High Resolution Imaging for Inspection of Laser Beam Melting Systems

Joschka zur Jacobsmühlena), Stefan Kleszczynskib), Dorian Schneidera), and Gerd Wittb)

a) Institute of Imaging and Computer Vision
RWTH Aachen University
Aachen, Germany

b) Institute for Product Engineering
University of Duisburg-Essen
Duisburg, Germany
Outline

- What is Laser Beam Melting? An Introduction
- Our Imaging System
- Sample Build Images
- Applications in Quality Control
Outline

- What is Laser Beam Melting? An Introduction
- Our Imaging System
- Sample Build Images
- Applications in Quality Control
What is Laser Beam Melting? An Introduction

- "3D printing"
- Layer-based, iterative (additive manufacturing)
What is Laser Beam Melting? Build Process

1. Powder Deposition
 - X-Y Scanner
 - Laser
 - Inert Gas
 - Powder reservoir
 - Recoater
 - Created part

2. Layer Creation
 - X-Y Scanner
 - Laser
 - Laser window
 - Powder overflow reservoir

3. Lowering
 - Lowerable building platform

Joschka zur Jacobsmühlen
What is Laser Beam Melting? Parts

High density metal parts with excellent mechanical properties

Quality?

Flawless?
Quality Control for Laser Beam Melting Processes

Non-destructive inspection difficult
Can't X-ray thick metal parts!

Inspect each layer after creation
Quality Control for LBM Processes: the Idea

Inspect each layer after creation

all layers correct?
Outline

- What is Laser Beam Melting? An Introduction
- Our Imaging System
 - Setup
 - Resolution Measurement
- Sample Build Images
- Applications in Quality Control
Image Acquisition Setup

LBM machine: EOS EOSINT M 270
Camera

- 29 megapixels, large sensor (36 mm x 24 mm)
 - Usable pixels
- Tilt and shift lens to reduce perspective distortion

Hartblei Macro 4/120
TS Superrotator

SVS-VISTEK
SVCam-hr29050
Resolution Measurement

Assess properties of optical system
Resolution sufficient for small details?

- Use modulation transfer function (MTF): resulting contrast for spatial frequency
Modulation Transfer Function

Magnitude of complex optical transfer function (OTF)

$$\text{DFT } \text{psf}(x) \xrightarrow{\text{OTF}} \text{OTF}(f) = \text{MTF}(f) \cdot \theta(f)$$

(point spread function)

Compute by slanted-edge method [Burns2000, ISO12233]
Resolution Measurement: Target

(neither dark nor bright regions are saturated in full-scale image.)
Resolution Measurement: Result

limiting resolution at least $\xi_0 = 50 \text{ lp/mm} \ [90 \text{ lp/mm}]$ (on sensor) for FOV 180 mm x 120 mm able to resolve details of 50 μm $[28 \mu$m]
Example Image

Weld Seams: 90 µm

1 pixel: 25...35 µm
Outline

- What is Laser Beam Melting? An Introduction
- Our Imaging System
- Sample Build Images
 - Documentation Format
 - Images
- Applications in Quality Control
High Resolution Imaging for Inspection of Laser Beam Melting Systems

Documentation Format

Many images and associated metadata

Hierarchical Data Format (HDF5)

- Documentation of entire process in one file

[www.hdfgroup.org]
Sample Build

Laser scan velocity

- 20%
- 40%
+ 20%
+ 40%

Laser power

- 20%
- 40%
+ 20%
+ 40%

Hatch distance

- 20%
- 40%
+ 20%
+ 40%

○: Increased energy input
○: Decreased energy input
Sample Build: Hatch Distance

-20 %

+20 %

-40 %

+40 %
Sample Build: Elevation of Contour Regions

Power +40 %

Power -40 %
Outline

- What is Laser Beam Melting? An Introduction
- Our Imaging System
- Sample Build Images
- Applications in Quality Control
Applications in Quality Control

Process documentation

Detect and learn from errors

HDF5 file

Cause?
Applications in Quality Control

Detect non-optimal parameter values

Laser power -40 %

Laser power +40 %
Applications in Quality Control

Link surface images to mechanical part properties

(low energy input critical for ultimate tensile strength)

(tensile strength, energy density)
Outline

- What is Laser Beam Melting? An Introduction
- Our Imaging System
- Sample Build Images
- Applications in Quality Control
- Summary
Summary

- What is Laser Beam Melting? An Introduction
 - "print" complex metal parts
 - no complete process documentation, yet

- Our Imaging System
 - MTF for resolution measurement
 - resolution at least 50 µm [28 µm]

- Sample Build Images
 - different surface quality visible in images

- Applications in Quality Control
 - documentation
 - flaw detection: energy input, elevated regions
High Resolution Imaging for Inspection of Laser Beam Melting Systems

Joschka zur Jacobsmühlen1), Stefan Kleszczynski2), Dorian Schneider1), and Gerd Witt2)

1) Institute of Imaging and Computer Vision
 RWTH Aachen University
 Aachen, Germany

2) Institute for Product Engineering
 University of Duisburg-Essen
 Duisburg, Germany
References