal segmentation
methods are presented and evaluated: Two versions of FMRIB’s Integrated Registration and Segmentation Tool
(FIRST and FIRSTv2), Freesurfer’s Aseg (FS), Classifier Fusion (CF) and a Fast Marching approach (FMClose).
Segmentation performance on two clinical datasets is assessed according to three common measures: Dice coeffi-
cient, false positive rate (FPR) and false negative rate (FNR). The first clinical dataset contains 9 normal controls
(NC) and 8 highly-atrophied AD patients, whilst the second is a collection of 16 NC and 16 bipolar (BP) patients.
Results show that CF outperforms all other methods on the BPSA data, whilst FIRST and FIRSTv2 perform best
on the CMA data, with average Dice coefficients of 0.81±0.01, 0.85±0.00 and 0.85±0.01, respectively. This work
brings to light several strengths and weaknesses of the evaluated hippocampal segmentation methods, of utmost
importance for robust and accurate segmentation in the presence of specific and substantial pathology.

Categories and Subject Descriptors (according to ACM CCS): I.4.6 [Image processing and computer vision]:
Segmentation—Edge and feature detection, Region growing, partitioning

1. Introduction

The hippocampus belongs to the limbic system of the brain
and is located inside the medial temporal lobe, bordering
the lateral ventricles, the thalamus and the amygdala. Cru-
cially involved in episodic and spatial memory processes,
this structure has been implicated in the pathophysiology of
many neurological and psychiatric diseases [KUN∗09]. Hip-
pocampal volume loss is a characteristic feature of both early
Alzheimer’s Disease (AD) and temporal lobe epilepsy, with
more ambiguous findings in affective disorders such as ma-
jor depression, bipolar disorder and schizophrenia. Of these
aforementioned diseases, AD presents one of the largest
socio-economic impacts, currently affecting around 26 mil-
lion elderly people worldwide and costing the US economy
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over $100 billion per year [MWT∗05]. Consequently, there
is particular interest in the early diagnosis of AD and preser-
vation of neurological function at the highest possible level,
requiring accurate, reproducible delineation of this region of
interest (ROI) in structural MR images. This task is compli-
cated by the complex shape of the hippocampus, large inter-
subject variability and poor contrast at the hippocampus-
amygdala border. Conventionally used manual segmentation
requires expert knowledge and can be extremely time con-
suming, thus impractical for large-scale clinical studies, fu-
elling the development of semi-automated and automated
segmentation methods for this purpose.

Previous segmentation methods for the hippocampus in-
clude the label-fusion, atlas-based approach of Heckemann
et al. [HHA∗06] and extensions [AHH∗07, LWK∗10], com-
petitive region-growing approaches [CMBH∗07, CCC∗08]
and model-based methods such as the later-mentioned
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FIRST and FS tools [WJP∗09, FSB∗02]. Whilst many seg-
mentation tools perform well on healthy subject data, they
often fail to capture the substantial and specific atrophy dis-
played in clinical data. Furthermore, with most studies fo-
cusing on development and evaluation of an individual seg-
mentation method on a single dataset, reporting any number
of performance measures, direct comparison of hippocampal
segmentation methods is compromised.

This work evaluates five MR hippocampal segmentation
methods: Two versions of FMRIB’s Integrated Registration
and Segmentation Tool, FIRST and FIRSTv2, Freesurfer’s
Aseg (FS), Classifier Fusion (CF) and an early development
of a novel Fast Marching approach, FMClose. Segmenta-
tion performance on two clinical datasets (Section 2.1) is
assessed according to three common measures: Dice coeffi-
cient, false positive rate (FPR) and false negative rate (FNR).

