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DENOISING FLUORESCENCE ENDOSCOPY –
A MOTION COMPENSATED TEMPORAL RECURSIVE VIDEO FILTER WITH AN

OPTIMAL MINIMUM MEAN SQUARE ERROR PARAMETERIZATION

Thomas Stehle, Jonas Wulff, Alexander Behrens, Sebastian Gross and Til Aach

Institute of Imaging & Computer Vision, RWTH Aachen University, D-52056 Aachen, Germany

ABSTRACT
Fluorescence endoscopy is an emerging technique for the de-
tection of bladder cancer. A marker substance is brought into
the patient’s bladder which accumulates at cancer tissue. If a
suitable narrow band light source is used for illumination, a
red fluorescence of the marker substance is observable. Be-
cause of the low fluorescence photon count and because of
the narrow band light source, only a small amount of light is
detected by the camera’s CCD sensor. This, in turn, leads to
strong noise in the recorded video sequence.

To overcome this problem, we apply a temporal recursive
filter to the video sequence. The derivation of a filter function
is presented, which leads to an optimal filter in the minimum
mean square error sense. The algorithm is implemented as
plug-in for the real-time capable clinical demonstrator plat-
form RealTimeFrame and it is capable to process color videos
with a resolution of 768×576 pixels at 50 frames per second.

Index Terms— Noise filtering, optimal filter, endoscopy,
fluorescence, bladder, photo dynamic diagnostics

1. INTRODUCTION

Bladder cancer has its highest incidence rate in industrialized
countries. By far, the greatest risk factor for this disease is
smoking of tobacco products. Other important risk factors
are contact with aromatic amines (e. g. through working in
the dye industry), bilharziosis, and age. According to the Na-
tional Institutes of Health (NIH) approximately 69,000 people
were diagnosed with the disease and the number of deaths is
14,150 in 2008 in the United States.

Bladder Cancer can be diagnosed and treated during
an endoscopic examination (so-called cystoscopy). A cysto-
scope is brought through the urethra into the bladder, which is
filled with isotonic saline solution. The cancerous tissue can
then be removed using endoscopic tools, e. g. a resectoscope
cutting loop.

As bladder cancer is very difficult to recognize, fluores-
cence endoscopy (also called photo dynamic diagnostics -
PDD) is used to enhance its visibility. To this end, a marker
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substance, like 5-aminolaevulinic acid (5-ALA), is instilled
into the patient’s bladder two and a half hours before the ac-
tual intervention starts. It accumulates within tissues exhibit-
ing high metabolic rates such as tumors. Being exposed to a
special blue narrow band illumination, 5-ALA starts fluoresc-
ing in red. Therefore, healthy and cancerous tissues can be
distinguished more easily (see Fig. 1).

Fig. 1. Example of bladder tumors in normal mode (left) and
fluorescence mode (right).

A downside of the approach is the small amount of light left to
be detected by the cystoscope’s CCD sensor. As a strong elec-
tronic amplification is needed for compensation, strong noise
is apparent in video sequences of fluorescence cystoscopies.

To overcome this problem, temporal filter techniques can
be applied. In this application, real time capable algorithms
are mandatory which means that 50 color images must be
processed per second at a resolution of 768×576 pixels. An
overview of spatial, temporal and spatio-temporal filters is
given by Brailean et al. [1]. Most of these filters exhibit com-
plex theory and real time implementations are very difficult
to realize. Dubois and Sabri [2] suggest a simple motion
compensated temporal recursive filter for which a real time
implementation is achievable, but their approach is rather
ad hoc and does not guarantee any optimality. Ephraim and
Malah introduced a probabilistic minimum mean squared
error (MMSE) approach for the spectral amplitude estima-
tion in the domain of speech processing [3] which exhibits
very beneficial properties for the remaining noise [4]. Aach
adapted their approach to estimate 2D spectral amplitudes
in spatial image restoration [5]. Here, we use this concept



to derive a temporal filter directly in the space-time domain
rather than in the spectral domain.

