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Abstract—Gaussian mixture (GM) models can be applied
for statistical classification of various types of dementia. As
opposed to linear boundaries, they do not only provide the class
membership of a case, but also a measure of its probability.
This enables an improved interpretation and classification of
neurodegenerative dementia datasets which comprise various
stages of the disease, and also mixed forms of dementia.
In this work, GM models are applied to a total number of
103 technetium-99methylcysteinatedimer (99mTc-ECD) SPECT
datasets of asymptomatic controls (CTR), as well as Alzheimer’s
disease (AD) and frontotemporal dementia (FTD) patients in
early or moderate stages of the disease. Prior to classification,
multivariate analysis is applied: Principal component analysis
(PCA) is used for dimensionality reduction, followed by a
differentiation of the datasets via multiple discriminant analysis
(MDA). A GM model on the resulting discrimination plane is con-
structed by computing the GM distribution associated with the
underlying training set. The posterior probabilities of each case
indicate its class membership probability. The performance of
GM models for classification is assessed by bootstrap resampling
and cross validation. Accuracy and robustness of the method are
evaluated for different numbers of principal components (PCs),
and furthermore the detection rate of dementia in early stages
is calculated.
The GM model outperfomes classification with linear boundaries
in both predicted accuracy and detection rate of early dementia,
and is equally robust.

Index Terms—SPECT, Alzheimer’s Disease, Frontotemporal
Dementia, Multivariate Analysis, Gaussian Mixture Model, Prob-
abilistic Classification.

I. INTRODUCTION

NEurodegenerative dementia is one of the most expensive

diseases in developed countries, and its prevalence is

expected to double within the next 20 years [1]. Early detection

and disease prediction with high accuracy is therefore needed,

as early treatment can delay disease onset and can attenuate

dementia’s economic impact on society [2]. Currently, first

pharmaceuticals are available that alleviate symptoms and

there are even more under clinical trials.

Statistical analysis of medical image data has the potential

to automatically extract significant features and patterns that

characterize different types of dementia in a standardized way.

Alzheimer’s disease (AD) and frontotemporal dementia (FTD)

are amongst the most prevalent neurodegenerative diseases
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[3], and have been successfully differentiated from healthy

subjects (CTR) by multivariate analysis of single-photon emis-

sion computed tomography (SPECT) images [4]. To date, the

subsequent classification by e.g. linear boundaries obtained

from Fisher’s discriminant analysis (FDA) as proposed by [5]

provides a class membership for each case but contains no

indication about the probability of its class membership or

about the stage of disease.

The following sections present a probabilistic approach for

classification using Gaussian mixture (GM) models applied

to SPECT data of AD, FTD and CTR cases subsequent to

performing multivariate analysis, i.e. dimensionality reduction

via principal component analysis (PCA). Additionally, the

method is validated by verifying the GM classification on

image data of patients affected by early and mixed dementia,

and by assessment of accuracy, detection rates and robustness

using bootstrap resampling.

II. MATERIAL AND METHODS

A. Image Data

The 99mTc-ECD SPECT datasets were aquired at the Clinic

of Nuclear Medicine, University of Erlangen-Nuremberg. All

datasets were preprocessed using affine registration, Gaussian

smoothing with an FWHM of 12mm, and intensity normal-

ization based on 25% brightest voxels within the whole-brain

region according to the optimized protocol presented in [6].

Overall, 103 subjects (mean age 65.06±8.28, 59 females, 44

males) are included in the analysis:

An assured diagnosis is available for 26 cases with

Alzheimer’s disease (AD), 21 cases with frontotemporal de-

mentia (FTD) and 26 asymptomatic controls (CTR).

Furthermore, datasets of patients with early stages or mixed

forms of AD or FTD are available to further assess the pro-

posed probabilistic classification. These include 9/2 cases with

beginning AD/FTD, 8/7 cases where AD/FTD is suspected and

4 cases with mixed AD and FTD.