2. Materials and Methods

2.1. Image Data

Two clinical MR datasets with corresponding expert manual
labels are used in this work: The first consists of 9 normal
control (NC) subjects and 8 highly-atrophied AD patients,
supplied by the Center for Morphometric Analysis (CMA),
whilst the second is a collection of 16 NC and 16 bipolar
(BP) patients from a collaborator in San Antonio (denoted
BPSA). Although mainly motivated by hippocampal seg-
mentation methods for AD, the underlying methodology is
also applicable to other diseases in which hippocampal atro-
phy is implicated (e.g. BP disorder), hence incorporation of
the BPSA data in this study.

Experts from the respective research sites used a semi-
automated contouring tool to manually define the hip-
pocampus in sequential coronal slices, based on intensity
boundaries and well-established geometrical rules of neu-
roanatomy. All experts underwent a period of training (of
up to three methods) until they had reached a defined repro-
ducibility. Reported inter-rater reliability for the BPSA and
CMA data are 0.90 and 0.80, respectively, with image reso-
lution and demographics given in Table 1:

Data Size Age Resolution (mm) Subjects
CMA 17 65 - 83 0.94 x 1.50 x 0.94 NC, AD
BPSA 32 20 - 58 0.8 x 0.8 x 0.8 NC, BP

Table 1: Group size, age (years) and resolution of the two
clinical datasets.

2.2. Segmentation Methods

FIRST

FIRST is a Bayesian statistical shape and appearance (in-
tensity) model [WJP∗09]. From a training dataset, shape

is modelled as a multivariate Gaussian point distribution
model (PDM), parameterized by a linear combination of
the mean and eigenvectors. Intensity is also modelled by
its mean and eigenvectors, with intensity profiles sampled
along the surface normal at each vertex location. Following
intensity normalization, each new image is spatially normal-
ized to the MNI152 reference space using a two-stage linear
registration process; whole-brain followed by a subcortical-
weighted affine transformation, minimizing the correlation
ratio similarity function. In the reference space, the average
mesh is initialized and iteratively deformed (for a fixed num-
ber of iterations) to give the resultant structure mesh.

FIRSTv2

FIRSTv2 is an adaptation of the aforementioned FIRST tool,
using a novel structure-specific spatial normalization pro-
cess prior to model-fitting. The second stage of the two-
stage registration process is replaced by a hippocampus-
weighted affine transformation, using an eight-times dilated
hippocampus mask in the reference space. FMRIB’s Linear
Image Registration Tool (FLIRT) is used for this affine reg-
istration of each image to the reference space.

FS

FS uses Bayesian parameter estimation theory [FSB∗02],
with voxel classification determined by the segmentation
that maximizes the probability of input data given prior
probabilities from the training set. Each new image is ini-
tially segmented, assigning voxels to the class of maximum
probability determined by an initial probability map. Class
probabilities are re-computed using a local neighbourhood
function and the image is re-segmented, repeating these two
steps until the segmentation does not change.

In this work, the first step of the program ‘recon-all’ is run
for all subjects to transform images from their native space
to FS Talairach space, with the ‘subcortseg’ option used to
segment all subcortical structures. The affine transformation
between each image’s native space and Talairach space is
computed using the ‘tkregister2’ function. In FS Talairach
space, hippocampus labels are extracted from the FS out-
put volume, binarized and transformed back into their native
space (using the aforementioned affine transform). Here, the
final FS hippocampal labels are obtained by threshold.

CF

The CF method presented here (Figure 1) is an extension
of the label-fusion atlas-based approach of Aljabar et al.
[AHH∗07]. In this work, the term ‘atlas’ refers to the paired
T1-weighted anatomical image and its corresponding man-
ual labels. When the atlas anatomies are aligned (i.e. regis-
tered) to a new query image, the atlas labels can be consid-
ered as a ‘classifier’, providing a segmentation estimate for
this query image.

