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Disparity-Based Segment ation of Stereoscopic 
Foreground/Background Image Sequences 

Til Aach and Andrk Kaup 

A 6 s i ~ a c t -  In this contribution, we describe a method for 
displacement estimation in stereoscopic images, which is 
closely coupled with a segmentation of the pictures into ho- 
mogeneously displaced regions. The technique is driven by 
a statistical optimization criterion which assesses the qual- 
ity of the disparity estimate and of the segmentation, thus 
improving both of these simultaneously. In addition, the 
optimization criterion explicitly takes occluded areas into 
consideration. With the additional help of two constraints, 
this enables the algorithm to locate regions corresponding 
to occlusions accurately. 

Keywords- Region based image coding, image analysis, 
disparity estimation, segmentation, Gibbs/Markov random 
fields, deterministic relaxation. 

I .  INTRODUCTION 

Region oriented image coding strategies generally require 
that the images be partitioned into regions which should 
correspond to the objects in the depicted scene, or a t  least 
to in some respect homogeneous parts of these objects. The 
types of clues used to carry out this segmentation depend 
on the type of image material to be processed. In the case 
of moving video, segmentation is usually based on three- 
dimensional object motion in the observed scene or on ap- 
parent two-dimensional motion in the image plane. When 
objects moving in front of stationary background have to 
be delineated, it may suffice to just detect motion with- 
out a quantitative analysis [l]. Otherwise] the generally 
unknown motion has to be estimated prior to or during 
the segmentation process [2], [3], [4]. Applications of such 
segmentation techniques are, of course, not limited to data 
reduction, they are also of interest for tasks in image anal- 
ysis (e.g. [5]) .  

In stereoscopic sequences, the disparity between the two 
stereo channels provides additional clues for segmentation. 
The reliability of motion-based segmentation may thus be 
improved by e.g. subjecting motion estimation to stereo- 
scopic constraints [6], or by joint estimation of disparity 
and motion [7]. Additionally, taking into account disparity 
means that the segmentation results become less dependent 
on the sometimes insufficient amount of object motion [8], 
so that problems like falsely loading intensities of temporar- 
ily slowly moving objects into background memory (cf. [9]) 
can be avoided. 
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Dense disparity fields for coding applications can e.g. be 
estimated by matching image intensities [lo], [8] or by dif- 
ferential approaches 1111. As an inverse problem, however, 
disparity estimation is ill posed [la], [13]. Thus, external 
smoothness constraints are necessary to restrict the space 
of possible solutions. These smoothness constraints may 
apply to the disparity fields ('surfaces') as well as to the 
region boundaries of a segmentation associated with a dis- 
parity field. Care should be taken that surface smoothness 
is not imposed on a disparity field as a whole, but only 
to regions belonging to individual objects, so its not to 
unduly smooth across region boundaries (cf. 'weak' con- 
straints [14]). Finally, identification and proper treatment 
of occlusions must be a vital part of the estimation and seg- 
mentation procedure. Occluded areas depict parts of the 
scene which are visible for one camera only, what means 
that they have no proper counterpart in the other cam- 
era's image Since the attempt to attribute a genuine 
disparity to these areas is wrong as such, the correspoind- 
ing locations must be uniquely marked as occluded. 'Struc- 
tural' rules like ordering constraint [15] or uniqueness 1161 
may be exploited for detection of occlusions. 

In this contribution, we describe a technique which com- 
bines disparity estimation with a segmentation of stereo 
images into regions of constant disparity. Our method is 
hence especially well suited for stereo image pairs of scenes 
in which each object is characterized by an individual dis- 
placement. This can usually be assumed if the dimensions- 
in-depth of the visible object parts are small compared to 
their distance ('depth') from the camera set. Specifically, 
we concentrate here on scenes where a speaker is placed in 
front of background. For coding applications, a segmenta- 
tion into foreground and background enables one to treat 
these regions differently, e.g. by allocating more bits for 
the person at the expense of the subjectively less interest- 
ing background. 