The training set for the multivariate analysis and subsequent

probabilistic classification contains only the classes AD, FTD

and CTR. The image data of the training set constitutes the

data matrix X , where the rows represent the data values and

the columns represent individual subjects.

B. Multivariate Analysis

1) Dimensionality reduction: The data matrix X containing

all training data is mean-centered and principal component

analysis (PCA) is performed followed by dimensionality re-

duction and to exclude redundant information as well as noise.

PCA performs a singular value decomposition of X , where the



Fig. 1. Example of multivariate analysis applied to a stratified training set (without boostrap): SPECT images of the whole-brain regions are transformed
into vectors and stored columnwise in the data matrix X , then PCA and subsequently MDA are applied.

principal components (PCs) are the left singular vectors of X .

The very high dimensional datasets (more than 105 voxels of

the whole brain region, i.e. rows of matrix X) can then be

represented in the PC space by a linear combination of PCs.

The dimensionality of a dataset can be reduced by maintaining

only the first n PCs. An example for n = 3 PCs is depicted

in Figure 1, where the originally high dimensional variable

space (second picture, from left) is projected by the PCs into

a three-dimensional subspace (third picture, from left).

In general, the first few PCs are considered to be the most

dominant directions for separating SPECT datasets belonging

to different disease groups, whereas the inclusion of more

PCs might over-train the classification [5]. Nevertheless, all

subsequent analysis is performed for any number of the first

25 PCs at a time to find the best possible trade-off between

accuracy and robustness.

2) Discrimination plane: Multiple discriminant analysis

(MDA) is a generalization of the Fisher’s discriminant analysis

(FDA), e.g. as described in [7]. In this work, it is applied

to determine a hyperplane within the previously defined PC

space, where all data is optimally separated [4], [7]. Only after

projecting and separating the classes in this way, a classifier

can be applied.

This hyperplane is of dimension c− 1, where c is the number

of classes within the training data. In this work it is two-

dimensional, as only three classes are used for training the

classification. An example for a plane determined by MDA is

depicted in Figure 1 (right), where an optimal separation of

three classes can be seen. The basic idea is to find an optimal

projection of the data onto this discrimination plane, i.e. such

that the ratio of the general between-class scatter and the gen-

eral within-class scatter of all data points is maximized. The

maximization of this ratio, the so-called generalized Rayleigh-

quotient, is achieved by solving a generalized eigenvalue

problem. The resulting eigenvectors constitute the optimized

projection vectors.

C. The Gaussian Mixture (GM) Model

A GM model is applied for statistical classification on the

discrimination plane [8], [9], which was previously determined

by multivariate analysis (Section II-B). In this work, its mix-

ture contains three density functions associated to each class,

i.e. the underlying probability density function is calculated

by a convex combination of these mixture components. An

example is shown in Figure 2 (left), where the three different

mixture components associated to AD, FTD and CTR are

still distinguishable within the resulting probability density

function.

The mixture weights are chosen to be equal, as in this work the

probability of all mixture components is assumed to be equal.

After projecting the data onto the discrimination plane, the

means and covariances of each class are calculated to specify

the associated Gaussian distributions. The GM distribution

and its probability density function is then constructed using

the MATLAB Statistics Toolbox. Posterior probabilities are

evaluated for each case within the training set and for each

class. They indicate the probability that a particular case

belongs to a specific class, i.e. CTR, AD or FTD.

Furthermore, all datasets of patients with early stages or mixed

forms of AD or FTD are projected onto the discrimination

plane by the vectors determined during multivariate analysis

of the training set (as described in Section II-B), and their

posterior probabilities are evaluated analogously.

D. Resampling

1) Stratification of training set: As the training classes AD,

CTR and FTD are of different size, a fixed number k of

cases is drawn randomly from each class without replacement.

Afterwards, mean-centering and PCA are applied to the voxels

of the whole-brain region.