Here, all atlas anatomies A j are registered to the query
image Q using a three-step affine transformation process;
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Figure 1: Flow chart of the Classifier Fusion (CF) method.
Step 1: All atlas anatomies Ai are affine-registered to the
query image Q. Step 2: Top-ranked atlases are selected and
non-linearly transformed to the query image space, using the
three-step affine transformation (from Step 1) for initializa-
tion. Here, labels are fused.

whole-head, subcortical- and hippocampus-weighted trans-
formations. Top-ranked atlas anatomies are selected and
non-linearly registered to the query image, using the pre-
calculated three-step affine transformation for initialization.
The resultant non-linear transforms propagate the corre-
sponding atlas labels Li to the query image, providing a
series of segmentation estimates L′i for this image. Finally,
in the query image space, the labels L′i are fused (using
majority voting) to give a single segmentation estimate for
the query image. All registrations are performed using FSL
tools: FLIRT for affine transformations and FNIRT for non-
linear warps. For affine registrations the normalized cross-
correlation cost function is minimized, with the same func-
tion evaluated over a restricted hippocampus region for se-
lection of top-ranked atlas anatomies.

As opposed to the approach in [AHH∗07] which employs
a reference space to avoid the computational burden of non-
linearly registering all atlas anatomies to the query image
space, we perform CF in the query image space to avoid
degradation of the query image. This is in line with a re-
cent study by Lotjonen et al. [LWK∗10] suggesting that CF
performs best in the query image space. To avoid the com-
putational burden associated with non-linear registration of
every atlas to each query image, and to maximize classifier
separation, our approach selects the top-ranked classifiers af-
ter a three-step affine transformation.

FMClose

This novel semi-automated region growing method for MR
data is inspired by the work of Maroy et al. [MBC∗08]
on segmentation of dynamic PET images. Implemented
in MATLAB (http://www.mathworks.com/), a Sethian Fast
Marching (FM) approach is used to construct the arrival time
surface U(i, j,k) of an infinitesimal front propagating out-
wards from an initial seed point p0. The arrival time surface
is so-called because it gives the arrival time of the propagat-
ing front at any given point i, j,k in 3D space, illustrated in

Figure 2 for a 2D problem. The front progresses along the
path of least resistance, adding voxels which constitute the
lowest potential P, thus finding the minimum energy curve.

Figure 2: Schematic illustration of the Sethian Fast March-
ing approach in 2D, showing the initial curve (left) and the
resulting arrival time surface U(i, j) (right).

To initialize the algorithm, the user specifies a seed point
in the centre of the hippocampus, as well as a hippocam-
pus bounding ellipsoid. The FM front propagates outwards
from the selected seed point to the defined ellipsoid bound-
ary, generating a segmented volume for post-hoc manual
thresholding. Window/level is used to visually assess the
optimum voxel count threshold. The resultant hippocampal
volume is morphologically closed using a 3x3 structuring el-
ement, generating the final FM volume. To correct for known
spillover at the hippocampus-amygdala boundary, a partially
dilated amygdala mask is used to remove any amygdala vox-
els incorrectly labelled as hippocampus by the FM algo-
rithm. Whilst this is not ideal, causing some bias in favour of
the FM algorithm, removal of amygdala voxels ensures that
these findings do not dominate the hippocampal segmenta-
tion estimate. Ongoing development of the FM method aims
to address this hippocampus-amygdala boundary problem,
incorporating a spatial probability map to penalize propaga-
tion of the FM front across the boundary.

2.3. Performance Measures

Due to the vast array of published performance measures,
with no universal standard agreed upon, it is often difficult
to formulate direct comparisons of segmentation methods.
Here, we report a combination of metrics used in a recent
online resource for validation of brain segmentation meth-
ods [SPM∗09] and the MICCAI 2008 competition workshop
on MS lesion segmentation: Dice coefficient, FPR and FNR.
If X is the set of all voxels in the image, we define the ground
truth T ⊂ X as the set of voxels labelled as hippocampus by
the expert manual labels. Similarly, we define the set S ⊂ X
as the set of voxels labelled as hippocampus by the segmen-
tation algorithm or method being tested.

