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ABSTRACT

The segmentation of the hepatic vascular tree in computed tomography (CT) images is important for many
applications such as surgical planning of oncological resections and living liver donations. In surgical planning,
vessel segmentation is often used as basis to support the surgeon in the decision about the location of the
cut to be performed and the extent of the liver to be removed, respectively. We present a novel approach to
hepatic vessel segmentation that can be divided into two stages. First, we detect and delineate the core vessel
components efficiently with a high specificity. Second, smaller vessel branches are segmented by a robust vessel
tracking technique based on a medialness filter response, which starts from the terminal points of the previously
segmented vessels. Specifically, in the first phase major vessels are segmented using the globally optimal graph-
cuts algorithm in combination with foreground and background seed detection, while the computationally more
demanding tracking approach needs to be applied only locally in areas of smaller vessels within the second stage.
The method has been evaluated on contrast-enhanced liver CT scans from clinical routine showing promising
results. In addition to the fully-automatic instance of this method, the vessel tracking technique can also be used
to easily add missing branches/sub-trees to an already existing segmentation result by adding single seed-points.

Keywords: segmentation, hepatic vessel, liver, computed tomography

1. INTRODUCTION

The accurate and robust detection and delineation of vascular structures within the liver is an important pre-
requisite for different medical applications. Especially for surgical planning, the knowledge of the individual 3D
vessel tree structures is extremely helpful to analyze affected vessels and liver regions that will be disconnected
from blood supply after the operation. For example, the required extent of oncologic resections is dependent on
the location of the tumor in relation to the major vessels that define the liver’s surgical anatomy. Even more
important are 3D planning techniques in the field of minimally invasive surgery, which generally permits less
complete visualization during the procedure [1]. Also radio frequency (RF) ablation treatments require planning
for which the spatial relationship of a lesion with respect to major vessels and branches needs to be visualized
and analyzed. Such planning tools may also be helpful in biopsy path planning. Additionally, for living donor
liver transplantation [2, 3] the branching pattern of the vessel systems needs to be analyzed to support the
decision regarding the suitability of the donor. In particular the determination of liver volume is important to
ensure adequate postoperative liver function for donor and recipient. Finally, the commonly accepted Couinaud’s
partitioning scheme [4] is defined by the main portal and hepatic vein branches.

The segmentation of vascular structures in contrast-enhanced liver CT images is challenging because of
the high variability of the liver and vascular anatomy and the typically low constrast between vessels and the
surrounding liver tissue. Also the distribution of the contrast-agent depends on the bolus phase resulting in an
varying amount of contrast in the image as well as in varying enhancement within the vacular trees. Additionally,

Further author information: (Send correspondence to J. N. Kaftan)
E-mail: jens.kaftan@lfb.rwth-aachen.de, Telephone: +49 241 80 27974

Medical Imaging 2009: Image Processing, edited by Josien P. W. Pluim, Benoit M. Dawant,
Proc. of SPIE Vol. 7259, 725911 · © 2009 SPIE

CCC code: 1605-7422/09/$18 · doi: 10.1117/12.812407

Proc. of SPIE Vol. 7259  725911-1



bright non-vascular structures such as contrast-enhanced tumors might cause leakages in intensity-based vessel
segmentation algorithms.

Typical segmentation approaches often include noise reduction and background compensation [5] or vessel-
enhancement methods [6,7] as pre-processing steps followed by variations of region growing techniques [5–7] and
further post-processing steps such as centerline extraction and tree separation algorithms. A review on vessel
segmentation methods with application to hepatic vessel segmentation can be also found in [8].

Soler et al . [9, 10] use anisotropic diffusion as pre-processing step to reduce the noise inside the liver mask
while preserving structural borders. An initial segmentation is obtained by dividing the set of voxels into three
classes representing lesions, parenchyma, and vessels via thresholding. The thresholds are estimated based on the
intensity histogram. Subsequently, the vessel segmentation is refined by first adding voxels from the parenchyma
class to the vessel class that are brighter than a certain threshold within a morphological closing step and then
removing false branches based on geometrical and topological properties of the resulting skeleton structure.

Selle et al . [5,11,12] use different filters (Gaussian, median, Laplace-like) to remove noise and to compensate
for intensity variations within the liver parenchyma. Starting from an interactively selected seed-point, an
intensity-based region growing is applied with decreasing thresholds, while the optimal threshold is determined
based on the number of segmented voxels at each threshold.