The surface smoothness constraint appears here in its 
most stringent form since it requires displacements in- 
side each region to be identical, thus uniquely relating a 
partition to any disparity field. Smoothness of the re- 
gion boundaries is realized by modeling the partition as 
a Gibbs/Markov random field. The combined problem of 
disparity estimation and segmentation is tackled through 
the maximum a posteriori approach, i.e. we try to find the 
disparity field which is most probable to occur given the ob- 

'The noli-existence of a counterpart for certain locations in one im- 
age may also be due to other effects than occlusion. Sharp and shiny 
edges in the scene e.g. can sometimes reflect very different amounts 
of the inconhg illumination in the directions of the cameras, even if 
these directions differ only sliglitly from each other. 
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served image data. Detection and treatment of occlusions 
are directly integrated into this approach. 

In the following we first describe the model underlying 
the stereo images and the properties we require the dispar- 
ity fields to exhibit. Then, a criterion assessing the quality 
of disparity fields and their associated partitions is derived. 
This criterion also explicitly evaluates areas classified as oc- 
cluded. Section I11 €3 explains a deterministic optimization 
procedure, and section 111 C describes how initial estimates 
for this iterative procedure can be obtained. We conclude 
by giving some results and a discussion. 

11. THE STEREO IMAGE MODEL 
Let us denote the grey levels of the observed picture pair 

by Yi = {yi(k)}, k = 1 , .  . . , N ,  with N being the number 
of pixels in each image and i = 1,2 indicating the two 
perspective views. We assume the grey level difference field 
Do = {do(L)}, & ( E )  = y l ( k ) - y ~ ( k )  between the two views 
as being solely due to the underlying disparity field and to 
noise caused by the two cameras. 

'True' disparity fields associated with the type of scenes 
we are dealing with here exhibit certain properties due to 
their physical world origin. In order to make our disparity 
estimates comply with these, the space of possible solutions 
is subject to the following constraints ([17], cf. also [18], 

Uniqueness: For each pixel in one image Yl , there either 
exists a one-to-one correspondence with one point in 
the other image Y2 and vice versa, or the pixel is as- 
signed to uncovered background/occlusions. 

Piecewise Homogeneity: The disparity inside regions is 
constant. 

Boundary Smoothness: Smooth region boundaries are to 
be preferred. 

Uniqueness and piecewise homogeneity are used in a similar 
form in [19], however, they are formulated more strictly 
here. The uniqueness constraint as stated here requires an 
unambiguous two-way correspondence between two pixels 
linked by a disparity vector. To be more precise, let us 
assume a displacement vector w(k) which points from, say, 
pixel yl(k) in image YI to pixel y ~ ( l )  in the other image 
Y2 (Fig. 1). Uniqueness requires a reverse vector to exist 
originating from yz(l) and pointing to yl(k). Since at most 
one disparity vector is admitted per pixel, the implications 
are twofold (see Fig. 1): firstly, the disparity field pointing 
from Yl to Yz uniquely determines the reverse field from Y2 
to Yl. Secondly, it is straightforward to see that a disparity 
field which is not completely homogeneous must contain 
pixels to which no disparity cornplying with uniqueness can 
be assigned. These pixels have no counterparts in the other 
image, usually due to occlusions. In accordance with what 
was said above, they are marked by a pseudo disparity 
c,alled ' N I L ' .  Uniqueness thus serves as a structural rule 
for the unambiguous detection of occluded areas. 

The second conslrairnt, piecewise homogeneity, relates a 
disparity field V to a segmentation Q by combining iden- 
tically displaced pixels to regions. The third, rather 'soft' 
statement concerning region boundary smoothness will be 

~ 9 1 ) :  

I =  k+v(k) 
'NIL' 

Fig. 1. The uniqueness rule illustrated for a ID-case. 

incorporated into the optimization criterion by an appro- 
priate a priori probability density (pdf) reflecting a prefer- 
ence for smooth partitions. 

111. MAP-APPROACH TO DISPARITY ESTIMATION 
The disparity field V = { w ( k ) }  shall be estimated 

such as to maximize the a posteriori probability density 
p(VIY1,YZ). This can be restated as the maximization of 
the product p(Yi,Y21V) 9 p ( V ) ,  where p(Y1, Y21V) denotes 
the likelihood function of disparity fields V based on the 
observed image data, and p(V) the a priori pdf for the dis- 
parity fields. The advantage of the MAP-approach is that 
through a proper specification of the a priori pdf p(V)  we 
can bias the estimation procedure towards solutions con- 
sistent with our prior expections. Because of its flexibility, 
we chose a Gibbs/Markov random field to model the dis- 
parity fields (cf. [ZO], [21], [22]). The a priori pdf p(V) is 
thus given by 

where 2" is a normalization constant. E ( V )  is a so-called 
energy term depending on V .  The notion "energy" refers 
to statistical mechanics where this model, which favours 
low-energy states, is taken from. Its versatility is due 
to the fact that within certain limitations outlined in the 
Hammersley-Clifford theorem [22, p. 1981, the energy may 
be specified almost arbitrarily to fit the particular problem 
encountered. Here, the aim is to find an energy term re- 
lated to the boundary smoothness of the segmentation Q 
associated with V. 