2.3.1. Success and Error Rates

The true positive set is the set of voxels common to both
T and S, defined as T P = T ∩ S. The true negative set is
the set of voxels that are labelled as non-hippocampus in
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both sets, defined as T N = T ∩S. Similarly, the false positive
set is defined as FP = T ∩ S and the false negative set is
FN = T ∩ S. From these four sets, we can compute various
success and error rates for image segmentation:

FPR =
| FP |

| FP |+ | T N | = 1− specificity (1)

FNR =
| FN |

| FN |+ | T P | = 1− sensitivity (2)

Generation of standard-space FP and FN maps

Standard-space maps are generated to assess the spatial dis-
tribution of FP and FN voxels for each segmentation method.
The output of the FMRIB tool ‘first_flirt’ is a linear trans-
form mapping each image to the standard MNI152 space.
For each segmentation method, the ‘first_flirt’ transforms
are used to map all subjects’ FP and FN voxels from their
native space to MNI152 space. Here, the average FP and FN
maps are computed (summing partial trilinear interpolation
values), with voxel values corresponding to the fraction of
subjects showing a FP or FN result at that voxel.

2.3.2. Similarity Metrics

Dice Coefficient

The Dice coefficient is defined as the size of the intersection
of two sets divided by their average size:

D(T,S) =
| T ∩S |

1
2 (| T |+ | S |)

(3)

=
| T P |

1
2 (2 | T P |+ | FN |+ | FP |)

2.4. Statistical Analysis

To test for overall difference across the segmentation
methods and clinical group-by-method interactions, a 5*2
(method*group) mixed analysis of variance (ANOVA) de-
sign is employed for each performance measure (Dice, FPR
and FNR), with method as the within-subjects factor and
clinical group as the between-subjects factor. Finally, paired-
sample t-tests with Bonferroni correction for multiple com-
parisons are used to identify between-method differences;
pd , p f p, p f n denote corrected p-values for Dice, FPR and
FNR, respectively.

3. Results

Where segmentation estimates of both the left and right hip-
pocampi are obtained, we do not observe any obvious left-
right asymmetries in method performance. Consequently,
results are given for the left hippocampus only. Box plots
showing method performance on the CMA and BPSA data

are given in Figures 3 and 5, respectively. Additionally, Fig-
ures 4 and 6 present the standard-space FP and FN maps
for each method on the CMA and BPSA data, respectively.
For each ANOVA, Mauchly’s test indicates that the assump-
tion of sphericity for method has been violated (p<.0005) so
degrees of freedom are corrected using Greenhouse-Geisser
estimates of sphericity.

3.1. CMA Data

The ANOVA designs reveal a significant effect of method
for each performance measure (p<.0005), but no significant
method*group interaction for Dice (F(2.05,30.76)=1.27,
p=.295) or FNR (F(1.58,23.69)=.64, p=.500) and no signif-
icant group effect for Dice (F(1,15)=1.63, p=.221) or FPR
(F(1,15)=.07, p=.796). The significant method*group inter-
action for FPR (F(2.19,32.85)=3.67, p=.033) is a result of
the CF method having an opposite trend in FPR across
the groups compared to other methods (not shown). For all
methods FNR(AD)>FNR(NC) results in a significant group
effect (F(1,15)=7.01, p=.018).

Paired t-test results give a strict relative ordering (1-5) of
the segmentation methods. Based on a simple sum of these
rankings, the overall ordering of the segmentation methods
is as follows:

• FIRST > FIRSTv2 > FS > CF > FMClose

The differences in performance between FIRST and
FIRSTv2, and between FS and CF, are minimal, with both
FIRST and FIRSTv2 clearly outperforming all other seg-
mentation methods on the CMA data.

FIRST gives significantly higher Dice coefficients
and lower FPR compared to most other methods (FS:
pd <.0005, p f p <.0005; CF: pd <.0005, p f p=.010; FM-
Close: pd <.0005). FP findings occur mainly in the medial-
inferior region of the hippocampus head, whilst medial
boundaries and posterior regions of the hippocampus head
tend to be under-estimated (Figure 4: Panels A and B, re-
spectively, top row).