Other approaches use the response of a multi-scale vessel enhancement filter as basis for segmentation.
For example, Beichel et al . [7] use the Hessian-based filter as defined in [13] while Erdt et al . [6] use a novel
combination of the resulting eigenvalues of the Hessian matrix that maximizes the filter response for ideal tubular
structures without any further parameters than the scale factor. Additionally they have shown, that such a filter
can be efficiently computed utilizing the GPU.

Recently, two independent approaches that are partly related to the different stages of our work have been
proposed. First, a semi-automatic graph-based method [14] has been applied that uses graph-cuts to segment
venous hepatic structures. To this end, the user is required to mark vessels in one representative slice with a
couple of seed-points. These points are used to learn the intensity distributions of vessels and the background,
respectively. Second, a tracking approach has been proposed for segmenting (small) liver arteries [15]. To this
end, a vessel template is matched to the local image data and its response is utilized in a vessel tracking scheme.

We propose a novel two-stage approach to hepatic vessel segmentation consisting in a globally optimal graph-
based segmentation of larger vessels followed by robust local vessel tracking starting from the terminal centerline
points of the first stage’s result. In particular, our algorithm is fully automatic and adaptive to changes in
contrast using a statistical parameter estimation.

2. METHODS

Given a venous-phase contrast enhanced CT scan of the liver, we first assume that a reasonably accurate
segmentation of the liver is available. Such liver segmentations can be obtained fully automatically using, e.g.,
the approach in [16]. Additionally, to reduce noise present in the volume and to reduce inhomogenities within
the liver tissue we apply Mean-Gaussian smoothing [17] as pre-processing. This curvature dependent smoothing
works in a similar fashion as anisotropic diffusion without blurring across edges, while it is driven by the local
geometry rather than the local constrast. Liver examples are shown with and without smoothing as maximum
intensity projections (MIP) in Figure 3.

Our method consists of two principal stages. First, we focus on the detection and delineation of larger
vessels, which can be characterized by a considerably good contrast to surrounding liver-parenchym compared to
smaller vessels that are stronger afflicted by partial volume effects and hence exhibit less contrast to non-vessel
structures. Second, starting from the segmented vessel end-points, smaller vessels are captured using a robust
vessel tracking approach. In that way larger vessels are detected globally and image specific parameters (intensity
contrast, noise level, ...) are estimated, while the computationally more demanding tracking algorithm is only
applied in those areas where the contrast is not sufficiently high for a reliable global segmentation. Note that this
tracking technique can be also applied in a semi-automatical way guided by user interaction. Each individual
step is described in the following in more detail.
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Figure 1. The global segmentation pipeline (stage 1). Regions that do not belong to the liver parenchyma or vessels are
first removed resulting in a two class separation problem. Subsequently a hierarchical classifier (Figure 2) is utilized to
detect foreground and background seed-points that are used as input to the graph-cuts algorithm.

2.1 Global segmentation

In the first stage we seek to obtain a reliable segmentation of the major vascular tree, while small branches might
be added in a later step. The segmentation shall be especially robust against variations in contrast and signal
to noise ratio caused by, e.g., variations in the bolus phase, the used contrast agent, and scanner protocol, and
against all kinds of liver lesions that typically occur in clinical routine.

The processing pipeline of this stage is shown in Figure 1. To acquire a robust estimation of vessel and
background properties, we first segment and remove pathological regions from the liver mask. In particular, we
approximately segment larger lesions and remove areas with intense Lipiodol∗ uptake. The original vessel seg-
mentation objective becomes then a two class separation problem, i.e., the remainder of the liver can be classified
as belonging to either the vascular tree or normal liver tissue (note that since the initial lesion segmentation is
not perfectly accurate, the liver tissue class might contain also other non-vessel regions in whose separation we
are not further interested in). Based on three image-driven features, we compute foreground and background
seed-points using an efficient hierarchical classifier (see Fig. 2) as an initial segmentation. Finally, we use the
global optimal graph-cuts algorithm [18] to extract the exact vessel boundaries given the initialization.

