Reconstruction of neuronal pathways from diffusion imaging data

Diffusion imaging provides information about the course and location of white matter tracts. White matter tracts, i.e. motor or sensory pathways, are important structures within the human brain. For neurosurgery, diffusion imaging data is of high value since these fiber tracts must remain intact in order to avoid neurological deficits after brain surgery.

However, the reconstruction of neuronal structures from diffusion imaging data is a non-trivial task due to the complexity of the diffusion information that is captured per voxel. Our research in this field addresses the reconstruction of the diffusion signal based on compressed sensing, as well as tracking and clustering of white matter pathways.

Rekonstruktion und Clustering neuronaler Bahnen

BA/MA theses:
New theses in the field of diffusion imaging, fiber tracking and connectivity analysis are offered at irregular intervals. For current topics please contact Leon Weninger.

Partners:
Prof. Dr. med. Christopher Nimsky, Direktor der Klinik für Neurochirurgie, Universitätsklinikum Gießen und Marburg
Jun.Prof. Dr. Thomas Schultz, Arbeitsgruppe Visualisierung und Medizinische Bildanalyse, Universität Bonn
Prof. Dr. med. Wolfgang Grodd, Klinik für Psychiatrie, Psychotherapie und Psychosomatik, Uniklinik RWTH Aachen
Dr. med. Georg Neuloh, Klinik für Neurochirurgie, Uniklinik RWTH Aachen
Dr. rer. nat. Katrin Sakreida, Lehrstuhl Klinische Kognitionsforschung, Uniklinik RWTH Aachen

Contact:
Leon Weninger
Simon Koppers

Publications:

2019

Leon Weninger, Simon Koppers, Chuh-Hyoun Na, Kerstin Juetten and Dorit Merhof
Free-Water Correction in Diffusion MRI: A Reliable and Robust Learning Approach
In: MICCAI Workshop on Computational Diffusion MRI (CDMRI)

2019

Chantal MW Tax, Francesco Grussu, Enrico Kaden, Lipeng Ning, Umesh Rudrapatna, John Evans, Samuel St-Jean, Alexander Leemans, Simon Koppers, Dorit Merhof, others
Cross-scanner and cross-protocol diffusion MRI data harmonisation: A benchmark database and evaluation of algorithms
In: NeuroImage

2018

Simon Koppers, Luke Bloy, Jeffrey I. Berman, Chantal M.W. Tax, J. Christopher Edgar and Dorit Merhof
Spherical Harmonic Residual Network for Diffusion Signal Harmonization
In: MICCAI Workshop on Computational Diffusion MRI (CDMRI)

2017

Simon Koppers, Matthias Friedrichs and Dorit Merhof
Reconstruction of Diffusion Anisotropies using 3D Deep Convolutional Neural Networks in Diffusion Imaging
In: Modeling, Analysis, and Visualization of Anisotropy

2017

Simon Koppers, Christoph Haarburger, J. Christopher Edgar and Dorit Merhof
Reliable Estimation of the Number of Compartments in Diffusion MRI
In: Bildverarbeitung für die Medizin (BVM)

2016

Simon Koppers, Christoph Haarburger and Dorit Merhof
Diffusion MRI Signal Augmentation - From Single Shell to Multi Shell with Deep Learning
In: MICCAI Workshop on Computational Diffusion MRI (CDMRI)

2016

Simon Koppers and Dorit Merhof
Direct Estimation of Fiber Orientations using Deep Learning in Diffusion Imaging
In: MICCAI Workshop on Machine Learning in Medical Imaging (MLMI)

2016

Simon Koppers and Dorit Merhof
Qualitative Comparison of Reconstruction Algorithms for Diffusion Imaging
In: Visualization of the Brain and its Pathologies – Technical and Neurosurgical Aspects

2016

Simon Koppers, Christoph Hebisch and Dorit Merhof
A Feature Selection Framework for White Matter Fiber Clustering Based on Normalized Cuts
In: Bildverarbeitung für die Medizin (BVM)

2015

Simon Koppers, Thomas Schultz and Dorit Merhof
Spherical Ridgelets for Multi-Diffusion-Tensor Refinement - Concept and Evaluation
In: Bildverarbeitung für die Medizin (BVM)





Address

Lehrstuhl für Bildverarbeitung
RWTH Aachen University
Kopernikusstraße 16
52074 Aachen Germany

lfb@lfb.rwth-aachen.de
+49 241 80 27860
+49 241 80 22200
© Institute of Imaging & Computer Vision RWTH Aachen University.

By continuing to use the site, you agree to the use of cookies. more information

English translation below.
Die Cookie-Einstellungen auf dieser Website sind so eingestellt, dass sie "Cookies zulassen" sollten, um das bestmögliche Surferlebnis zu erhalten. Sie können diese Website weiterhin nutzen, ohne Ihre Cookie-Einstellungen zu ändern, oder Sie klicken unten auf "Accept" und stimmen der Nutzung der Cookies zu.

In den Cookies werden lediglich die von Ihnen gewählten Spracheinstellungen gespeichert. Bitte lesen Sie auch unsere Datenschutzerklärung.


The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Only your chosen language settings are stored in the cookies. Please also read our privacy policy.

Close