FIRSTv2 displays no significant difference in Dice co-
efficients, FPR or FNR compared to FIRST (pd=p f n=1,
p f p=.246) with a similar pattern of FP and FN findings (Fig-
ure 4: Panels A and B, respectively, second row).

FS has a respectable average Dice coefficient of
0.80±0.01 and significantly reduced FNR compared to CF
and FMClose (CF: p f n=.021; FMClose: p f n <.0005), al-
though visual assessment of results indicates a ‘greedy’
labelling tendency, leading to significantly higher FPR
compared to FIRST, FIRSTv2 and FMClose (FIRST:
p f p <.0005; FIRSTv2: p f p <.0005; FMClose: p f p=.009).
The standard-space maps in Figure 4 (third row) show a
general over-estimation at the hippocampus-amygdala bor-
der (i.e most anterior-superior direction), the body and su-
perior tail sections, together with FN findings in the medial
and posterior regions of the hippocampus head.
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Figure 3: Box plots showing Dice coefficients (left), FPR (middle) and FNR (right) for each segmentation method on the CMA
data. Although all FPR are extremely low (of the order 10−5), due to the high TN count in the calculation of FPR (Equation 1),
statistically significant and important differences between the segmentation methods are observed.

Whilst CF displays an average Dice coefficient compara-
ble to that of human raters (0.77±0.01), its overall segmen-
tation performance on the CMA data is hampered by that of a
few outliers, contributing to significantly higher FPR or FNR
compared to the model-based methods (FIRST: p f p=.010;
FIRSTv2: p f p=.012; FS: p f n=.021). Subjects have a lot of
neck present in the T1-weighted images and some have no-
ticeable bias field effects, giving poor brain extraction and
subsequent registration errors. These registration errors con-
tribute to both FP and FN findings at most hippocampal
boundaries (Figure 4: fourth row), although the relatively
low frequency and even distribution of FP and FN counts
suggests that the registration errors are uncorrelated.

FMClose displays no significant difference in Dice coeffi-
cients compared to both FS and CF and significantly reduced
FPR compared to FS (FS: pd=1, p f p=.009; CF: pd=1). Still,
the method ranks lowest overall, with under-estimation of
hippocampal volume giving significantly higher FNR than
FIRST, FIRSTv2 and FS (All: p f n <.0005). It is impor-
tant to note that spillover into the amygdala has been ne-
glected in this analysis, so reported FPR is lower than ac-
tual FPR. In general, the current implementation of FMClose
suffers from spillover in anterior and inferior regions, with
under-estimation of medial boundaries, the tail and poste-
rior regions of the hippocampus head, contributing to both
FP and FN count (Figure 4: fifth row). Interestingly, sub-
hippocampal regions of contrasting intensity, such as the
dentate gyrus, are excluded from the FMClose segmentation
estimate and contribute further to FNR.

3.2. BPSA Data

For each performance measure, the ANOVA design reveals
a significant effect of method (Dice: F(1.23,37.00)=12.09,
p=.001; FPR: F(2.54,76.13)=70.33, p<.0005; FNR:
F(1.23,36.88)=19.24, p<.0005), but no significant
method*group interaction (Dice: F(1.23,37.00)=.311,
p=.627; FPR: F(2.54,76.13)=.482, p=.664; FNR:
F(1.23,36.88)=.246, p=.672) and no significant group

effect (Dice: F(1,30)=.591, p=.448; FPR: F(1,30)=.352,
p=.558; FNR: F(1,30)=.395, p=.535).

The paired t-test results give a strict relative ordering (1-5)
of the segmentation methods for each performance measure.
Based on a simple sum of these rankings, the overall order-
ing of the segmentation methods is as follows:

• CF > FIRSTv2 > FS > FMClose > FIRST

CF clearly outperforms all other segmentation methods on
the BPSA data, whilst FS and FMClose rank a close third
and fourth.