2.1.1 Liver lesion removal

First, we detect and remove regions with intense Lipiodol uptake. Such regions which appear much brighter than
vessels, can be easily detected using an upper threshold of tLipiodol = 350HU. All voxel intensities above tLipiodol

can safely be considered to be brighter than contrast enhanced vessels. Unfortunately, voxels in the immediate
surrounding of those very bright regions appear in a similar intensity range as blood vessels. Hence, we dilate the
original detected volume in 3D to remove the voxels with relatively high intensity values around the very bright
voxels. Now, assuming the liver consists in one region of one type of tissue, which of course is not completely
true as it consists of blood vessels (brighter than average), normal liver tissue, and other regions such as tumors
(typically darker than average), we extract those regions that are not compatible to this null hypothesis [19].

Given the null hypothesis we estimate the global mean and global variance by the Maximum Likelihood
estimates

μ̂ =
1
N

·
∑

x∈R

f(x), σ̂2 =

(
1
N

·
∑

x∈R

f(x)2
)

− μ̂2 (1)

with f(x) being the smoothed intensity values and R being the modified liver mask. Now, each Region Rn that
is unlikely to comply to the null hypothesis is detected. In particular we compute the local average

μx,d =
1
d3

·
∑

x∈Sd(x)

f(x) − μ̂

σ̂2
(2)

in a window Sd(x) around each x. Assuming that no inhomogenity is present within Sd(x), μx,d stems from a
zero mean Gaussian distribution with variance d−3. Consequently, voxels with a local average greater or smaller
than a certain threshold ±t are significantly brighter or darker at a significance level s.

∗Lipiodol is an iodized agent used, e.g ., in chemoembolization applications. It selectively remains in tumors for
prolonged periods of time.
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Figure 2. The hierarchical classifier used in stage 1. Foreground and background voxels are detected with a high specificity
based on three image driven features, namely intensity, variance, and a vesselness feature. Note that the computationally
more expensive vesselness feature is only calculated for voxels potentially belonging to the vasculature based on the first
two features. The output is then used as seed-points for the graph-cuts algorithm (Section 2.1.3)

To remove lesions, significantly darker regions are marked as foreground, while the remainder (normal tissue
and vessels) is marked as background. Subsequently, a smooth segmentation is obtained using the global optimal
graph-cuts algorithm [18], which is also further detailed in section 2.1.3. The final output is then substracted
from the liver mask.

2.1.2 Initialization

The initial segmentation is based on a hierarchical classifier that divides the voxels present in the modified liver
mask into one of three classes: vessel, background, or undefined. While the first two classes are then used as
seed points for the global optimization step (see Section 2.1.3), the last class basically represents the space in
which the optimal vessel surfaces are efficiently found.

The hierarchical classifier consists of three basic classifiers organized in two levels (see Figure 2), while each
basic classifier is implemented using the statistical threshold method already described in Section 2.1.1. The
features used on the first level are the local intensity and the local variance. The parameters of these “weak”
classifiers, the significance levels sI , sσ2 and the window sizes dI , dσ2 are chosen in that way that vessels are
detected with a very high sensitivity. That is, voxels marked as background most certainly really belong to the
background. Both foreground outputs are combined using a logical AND operator and are subsequently dilated
by a small safety margin. Everything remaining is then finally marked as background for the global optimization
step.

Based on the reduced subset of voxels belonging potentially to the vascular tree, we calculate a computation-
ally more demanding local vesselness feature. For this vesselness feature we follow the idea of flux maximizing
flows [20]. Imagine an elongated vessel structure that appears brighter than its surroundings, while it may have
low contrast. In this case not only the magnitude, but also the direction of the gradient vector field V shall
be considered in the vesselness measure. In particular, given a surface that is well aligned with the real vessel
boundaries, the inward flux is maximized. In other words, our third feature corresponds to the divergence of the
gradient vector field

div(V) = ∇ · ∇I = ΔI (3)

Utilizing the divergence theorem ∫ ∫

A

∫
ΔI dx dy dz =

∮

S

〈V,N〉 ds (4)

we can compute the flux feature in practice by integrating over the gradient vector field along the surface S of a
sphere around a particular point x with N being the outward normal at each point of the surface. This measure
allows the incorporation of a local scale by varying the radius of the sphere. A multi-scale feature is obtained by
combining the flux feature at different scales rn into a final value. To this end, we discretize the right-hand side
of (4) and divide the flux by the number of entries in the discrete sum and subsequently select the flux value
with the largest magnitude. It is noteworthy that the vesselness feature can be efficiently computed in parallel
using multi-threading techniques or utilizing the GPU. Exemplary results are shown in Figure 3c.
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(a) (b) (c)

Figure 3. The figure illustrates exemplarily the result of the Mean-Gaussian smoothing and vessel enhancement filtering
technique. (a) shows the original volume as maximum intensity projection, (b) the smoothed version, and (c) the output
of the vesselness filter. Note that the filter response is only calculated for voxels potentially belonging to the vasculature
after classification level one.