The remainder of this paper is organized as follows. In
sec. 2, we describe the algorithm of Dubois and Sabri. As we
will see in sec. 3, a probabilistic formulation leads to a similar
formulation of the filter as Dubois and Sabri suggested and,
therefore, justifies their approach. Furthermore, a weighting
function is derived which leads to optimal filter results in the
MMSE sense. In sec. 4, we present quantitative results of a
phantom experiment and qualitative results of filtering a cys-
toscopic video sequence during a clinical trial. Finally, we
conclude the paper with a summary.

2. MOTION COMPENSATED TEMPORAL
RECURSIVE FILTER

Let the trivariate function

In(~x, t) = I(~x, t) + n (1)

denote the gray value at pixel position ~x = (x, y)> of a noise-
corrupted image at time t. I represents the ideal noiseless
image and n represents zero mean Gaussian distributed noise.
For simplicity of notation, we drop the color dimension. If the
gray values of an object in the scene do not change with time
and both images are noiseless, gray value changes can only
be caused by scene motion. This situation is described by the
brightness constancy constraint equation

I(~x, t) = I(~x− ~d, t− dt) (2)

where ~d(x, y, t) = (dx, dy)> is the so called displacement
vector field and dt is the time in which the displacement ~d
takes place. Unfortunately, this equation does not hold in the
case of fluorescence endoscopy as the images are corrupted
by noise. Therefore, the difference of the right hand side and
the left hand side of Eqn. (2) is not zero but

In(~x, t)− In(~x− ~d, t− dt) = ñ (3)

governed by a realization ñ of the noise process contained in
both images. For noise reduction Dubois and Sabri suggest a
recursive scheme

Î(~x, t) = α · In(~x, t) + (1− α) · Î(~x− ~d, t− dt) (4)

where Î is an estimation of the noiseless image signal I and
α is a weighting factor. As the image Î(~x − ~d, t − dt) is a
motion compensated estimation of the current image In(~x, t),
it is called the prediction, and

δ(~x, t) = In(~x, t)− Î(~x− ~d, t− dt) (5)

is defined as the displaced image difference.
Dubois and Sabri further suggest to choose the weighting

factor α according to the displaced image difference δ. If it

is low enough (lower than a threshold δ1) to be explainable
by the noise process, a small weighting factor α1 is chosen
such that the prediction has a large influence. If the displaced
image difference is high (higher than a threshold δ2) it is prob-
able that the motion compensation and thus the prediction did
not work perfectly. In this case a large weighting factor α2 is
chosen to reduce the influence of the probably imperfect pre-
diction. If the displaced image difference is between δ1 and
δ2, α is scaled linearly to give a continuous transition. The
piecewise defined function

α(δ) =


α1, if |δ| ≤ δ1
α1−α2
δ1−δ2 |δ|+ δ1α2 + δ2α1, if δ1 < |δ| ≤ δ2
α2, if δ2 < |δ|

(6)
implements these requirements. Note that in this approach
four parameters (α1, α2, δ1, δ2) need to be defined. Fig. 2
gives an example of this weighting function (black solid line).

3. DERIVATION OF OPTIMAL MMSE ESTIMATOR

In this section, we derive the MMSE estimator using a similar
reasoning as Ephraim and Malah [3].

The MMSE estimator is defined as the conditional ex-
pected value

Î(~x, t) = E[In(~x, t)|δ] (7)

where Î , In and δ are defined as in sec. 2 and E[.] is the
expected value. There are two hypotheses that need to be
distinguished: H0 where the motion compensation worked
perfectly, and, therefore, δ is dominated by the noise process.
Hypothesis H1 where the motion compensation failed which
means that δ contains noise and, additionally, structural image
information. With the theorem of the total probability, Eq. (7)
can be rewritten as

Î(~x, t) = E[In|δ,H0]︸ ︷︷ ︸
Î(~x−~d,t−dt)