FIRST performs relatively well for the majority of sub-
jects, but its overall segmentation performance is hindered
by that of a few subjects, where poor initial registration with
the standard (MNI152) space results in poor segmentation
estimates. Consequently, whilst FIRST displays the third
highest median Dice coefficient and a median FNR compa-
rable to that of CF (Figure 5: left and middle), the method
has significantly reduced Dice coefficients, higher FPR and
FNR compared to most other methods (FIRSTv2: pd=.006,
p f n=.003; FS: p f n <.0005; CF: pd=.001, p f p <.0005; FM-
Close: p f p=.001). Interestingly, the standard-space maps in
Figure 6 show over-estimation of all anterior and superior
hippocampal borders by all model-based methods (FIRST:
top row, FIRSTv2: second row, FS: third row) and a preva-
lence of FN counts at all inferior borders for FIRST, at-
tributed to a superior-shift of the entire hippocampus.

The registration errors experienced with FIRST on the
BPSA data are largely addressed by FIRSTv2, incorporating
a hippocampus-specific spatial normalization step prior to
model-fitting. Consequently, FIRSTv2 displays significantly
higher Dice coefficients and lower FNR compared to most
other methods (FIRST: pd=.006, p f n=.003; FS: pd <.0005;
CF: p f n <.0005; FMClose: pd <.0005, p f n <.0005). FN
findings are evident in the most anterior-superior part of the
hippocampus head and tail (Figure 6: Panel B, first row).

The FS tool displays Dice coefficients comparable to that
of human raters (0.75±0.01) and a significantly reduced
FNR compared to all other methods (All: p f n <.0005), only
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Figure 4: Panels A and B show coronal- (left), sagittal- (middle) and axial- (right) view images of the standard-space FP
and FN maps, respectively, for each segmentation method on the CMA data. A voxel-wise threshold of 20% FP finding across
the dataset is applied to all FP maps, whilst the FN maps are threshold at 15%. To aid visual assessment, the hippocampal
boundary defined by FIRST on the MNI152 standard image is shown (sixth row) and the cursor position is the same for all
images in each panel.

Figure 5: Box plots showing Dice coefficients (left), FPR (middle) and FNR (right) for each segmentation method on the BPSA
data. Although all FPR are extremely low (of the order 10−4), due to the high TN count in the calculation of FPR (Equation 1),
statistically significant and important differences between the segmentation methods are observed.

underestimating the most superior sections of the hippocam-
pus tail (Figure 6: Panel B, third row). However, visual as-
sessment of segmentation estimates and the standard-space
FP map (Figure 6: Panel A, third row) indicate a ‘greedy’ la-
belling tendency, giving significantly higher FPR compared
to all other methods (All: p f p <.0005).

CF has significantly higher Dice coefficients and lower
FPR compared to all other segmentation methods (FIRST:
pd=.001, p f p <.0005; FIRSTv2: pd=.004, p f p <.0005;
FS: pd <.0005, p f p <.0005; FMClose: pd <.0005,

p f p <.0005). The standard-space FP and FN maps (Figure
6: fourth row) show a relatively low frequency of FP find-
ings at medial and ventral borders of the hippocampus head,
with FN counts in the most anterior-superior part of the hip-
pocampus head.

FMClose performs on a par with FIRST, having signif-
icantly lower Dice coefficients and higher FNR compared
to other methods (FIRSTv2: pd <.0005, p f n <.0005; FS:
p f n <.0005; CF: pd <.0005, p f n=.001). Whilst FMClose
has a significantly reduced FPR compared to both FIRST
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and FS (FIRST: p f p=.001; FS: p f p <.0005), it should be
noted that spillover into the amygdala has been neglected
in this analysis, so reported FPR is lower than actual FPR.
Generally, the current implementation of FMClose suffers
from a combination of spillover into anterior regions and
under-estimation of the hippocampus tail, contributing to
both FP and FN findings (Figure 6: fifth row). In addition,
sub-hippocampal regions of contrasting intensity, such as the
dentate gyrus, are excluded from the FMClose segmentation
estimate and contribute further to FNR.