Based on this vesselness feature, an initial vessel segmentation with a high specificity is extracted by chosing
appropriate parameters sflux, dflux. The so detected vessel voxels are marked as foreground for the global
optimization step.

2.1.3 Global optimization

Finally, we use the global optimal graph-cuts algorithm [18] to extract the exact vessel boundaries given the
detected fore- and background seed-points and the vesselness filter output. Let G = (N, E) be a graph with a
set of nodes N and edges E for which the graph topology is still to be defined. There are two types of edges,
t-links that connect a node with the sink or source and n-links that connect two nodes. Each edge is weighted
based on a weighting function to be defined. Then, graph-cuts generally minimizes a global energy function

E(f) =
∑

p∈N

Dp(Lp) +
∑

(p,q)∈E

Vpq(Lp, Lq) (5)

with Dp(l) being a data penalty that pixel p incurs when assigning label l ∈ L = {Lp = {0, 1} |p ∈ N} (data
term) and Vpq being a pairwise interaction potential that penalizes neighboring voxels that belong to different
labels Lp �= Lq (smoothness term).

In our particular case, we have chosen to connect the foreground and background seed-points via infinity cost
links to source and sink (data term), while the remaining nodes are only connected via n-links. In alignment with
the observations in [21] we have observed that a 26 nearest neighborhood and a reciprocal weighting function

wij =
1

dist(vi, vj)
· 1
1 + β(g(vi) − g(vj))2

(6)

performs best. Additionally a small additive constant (1e−6) was added to each weight.
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Although graph-cuts typically does not perform very well in segmenting elongated shapes because it often
tends to be biased towards shorter boundaries, it is still very well suited for vessel segmentation in our case.
Specifically note that the foreground seed-points are concentrated in the vessel center as the vesselness filter
output is maximal in that area while it might be lacking in some areas such as bifurcations. Given these vessel
regions, which might be disconnected, graph-cuts is capable of delineating the vessel surface accurately and
merging disconnected branches.

To this end, we apply the graph-cuts method consecutively with two different parameter settings. One can
observe that given the previously described initialization a large beta factor (i.e., small smoothness term) is
advantageous for connecting disconnected pieces, while a small beta factor (i.e., large smoothness term) provides
a more accurate delineation of the vessel boundaries. Consequently we solve the graph cuts equation first with
β1 = 10 and use the updated foreground mask as initialization for a second graph cuts method with β2 = 0.0001.
The outcome is then the final vessel segmentation. In a postprocessing step, we remove regions with less than
Ncc voxels, based on a connected-component analysis.

2.2 Local tracking

In the second stage we extend the segmented vessel trees including also smaller vessels. To this end, we extract the
centerline structure of the already segmented vessels [22] and detect automatically all terminal points. Starting
from these sites, we apply a robust tracking approach similar to the one we have recently proposed for general
vessel tree modelling [23].

2.2.1 Centerline extraction

The centerline extraction method [22] requires a preselected root site along the binary segmentation as input. To
this end, for each connected component remaining in the binary segmentation mask after the postprocessing step,
a root site is automatically selected by determining the point with maximal distance to all segmented surfaces.
Then, the 3D skeleton of the segmented vascular structure is computed and stored in a tree data structure
T . Based on T , several post-processing steps that might delete or move centerline points as well as delete false
branches, are applied. In particular, branches that are created because of small irregularities on the vessel surface
and those shorter than twice the radius at the bifurcation point get eliminated. Finally, intermediate sites are
eliminated and smooth branches are created using a spline fitting. As an output we also get a list of all terminal
sites, which are used as seed-points for the subsequent local vessel tracking.