The boundary smoothness can be assessed by the num- 
ber of border pixel pairs present in a partition &. A border 
pixel pair - also termed inhomogeneous clique - consists of 
two horizontally, vertically or diagonally directly adjacent 
image points, which belong to different regions. In other 
words, border pixel pairs are situated across region bvund- 
aries. The number of border pixel pairs is hence lower when 
the boundaries in the partition are smoother (cf. e.g. [20], 
[2 11). Distinguishing between horizontally/vertically and 
diagonally oriented border pixel pairs, we can specify the 
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energy E(V) of the displacement estimate V giving rise to 
Q by 

E ( V ) = n s . B + n c . C ,  (2) 
where ng denotes the number of horizontal and vertical 
border pixel pairs, and nc that of the diagonal ones. The 
so-called potentials B and C are both positive, incurring 
the cost B or C on the solution for each occuring border 
pixel pair. Combining (2) with (1) results in an a priori pdf 
which assigns a higher probability of occurence to disparity 
fields which lead to smooth partitions than to other ones 
which do not. 

With p(V) specified, we now focus on the likelihoodfunc- 
tion p(Y1, Y21V). The dependence of the likelihood function 
on Yl and Y2 is modeled in terms of the displaced frame 
difference (DFD) D(V) = { d ( k ,  ~(k))}. Assuming that the 
influence of the underlying disparity field on the difference 
image Do is compensated by an estimate V ,  what remains 
is the influence of the camera noise which is modeled as be- 
ing white and Gaussian distributed. The likelihood func- 
tion is then given by 

with Z such that C,,r,p(Y1,Y21V) = 1 .  Replacing the 
unknown parameter g2 in (3) by its ML-estimator S2(V) = 
I/N . ~ r = ~  d2(k ,  v(k)) yields 

This expression can be maximized by determining V such 
that the mean square difference k2(V) is minimized, yield- 
ing a ML-estimate of the underlying disparity field. By 
combining (1) and (4), an expression proportional to the a 
posteriori density p(VIY1, Y2) can be formed. However, the 
specification of this density is not yet complete, since the 
above considerations do not provide any means for treating 
occlusions. 

A .  Treatment of Occlusions 

As already described, pixels depicting occlusions can 
structurally be detected by invoking uniqueness. For 
these pixels no correspondence exists, so that instead 
of a genuine disparity they are formally marked by the 
pseudo disparity NIL. Pixels carrying the pseudo dispar- 
ity N I L  cannot, however, be assessed by (4), since no dis- 
placed pixel difference d ( k ,  v(k) = NIL) can be computed. 
To evaluate NIL-regions we decompose p(Y1, Y21V) into 
pNIL(Y1, Y21v) assessing NIL-pixels and pc(Y1, Y21v), 
which covers all image points with a genuine displacement 
~ 7 1 ,  ~ 4 1 .  

2The likelihood function is thus being modelled proportional to 
p ( D ( V ) I V ) .  Alternatively, one could follow the formulationof Konrad 
[23] by rewriting the maxinuzationof p(VIY1, Yz )  as the maxinlization 
of p(Y1 IV, Yz )  * p(VIY2). If V is assumed as statistically independent 
from Yz [23, chapter 31, tllis leads to the same expression as our 
approach. 

With NNIL being the number of NIL-pixels, 
p~ (YI , YZ I V )  is given by 

( 5 )  
with e2(V)  = 1/(N - N N I L )  C,, * ) + N I L  d 2 ( k ,  v(k)). In 

hood, we formally describe these by another random pro- 
cess which is also supposed to be Gaussian. We couple this 
formal process to the genuine one by assuming its formal 
variance as being proportional to the estimate d2 .  We thus 
have 

order to integrate evaluation of N f L-pixels into the likeli- 

UgIL = F * S 2 ( V )  . (6) 

If the proportionality factor F is chosen greater than one, 
this formal difference process can be interpreted to have 
on the average a higher squared (displaced) grey level diif- 
ference than the genuine one. This is reasonable since the 
pseudo disparity N I L  should be placed only where all ef- 
forts to establish a correspondence fail. 

