

Master-Thesis

Advanced Deep Learning Methods for Accelerated and Robust Low- Field MRI Reconstruction

Keywords

MRI | Deep Learning | Reconstruction

Univ.-Prof. Dr.-Ing. Volkmar Schulz
Lehrstuhlinhaber

Kostiantyn Lavronenko
Wissenschaftliche/r Mitarbeiter/in

Raum 140
Kopernikusstr. 16
52074 Aachen

Telefon: +49 241 80-27865
kostiantyn.lavronenko@lfb.rwth-aachen.de
16.01.2026

Background

Low-field MRI systems offer significant advantages in terms of cost, accessibility, and portability, but they suffer from low signal-to-noise ratio and long acquisition times, which limit their clinical applicability. Deep learning-based reconstruction methods have recently shown great potential to enable highly accelerated MRI acquisitions, yet most existing approaches have been developed and validated primarily for high-field scanners. This thesis aims to investigate advanced deep learning techniques—such as transformer-based models or diffusion models—for accelerated and robust MRI reconstruction under low-field-like conditions, with a particular focus on extreme undersampling and artifact suppression.

Tasks

- Conduct comprehensive literature research.
- Familiarize yourself with public data and design comprehensive experimental pipeline.
- Simulate low-field MRI conditions on public high-field MRI datasets.
- Work with state-of-the art methods.
- Evaluate reconstruction performance under varying acceleration factors.

[1] End-to-End Variational Networks for Accelerated MRI Reconstruction.

Your Profile

- Strong programming experience in Python.
- First deep learning and machine learning experience (frameworks: Pytorch, Lightning, Numpy, Pandas).
- Experience with Git, Github, Gitlab.
- Preferably understanding of the MRI imaging technique.

Our Offer

The call for applications is aimed at master's students with a technical background (e.g. physics, informatics, electrical engineering) and is carried out in cooperation with Fraunhofer MEVIS. Our institute has state-of-the-art IT infrastructure and its own HTCondor Cluster. A workstation can be provided at the Chair of Imaging and Computer Vision Processing. As a supervisor I will consult and guide you through the work, through regular discussions. At the end of the thesis the work could be published in a top-tier conference. Feel free to contact me via email.