2.2.2 Centerline tracking algorithm

The centerlines of remaining unsegmented vascular structures are extracted via a graph-based tracking algorithm
using multi-scale medialness-filters. Specifically, the algorithm has four componenents: First, a medialness
measure based on 2D multi-scale cross-sectional models is introduced. This new measure is contrast and scale
independent and it works well in the presence of nearby bright structures such as other vessels. Second, a minimal
path detection method working on a discrete grid where the cost of the graph edges are computed from this
medialness filter. Third, the full vessel centerline tree is extracted from a single seed-point by a post-processing
algorithm, which uses the length and scale of the vessel centerlines. In general, the proposed method can extract
the centerline for a vessel segment as well as for a full vessel tree. Fourth, the exact vessel boundaries are
delineated from its centerline structure.

Medialness measure from 2D cross-sectional models First, we introduce a medialness measure that is
based on multi-scale cross-sectional vessel modeling. Blood vessels in CTA typically have circular/elliptic shapes
in cross-sectional views even though local variations on them are not too uncommon due to the presence of nearby
vessels or pathologies. Ideally, 2D cross-sectional vessel profiles consist of a circular/elliptic bright disk and a
darker ring around them (Figure 4a). Our medialness measure uses this circularity assumption and expected
intensity profile. To this end, we cast a number of rays from the center point and collect intensity profiles along
them. The typical intensity profile of a vessel and its immediate background starting from the center is shown
in Figure 4b. This 1D vessel intensity model is further divided into three intervals, RI , RO, RB (Figure 4c).
Specifically, the region inside a vessel along a ray, RI can be represented by a bright and roughly flat intensity
profile whose size depends on the radius of the vessel. Similarly, the region outside a vessel along a ray RO
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Figure 4. This figure shows a typical vessel in cross-sectional view (a) and the intensity profile along a 1D ray starting
from the center (b). In our vesselness filter design, we model this intensity profile by dividing it into three intervals, inside,
outside, and boundary.

can be represented by a darker and roughly flat intensity profile whose size depends on the presence of nearby
structures. The boundary region between vessel and background, RB , can be described by a Gaussian profile.
Mathematically, the vessel intensity model along a ray equals

V (x, R, σ) =

⎧
⎪⎨

⎪⎩

IV if x ≥ 0 and x < R

IO + (IV − IO)e−(x−R)2/σ2
if x ≥ R and x < xB

IO if x ≥ xB and x < xE

(7)

where R is the radius and IV and IO are the average intensity values inside and just outside a vessel, respectively.
In addition, we set xB = R + 2σ and xE = xB + 1 in our experiments. An intensity profile, I, obtained from the
original CTA/MRA data along a ray should match the profile of the proposed 1-D intensity vessel model, V , if
the observed data I is sampled from a vessel. Specifically, we use the difference between the measured intensity
profile I and the vessel model V as a fit measure in our vesselness criteria. That is, the fit measure fi along a
ray, is given by fi = minR,σ||Vi(R, σ)− Ii||2. Then, the medialness measure V M(x, y, z) of a point is given from
the summation of such fit measures along all rays, i.e., V M(x, y, z) =

∑N
i=1 fi where N is the total number of

rays. Observe that our vessel intensity model contains two important values, namely, IV and IO. Their value
plays a very strong role in the accuracy of the matched filter. In our implementation, the results of the global
optimization stage (Section 2.1.3) allows us to estimate these values accurately.

Center-axis extraction from graph-based optimization In this section, we first summarize a method for
extracting the local center axis between a source and a sink by integrating the medialness map in a discrete
optimization framework and then show how to extract the full vessel centerline tree from a single seed-point.
Specifically, we seek to obtain a curve C(s) (center axis) between points p0 and p1 which travels through the
center of a vessel. This problem can be successfully solved by the minimum-cost path detection algorithms [24,25]:
Let E(C) be the total energy along a curve C

E(C) =
∫

Ω

(P (C(s)) + w) ds (8)

where P (C) is called potential, w is the regularization term and s is the arch length, i.e., ||C(s)||2 = 1. In vessel
centerline extraction methods, the potential P (x) at x corresponds to the inverse of a medialness measure at
that location, namely, P (x) = 1

m(x) . Let Ap0,p1 represent the set of all curves between p0 and p1. The curve with
total minimal energy can be computed from the minimum-accumulative cost, φ(p), which measures the minimal
energy at p integrated along a curve starting from the point p0:

φ(p) = inf
Ap0,p1

{E(C)} (9)

In this paper, we use Dijkstra’s algorithm for solving equation (9) in a discrete domain. Specifically, let G =
(N, E) be a discrete graph where N and E represent nodes and edges, respectively. The minimum-accumulative
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cost at the node Pij for a four connected 2D graph is then given by