Since the NIL-random process and the genuine one are 
mutually independent, p(Y1, Y21V) is given by the product 
P( yi , y2 I v) PC ( yi , y2 I v) . P N I L  ( yi , y2 I v) . Having thus 
integrated into the likelihood expression a term responsible 
for occlusions, the a posteriori pdf p(VIY1, Y2) finally is 
proportional to the product of ( l ) ,  ( 5 )  and (6). Taking 
minus twice the logarithm of the resulting expression and 
dropping all additive constants, finding the MAP-estimate 
of V is equivalent to minimizing 

K ( V )  = NInP(V)+NNIL l n ( F ) + 2 . ( n B . ~ + n c . C )  (7) 

by variation of V .  Minimization of K ( V )  is a compro- 
mise between minimization of each one of its three com- 
ponents, each of which has its specific purpose: the first 
term, N ln(S2), penalizes discrepancies between the input 
data and the found solution. The second term, NNfL ln(F'), 
incurs on the solution the cost ln(F) for each pixel classi- 
fied as occluded, thus preventing undue spreading of NIL- 
regions. The third term, derived from the a priori pdf, 
is responsible for preferring displacement estimates which 
lead to smooth partitions. 

B. Optimizat ion by  Determinis t ic  Relaxation 

Minimization of (7) is carried out by a deterministic re- 
laxation of the ICM-type (cf. [25]). As an iterative algo- 
rithm, this displacement vector relaxation needs an initial 
estimate to start from. When a sequence of stereo image 
pairs is to be processed, it is reasonable to simply take the 
processing result for the previous frame pair as initializa- 
tion for the next one, thus stepping through the sequence 
recursively. Gradual changes in time of the disparity for 
individual objects can be accommodated by performing a 
segment matching in a small search area centered around 
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the tip of the old disparities. Necessity for modifications 
then exists mainly at region borders (s. Fig. 4), hence, it 
is here where the displacement vector relaxation focuses. 

The image field is scanned repeatedly, with a new scan 
direction for every scan. Whenever a pixel k situated at 
a region boundary is encountered, its displacement vec- 
tor v(k) is tentatively replaced by the displacement(s) of 
the region(s) adjacent to it. For a pixel next to a N I L -  
region, this also includes replacing its disparity by a ten- 
tative N TL. Each replacement operation simultaneously 
transfers pixel k to the corresponding neighbouring region, 
thus locally altering the region boundary’s trajectory. For 
each replacement, (7) is recomputed. That vector (includ- 
ing the ’old’ one) which minimizes (7) is retained. Recom- 
puting (7) is considerably simplified by the local charac- 
ter of the replacement operations. However, since the new 
tentative displacement field(s) generated by replacing u( k) 
by its neighbour(s) must comply with the uniqueness con- 
straint, neighbouring displacements may be affected, too. 
These cases are listed in the appendix. 

The relaxation converges as only operations which de- 
crease (7) are performed. In practice, the relaxation may 
be terminated when the number of changed displacement 
vectors per scan has fallen to an insignificant value, e.g. 500 
for 256 x 256 images. The fact that (7) is minimized only 
locally is no drawback when one relies upon such ’good’ 
initial estimates as those formed by the previous process- 
ing results. Special measures, however, have to be taken 
if no such initialization exists, as it is e.g. the case for the 
first frame pair of a sequence. 

6. Estimating Initial Displacement Fields 

In cases where the above recursive approach is not ap- 
plicable, e.g. after scene cuts in a sequence, or when single 
image pairs are to be processed, initial estimates have to be 
provided by separate strategies. A possibility near at hand 
for this purpose is to use block matching. However, since 
no global constraints like smoothness are brought to bear 
by this technique, the resulting displacement fields may 
exhibit large areas with wrong disparities which cannot be 
removed completely due to the deterministic nature of the 
above relaxation, even when restricting the block matcher’s 
search space by the epipolar constraint. A strategy to avoid 
this pitfall could be to further reduce the number of dispar- 
ity vectors to be tested by block matching using the phase 
correlation technique (cf. [SI). More appealing computa- 
tionally is to implement a pyramid version of the displace- 
ment vector relaxation. Block matching is carried out on 
the lowest resolution level only, where the solution space is 
considerably decreased. After applying the relaxation, the 
estimation result is enlarged for the next higher resolution 
level. To account for the refined resolution, this must in- 
clude a segment matching around the tip of the enlarged 
displacement vector of each region, before the relaxation 
can again be applied. This is repeated until the highest 
resolution level is reached. 