·P (H0|δ) + E[In|δ,H1]︸ ︷︷ ︸
Î(~x−~d,t−dt)+δ

·P (H1|δ)

(8)
where P (H0|δ) and P (H1|δ) are the conditional probabilities
of the hypotheses H0 and H1 given δ, respectively. Inserting
the respective expected values and the displaced image differ-
ence δ, one reads

Î(~x, t) = Î(~x− ~d, t− dt) (P (H0|δ) + P (H1|δ)) +

(In(~x, t)− Î(~x− ~d, t− dt)) · P (H1|δ) (9)

As the probability of a hypothesis plus the probability of its
counter hypothesis equals one, the expression can be further
simplified

Î(~x, t) = P (H1|δ) · In(~x, t) +

(1− P (H1|δ)) · Î(~x− ~d, t− dt) (10)

which is structurally equal to Dubois and Sabri’s suggestion
in Eq. (4). One can see that P (H1|δ) is the sought filter curve
which corresponds to the weighting function α.



Using the relationships

P (H1|δ) = 1− P (H0|δ)

P (H0|δ) =
p(δ|H0) · P (H0)

p(δ)
(Bayes’ theorem)

p(δ) = p(δ|H0) · P (H0) + p(δ|H1) · P (H1)

the filter curve can be expressed as

P (H1|δ) =
(

1 +
p(δ|H0) · P (H0)
p(δ|H1) · P (H1)

)−1

(11)

where p(δ) is the probability density function (PDF) of δ, and
p(δ|H0) and p(δ|H1) are conditional PDFs. As the regarded
noise is based on a quantum process which leads to signal
dependent noise, a Poissonian PDF is an appropriate model.
But since a Poissonian PDF can be approximated by a Gaus-
sian PDF with a signal dependent σ2 if sufficient quanta are
involved, we assume these PDFs to be zero-mean Gaussians
with variances σ2

0 and σ2
1 .

Inserting these Gaussians, we obtain

P (H1|δ) =
(

1 +
P (H0)σ1

P (H1)σ0
· exp

(
δ2

2

(
1
σ2

0

− 1
σ2

1

)))−1

(12)
In the case of successful motion compensation (H0 holds),
the displaced image difference δ only contains noise. In the
case of failed motion compensation (H1 holds), the displaced
image difference does not only contain image noise but also
structural image information. Therefore, the corresponding
Gaussian’s variance σ2

1 is assumed to be much larger than
the noise dominated σ2

0 and the respective fraction can be ne-
glected in the exponential, yielding

P (H1|δ) ≈
(

1 +
P (H0)σ1

P (H1)σ0
· exp

(
δ2

2σ2
0

))−1

. (13)

The parameter σ0 can be measured beforehand but, unfortu-
nately, the parameters σ1, P (H0) and P (H1) remain undeter-
mined. Therefore, we set

λ =
P (H0)σ1

P (H1)
(14)

and rewrite Eq. (13) as

P (H1|δ) =
(

1 +
λ

σ0
· exp

(
δ2

2σ2
0

))−1

. (15)

in which λ is the only parameter that needs to be determined
empirically. In Fig. 2 three filter curves for σ2

0 = 1, 49, and
225 are depicted.

4. EXPERIMENTS AND RESULTS

The algorithm as described above was implemented in our
real time capable clinical demonstrator platform RealTime-
Frame [6]. A color video stream with a resolution of
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Fig. 2. Different realizations of the filter curve minimizing the
MMSE for expected noise variances σ2

0 = 1 (blue, solid), 49
(green, dashed), and 225 (red, dash dotted). The parameter
λ was fixed to 50. Black: piecewise defined filter curve by
Dubois and Sabri.

768×576 pixels at a rate of 50 frames per second can be
filtered in real time on our system with two dual-core 2.3
GHz Intel Xeon processors.