φ(Pij) = min
(
φ(Pi−1j) + Cij

(i−1)j , φ(Pi+1j) + Cij
(i+1)j , φ(Pij−1) + Cij

i(j−1), φ(Pij+1) + Cij
i(j+1)

)
(10)

where, for example, Cij
(i−1)j corresponds to the cost of propagation from point P(i−1)j to Pij which is obtained

from the inverse of the medialness measure. This algorithm can be easily implemented by first setting the
minimum-accumulative cost of all nodes to infinity (or a large value) and then using an explicit discrete front
propagation method where propagation always takes place from the minimum value to its neighboring nodes.
In our implementation, we use a 27-connected lattice in 3D, i.e., diagonal propagations are also included for
better accuracy. In addition, the medialness measure is computed orthogonal to the direction of the propagation
instead of computing it at the nodes. The discrete path (curve) from a point Pij to source P0 can then be easily
obtained by traversing (backtracking) along the propagation.

This centerline extraction algorithm starts from a source and it terminates when the front propagation reaches
to a sink, i.e., an end point. When there is no sink point defined for an explicit stopping, the propagation should
continue until it reaches the end of all branches, i.e., a stopping criteria is met. Specifically, in our task, the
propagation starts from all seed-points that are determined in Section 2.2.1. The stopping criteria is based on
the medialness measure along a discrete front. Specifically, propagation is forced to stop when the minimum
medialness measure along a discrete front at any time drops below a threshold.

While this iterative minimization algorithm constructs the accumulative cost map, φ, it does not explicitly
detect the centerline structure of a vascular tree since there are no user placed end points. Observe that it is
possible to detect the minimum-cost path between front pixels and the source. Most of these paths correspond to
the discontinuities of the propagating fronts. We propose that the determination of correct paths depends on their
saliency. The saliency of a branch is determined from its length and the size of the maximum medialness filter
along that branch. Specifically, we first start a path detection process from a front point that has the maximum
distance from the source, which results in a discrete centerline. This path detection process is iteratively applied
to each front point by always selecting the one with the maximum distance to the existing centerline. This
algorithm then detects all salient vessel centerlines starting from a single source. The same algorithm is applied
to all the fronts starting from the different seed-points that correspond to the terminal points of the previous
detected vascular tree.

Vessel mask delineation from centerline structure Given the newly detected centerline structures for
which an approximate vessel radius is also available as another output from the multi-scale medialness filter, we
finally seek to create the corresponding binary masks. To this end, we utilize again the already earlier described
graph-cuts algorithm. We convert the new centerline points and its immediate surroundings up to a minimal
radius to foreground seed-points. This minimal radius corresponds to the minimal radius of interest for the
application and equals also to the minimal radius used for the multi-scale matched filter. Image points further
away than a maximal radius to the centerline, while this radius corresponds to a slightly increased version of the
maximal radius of the branch as detected by the used filter, are marked as background. Then, graph-cuts (see
Section 2.1.3) is applied to delineate the optimal surface.

2.3 User-guided tracking

In a clinical environment, it is important to provide tools to modify and correct the automatic segmentation
result to the user. In particular it should be possible to add missed branches or subtrees with minimal user
interaction. The tracking algorithm as described in Section 2.2.2 can be also utilized for this purpose. An
example is shown in Figure 5. Given the results from the fully automatic algorithm, the tracking algorithm is
started again from an interactively selected seed-point. The newly detected centerline is then connected to the
centerline corresponding to the original vessel mask voxel that is visited first during the propagation process.
Note that the propagation is performed in every direction starting from the seed-point so that this point is not
only connected to the existing segmentation, but vessel parts beyond the seed-point are also explored. While
the portion of the newly detected centerline structure between the seed-point and the existing segmentation is
kept in every case as we assume that the marked voxel really belongs to the vascular tree, the portion distal
to the seed-point is further validated to avoid leakage. In particular centerline pieces for which its cumulative
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medialness response does not exhibit a certain minimal value, get erased. The corresponding binary mask is then
finally computed using again the graph-cuts algorithm as described earlier. Note that the visualized centerline
structure corresponds to the newly added branches only.

(a) (b) (c)

Figure 5. Example that shows the user-guided tracking. In (a) a missing sub-tree is marked by one seed-point. The
tracking result (blue centerlines) and the corresponding segmentation mask are shown in (b) and (c), respectively.