Before the displacement vector relaxation starts, how- 
ever, the initial estimate generated by the block matcher 

has to be modified in order to comply with the uniqueness 
constraint. This means that, whenever two or more dis- 
placement vectors point towards the same location in the 
other image, only that one with lowest absolute displaced 
pixel difference is retained, the others are removed and re- 
placed by the pseudo disparity N I L .  

IV. RESULTS 

In this section, we show processing results for 3 dif- 
ferent videotelephony sequences consisting of frames sized 
256 x 256 pels. The sequences were recorded with the stereo 
camera setup described in [8]: the cameras were mounted 
one vertically above the other, with their optical axes con- 
verging on the foreground (person) ’. The partitions prc- 
duced by the described algorithm consist of the regions per- 
son (foreground), background, and uncovered background 
( ’NIL’) .  The region boundaries are in each case overlaid 
on the input images. Before processing started, the pic- 
tures of each pair were scaled to same global mean and 
variance. 

First, Fig. 2 depicts the segmentation result for the first 
frame of sequence 1: left, we have the partition for the up- 
per camera, with uncovered background above the person’s 
head and shoulders. On the right hand side, the comple- 
ment for the lower camera is depicted, where uncovered 
background occurs below the upper image edge, and below 
the person’s ears. This segmentation was acquired by a 
pyramid consisting of the resolution levels 256 x 256 pels, 
128 x 128 pels and 64 x 64 pels. On each level, the displace- 
ment vector relaxation was  carried out in two phases, first 
with the rather low cost parameters B = 0.5, C = 0.25, 
ln(F) = 2, and subsequently with the higher values B = 5, 
C = 2.5, and ln(F) = 5. Hence, during the first phase, the 
image data term in (7) dominates resulting in preliminary 
estimates for V and Q which are particularly well adapted 
to the input data. However, since for this case the regular- 
izing influence of the smoothness term in (7) is only slight, 
region borders may become very irregular. This effect is 
mended in the second phase, where the smoothing term is 
weighted higher. The above values for the parameters were 
determined experimentally, but they are not critical, and 
the described schedule was  used in all our experiments. 

The initialization was obtained by block matching on 
the lowest resolution level. To bring about the depicted 
results from this initialization, the displacement vector re- 
laxation carried out 2856 vector replacements requiring 5.5 
full scans*. Block matching and displacement vector re- 
laxation took 88 seconds CPU-time on a VAXstation 3100 
M76. The vertical component of the disparity field is given 

3The test sequences used here were kindly provided by the author of 
[8], who for his investigations gave specific reasons for mounting the 
cameras vertically instead of horizontally. Note that the geometry of 
the camera setup nowhere entered the developiiient of the algorithm 
described here, so that a horizontal setup can be used as well. 

*We define a ful l  scan to be equivalent to one raster scan on the 
finest resolution level of 256 x 256 pels, or to 4 raster scans on the 
next lower resolution level of 128 x 128 pels, and so on. The nuniber 
of full scans as given above thus serves as a comparative measure of 
computational expense (cf. [ZS], [27]). 
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Fig. 2. Region boundaries obtained by a md$iresolution displacement vector relaxation, with initialization obtained by block matching on 
the lowest resolution level. Left: result for upper camera. Right: segmentation complement for the lower camera, computed from the 
upper one by uniqueness and piecewise homogeneity. 

Fig. 3. Vertical component of the disparity field associated with 
Fig. 2. To avoid’holes’ in the representation, the pseudo disparity 
’NIL’ has been replaced by the background’s displacement. 

in Fig. 3. The disparity of the foreground (person) was es- 
timated to (0,O) and that one of the background to (1,12). 