For an evaluation of the algorithm’s filter performance, a
video sequence with a known ground truth signal was neces-
sary. Therefore, a video was acquired with an Olympus Ex-
cera II video endoscope in PDD mode. This video shows the
inside of a PDD bladder phantom manufactured by Olympus
Winter & Ibe GmbH, Hamburg, Germany, without any mo-
tion. For this reason, it was possible to average all acquired
video frames over time to cancel the noise while preserving
the image details:

I(~x) ≈ 1
t0

t0−1∑
t=0

In(~x, t) (16)

Here, t0 = 30 is the number of used images. Subsequently,
signal and noise in this sequence could be separated

n(~x, t) ≈ In(~x, t)− I(~x, t). (17)

As stated above, noise based on quantum processes is signal
dependent and can be approximated by Gaussian models if a
large number of quanta is involved. The results of a signal
dependent noise analysis are depicted by the blue solid line in
Fig. 3

In our first experiment, the proposed algorithm was ap-
plied to the motionless video sequence. The filter results on
the static data can be regarded as the maximally achievable
noise reduction as the static sequence poses an optimal situ-
ation to the motion estimator. The resulting noise variances
can be seen in Fig. 3 as the green dash-dotted line. As the
results, of course, depend on the choice of the parameter λ,
it was fixed to a value of 50, which yields visually accept-
able results (low detail loss) even in the case of a sequence
containing motion.
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Fig. 3. Noise variance in PDD endoscopy sequence without
filtering (blue solid line), with filtering on moved sequence
(red dashed line) and with filtering on static sequence (green
dash-dotted line).

In a second experiment, the filter performance in pres-
ence of a simple motion was evaluated. To this end, again,
the dummy sequence was used and an artificial motion was
introduced by shifting the image content to neighboring in-
teger pixel positions. We chose integer shifts as shifting to
subpixel positions would have affected the noise character-
istics because interpolation would then have been necessary.
As motion estimator, we used a global linear conformal mo-
tion model which exhibits translation, rotation and scaling as
degrees of freedom. The motion model was robustly fitted
to point correspondences found by block matching. The re-
sulting noise variances can also be seen in Fig. 3 (red dashed
line). As expected, the noise reduction was less effective com-
pared to the static sequence, but still a substantial noise reduc-
tion could be achieved.

The peaks on the right hand side of the remaining noise
variances of the filtered sequences in Fig. 3 can be explained
by the effects of imperfect motion estimation. In these cases,
the edges of dark blood vessels were not perfectly matched
and therefore the difference δ increased and the filter strength
was reduced.

Fig. 4. Image from endoscopy sequence without any filtering
(left) and same image after application of the proposed filter
(right). Image details are widely preserved or even enhanced
(e. g. blood vessels).

In a first clinical trial, our system was placed next to the orig-
inal endoscopy monitor the physician could directly compare
both images. The physician commented positively on the ef-

fects of the filter algorithm. Qualitative results are depicted in
Fig. 4. On the left hand side, an original unfiltered frame from
a human bladder examination and, on the right hand side,
the same frame after application of the proposed filter can
be seen. Despite scene motion, noise is substantially reduced
while image details are widely preserved or even enhanced
(blood vessels).

5. CONCLUSION

In this paper, we have given a short introduction to PDD
cystoscopy and explained the presence of strong noise in this
type of video stream. As countermeasure, we have derived a
filter framework for effective noise reduction adapting a spec-
tral estimation approach from speech processing. Thereby,
we have developed a probabilistic foundation for Dubois
and Sabri’s temporal filter. Furthermore, we have derived a
weighting function which gives optimal results in the MMSE
sense. If the signal dependent system noise is known, the
proposed function needs only one parameter to be defined.
For the evaluation of the algorithm, we have implemented
it on our real time capable software framework RealTime-
Frame. We have measured and compared the noise variances
in a unfiltered dummy sequence and in filtered sequences
without and with artificial motion. During a clinical trial,
the physician commented positively on the improved image
quality.
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