3. RESULTS

The proposed system has been evaluated on 30 venous phase liver CT scans from clinical routine and demonstrates
overall promising results. The resolution of those data sets ranged from 0.53− 0.88 mm/Voxel in the axial plane
(average of 0.71 mm) and 0.6 − 3.0 mm/Voxel in z-direction (typically either 1.0, 1.5, or 2.0 mm). The number
of slices varies from 66 to 505. The data was acquired at different clinical sites exhibiting a wide range on image
quality and liver pathologies. In particular some of the livers contain extremely large and/or multiple lesions.

All livers have been fully automatically detected and segmented using the method in [16] without any further
postprocessing. In the rare case that the liver segmentation has leaked into the kidney (2 out of 30 cases), the
kidney part has been spuriously also segmented as vessels because of its bright intensity values. This could have
been easily avoided by improving the liver segmentation or interactively editing of the liver mask.

For the tumor segmentation we have chosen a window size of d = 5 voxel and a significance level s = 6e−5.
All parameters have been chosen empirically. For the consecutively applied graph-cuts algorithm we have chosen
the reciprocal weighting function (6) with β = 150. Exemplary results are shown in Figure 6. Note that tumor
segmentation is not the main objective and that the proposed method is not capable in segmenting very small
lesions or lesions with similar intensity characteristics as the parenchyma.

The hierarchical classifier has been applied with a parameter setting of dI = 3 voxel, sI = 6e−5 for the
intensity feature, dσ2 = 5 voxel, sσ2 = 2e−3 for the variance feature, and dflux = 3 voxel, sflux = 3e−1 for the
vesselness feature. The vesselness measure has been calculated for radii r = {2, 3, 4, 5} mm. Finally, components
with less than Ncc = 250 voxel have been disregarded. Figure 7 exemplifies the two-stage concept. Subfigure
(a) shows two results of the global segmentation, which has detected the main branches with a high specificity.

Figure 6. The figure shows two results of the tumor segmentation method. The modified liver mask is shown as blue
overlay.
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(a) (b) (c)
Figure 7. This figure shows the segmentation result of the larger vessels (a) and the results including the vessel tracking
step (b) in head view. In (c) the final result is shown in red within the MIP anterior view of the segmented liver.

Note that these figures have been created with a slightly different parameter setting so that both stages can
be more distinctively recognized. Generally speaking, higher significance levels during the global segmentation
step will create a segmentation with a higher specificity but lower sensitivity, while lower levels will result in a
more complete segmentation which might also contain false positives. The above listed parameters have so far
proven being the best trade-off based on visual inspection. The centerline end-points have then been used for the
computational more demanding vessel tracking step. Results including large and small vessels are finally shown
in Figure 7b,c in head view and within the MIP anterior view of the segmented liver, respectively. Depending
on the application, the global segmentation results might already be sufficient.

Further results are shown in Figure 8. The first column shows for each case the extracted centerline structure
as overlay on a MIP of the liver. The second column is then the corresponding binary mask of the segmented
vessels. The following three columns show randomly selected axial slices with a LUT setting of center/width =
90/190 HU, while the segmentation results are shown as red overlays. The liver segmentation is visible as thin
green contour that contains the segmented liver.

Beside the fully automatic instance of the proposed system, the vessel tracking approach allows to conveniently
add missing branches/sub-trees by simply adding a single seed-point into the branch of interest. An example is
shown in Figure 5.

4. CONCLUSIONS

We have presented a fully automatic approach to segment the hepatic vascular tree in CT images. The system
combines a globally optimal graph-cut-based segmentation with robust local vessel tracking. The approach
is robust to variations in intensities of vessels and their surroundings which may contain tumors. In addition,
different sized vessels (large and small) are obtained accurately by the use of the proposed two-stage segmentation
algorithm without excessive computational requirements. Furthermore, the vessel tracking approach can be
utilized to add interactively missing branches or sub-trees by simply adding single seed-points. For the future
we especially plan to further validate the proposed system based on a semi-automatically created ground truth
and to learn the involved parameters from this reference.
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Figure 8. This figure shows in column one the extracted centerline on top of the MIP and in colum two a 3D rendering
of the segmented tree. The remaining columns show the segmentation result as overlay to randomly selected 2D slices.
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