This example illustrates well how the smoothness term 
in (7) dominates in areas where it is difficult to separate 
different regions. This is e.g. the case along the person’s 
throat, where the precise boundary even visually is hard to 
tell. Here, the third term of (7) ensures a rather smooth 
boundary instead of a ragged, Juncertain’ one. 

The recursive adaptation of disparity estimation and seg- 
mentation along a sequence is illustrated in Fig. 4. The 
processing result for the 4th frame is adapted to the 6th 
one, requiring 34 seconds CPU-time. 

Fig. 5 shows on its left hand side an initial segmenta- 
tion obtained by block matching on the lowest resolution 
level of a pyramid. The right hand side gives the parti- 
tion computed from this initial estimate by the relaxation, 
which carried out 4272 replacement operations during 5: 
full scans. 

V. DISCUSSION 

The described displacement vector relaxation combines 
estimation of stereo disparity fields with the segmentation 
of these fields into homogeneously displaced regions. One 
advantage of the proposed method is that these two tasks 
are not carried out independently of each other, since the 
optimization criterion (7) reflects the needs of both seg- 
mentation (using the Gibbs model) and displacement e&- 
mation (using the DFD). With respect to the accuracy of 
localizing the region boundaries, it is of further advantage 
that the algorithm works pixel by pixel (or rather, vector 
by vector), thus avoiding the use of a smearing measure- 
ment window. In addition to separating foreground from 
background, the algorithm also marks regions correspond- 
ing to occlusions accurately. 

From a computational point of view it is appealing that 
only border pixels need to be considered. Furthermore, a 
possibility for a speedup is to implement a parallel ver- 
sion of the relaxation algorithm by ’synchronous updatiing’ 

The applications are so far limited to scenes contain- 
ing objects which can be characterized by homogeneous 
disparity. Extensions require easing the constraints men- 
tioned in section I1 towards allowing moderate variations of 
disparity inside regions, e.g. by modeling the disparity by 
parametric functions, or by more general models of matlhe- 
matical physics, like membranes ([14], [ll], [28]). For such 
more complicated scenes, however, finding discontinuities 
as well as a general treatment of occlusions are not yet 
solved (cf. [29]). 

(cf. [as]). 

APPENDIX 
In the following, we list 5 different situations into which 

the vector replacement operations in section 111 B may be 
classified, and illustrate how each one is treated (see Fig. 6). 

a) A genuine disparity v ( k )  located at a boundary of one 
region is to be replaced by another genuine disparity 
of an adjacent region. Besides replacing v ( k ) ,  the tnr- 
get pixel (in image Y2) of the replaced vector must be 
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Fig. 4. Recursive adaptation when processing a stereoscopic sequence, shown for the upper camera only. Left: boundaries of frame no. 4 
overlaid on the new frame no. 6. Right: boundaries when the estimate shown left has been adapted to the actual frame by carrying out 
2977 vector replacements in 7 full scans. 

Fig. 5. Region boundaries (upper camera only) obtained by a multiresolution displacement vector relaxation, with initialization obtained by 
block matching. The segmentation computed by piecewise homogeneity from the initial estimate is shown left (enlarged from 64 x 64 pels 
resolution), and the refined one is depicted right. Measured displacements: (-4,12) for the background, and ( -5,O) for the foreground. 

NIL 

e) xm y - m NIL 

Fig. 6. IUustrations of the different situations which may arise during 
the vector replacement operations, for simplicity reduced to one 
dimension. 

assigned the pseudo disparity N I L .  
b) Pixel k carries the pseudo disparity N I L ,  which is 

to be replaced by the genuine disparity of an adjacent 
region. After the replacement operation, that vector 
which points to the same pixel in image Y2 as the re- 
placing one must be replaced by N I L ,  since otherwise 
the two vectors point to the same target pixel. When 
viewed in the reverse direction, i.e. from Yz to Y1, this 
is identical to a). 

c)  Origin (in image Yl) as well as the target point of the 
replacing vector carry the pseudo disparity N I L .  In 
this case, no further pixels are affected. 

d )  Origin as well as target point for the replacing vector 
carry genuine disparities. Besides the replacement op- 
eration itself, this case combines the implications of a) 
and b). This situation arises when the disparities on 
either side of the region border are parallel and parallel 
to the border (see Fig. 6 d, right). 

e) A genuine disparity is to be replaced by N I L .  Here, 
both origin and target of the replaced genuine dispar- 
ity are set to N I L .  
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