4. Discussion

When comparing the performance of segmentation meth-
ods on different datasets, it is important to appreciate that
a number of factors can affect segmentation accuracy, in-
cluding image quality, manual labelling protocol, clinical
status and demographics. In addition, model-based meth-
ods may be biased towards data used in their training. In-
deed, decreased performance of FIRST, and to a lesser ex-
tent FIRSTv2 and FS, on the BPSA data suggests that
these model-based methods are biased towards the CMA
data previously used in their training. The registration er-
rors experienced with FIRST on the BPSA data are largely
overcome with the hippocampus-specific spatial normaliza-
tion in FIRSTv2, giving significantly improved segmenta-
tion estimates compared to FIRST. We predict similar im-
provements in registration accuracy and segmentation per-
formance with other subcortical structures, using an appro-
priate structure-specific normalization step prior to model-
fitting with FIRST.

For the BPSA data, previously unseen by any of the seg-
mentation methods, CF clearly outperforms all other meth-
ods, with Dice coefficients comparable to those previously
reported [AHH∗07, HHA∗06, LWK∗10]. In particular, the
improved segmentation result over FIRST and FS suggests
a potential advantage of using flexible subject-specific se-
lection methods like CF over more constrained model-based
methods trained from more diverse data. Care should be
taken, however, as results for the CMA data suggest that CF
performance is restricted by reduced image quality and reg-
istration error. CF registration errors are caused by poorly-
formed brain masks, which are themselves a consequence
of too much neck present in the T1-weighted images and
bias field effects (i.e. image quality). Ongoing work using
cropped images and better brain masks have indicated that
CF results for the CMA data can be improved by further pre-
processing of images. Likewise, the performance of CF on
all datasets can be expected to improve with further advances
in the applied registration algorithms. In addition, it is pos-
sible that a sub-optimal number of classifiers are chosen for
CF of the CMA dataset, reducing overall segmentation ac-
curacy.

The current implementation of the FM algorithm per-
forms surprisingly well against the other segmentation meth-

ods and highlights several important strengths and weak-
nesses of the different approaches, despite some limita-
tions (namely spillover across reduced-contrast hippocampal
boundaries and under-estimation of the hippocampus tail).
Firstly, user input is required, with the resultant segmenta-
tion dependent on seed point selection and post-hoc manual
thresholding; favouring less interactive (i.e. automated) ap-
proaches with increased robustness for clinical application.
Secondly, the FM algorithm classifies voxels based on lo-
cal intensity differences, so it excludes sub-hippocampal re-
gions of contrasting intensity, such as the dentate gyrus, from
the segmentation estimate. Although not beneficial in the
current work, where total hippocampal segmentation is re-
quired, results suggest that intensity-dominant methods may
be useful for segmentation of hippocampal sub-structures.
Finally, whilst intensity information alone cannot prevent
spillover across poor-contrast hippocampal boundaries, cur-
rent extension of the FM algorithm to include a spatial prior
promises improved segmentation estimates in a relatively
time-efficient manner.

5. Conclusions

In summary, the work presented here is an evaluation of both
current and novel MR hippocampal segmentation methods,
highlighting general issues hampering the current clinical
utility of these methods (potential model-bias, image prepro-
cessing and registration errors) and therefore possible mech-
anisms for making them more robust and accurate in the
presence of specific and substantial pathology. This work is
an investigatory stepping-stone towards developing a ded-
icated hippocampal segmentation method for pathological
subjects. As practical guidance towards the design and con-
struction of this method, we suggest exploration of combi-
natorial methods that incorporate a spatially-varying weight-
ing of subject-specific intensities and model-based shape
features. Where possible (i.e. at good contrasting bound-
aries) subject-specific image information should drive the
segmentation, with models used to constrain the segmenta-
tion at poorer contrasting borders such as the hippocampus-
amygdala border.
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