2) Bootstrap resampling: After projecting the stratified

training set onto the discrimination plane, k cases are drawn

randomly from each class with replacement and a GM dis-

tibution is constructed as outlined in Section II-C. By this

procedure, 63.2% of all cases are selected on average for train-

ing [10]. The remaining cases constitute the cross validation

set.

E. Accuracy

Each case is projected onto the discrimination plane and

is assigned to the class with the highest associated posterior

probability. The prediction accuracy Acc.632 of classification

via GM models is calculated by the .632 bootstrap estimator

introduced by [10] using bootstrap resampling of the previ-

ously stratified training set:

Acc.632 = 1− (.632 · errapp + .368 · errexp), (1)



Accuracy: Detection rate:cy

Fig. 2. Comparison of probabilistic classification via GM and classification with linear boundaries achieved by FDA applied to a stratified training set after
multivariate analysis based on three PCs.
Left: Probability density function of the GM distribution; the associated discriminant plane and projection of the stratified training set (without bootstrap)
is indicated below the surface plot, where green markers denote CTR cases, magenta markers AD cases and cyan markers FTD cases. Middle: The same
discriminant plane with linear boundaries. Right: Boxplots of apparent accuracy and detection rates in all bootstrap iterations for both classification methods.

where errapp denotes the apparent and errexp the expected

error rate, referring to the percentage of misclassified cases

within the bootstrapped training set and the cross validation

set, respectively [4]. The constants of this formula refer to the

resulting average percentage of training and cross validation

cases, as described above in Section II-D.

F. Detection Rate of Beginning and Suspected Dementia

As described in Section II-C, 27 cases of beginning or

suspected AD or FTD are additionally projected onto the dis-

crimination plane in each iteration of the bootstrap resampling,

and their posteriors are evaluated for the constructed GM-

distribution. The detection rate expresses the correct assign-

ment of testcases affected by an early stage of dementia to

AD and FTD: If a case belongs with higher probability to

a dementia class (AD or FTD, respectively), the dementia is

considered to be detected.

G. Robustness

In addition to estimating accuracy, which also takes into

account the performance of an independet cross validation

set within each resampling iteration, robustness analysis is

performed to detect overtraining of the classification, e.g. by

inclusion of too many PCs during multivariate analysis:

1) Deliberate mislabeling: In each bootstrap resampling it-

eration, the labels of two cases randomly drawn from different

classes are swapped, and the percentage of correct classifica-

tion of those cases in spite of mislabeling is evaluated [4],

[5].

2) Deviation of GM distribution parameters: As the class-

means of the mixture model are dependent on scale and

rotation of the discrimination plane, direct comparison of

the GM distribution centers accross resampling iterations and

number of PCs is not possible. However, this can be achieved

by standardizing: The Euclidian distance of the bootstrapped

class means to the original class means di,btp = mi,btp−mi is

substituted by the ratio di,btp/d̄i, where d̄i denotes the mean

distance of all cases of class i from the class mean mi. A

high mean value of the ratio indicates that the method is not

sufficiently robust against mislabeled data.

H. Comparison to Linear Machine

The performance of the GM model for statistical classi-

fication is compared to classification with linear boundaries

obtained by application of Fishers’s discriminant analysis

(FDA) to two classes at a time [7].

Accuracy rates, detection rates and robustness via mislabel of

the FDA are evaluated analogously to Sections II-E to II-G

within the same bootstrap iterations and for any number of

the first 25 PCs.

Robustness of linear boundaries is assessed by measuring the

angle between the bootstrapped and original FDA-vectors [4],

[5]. Increasing angles between those vectors indicate an in-

creasing instability of the classification.

III. RESULTS AND DISCUSSION

A. Accuracy and Detection Rates

The accuracy and detection rates as well as the robustness

assessment were calculated in 20.000 iterations. The training

set was randomly stratified in 200 resampling iterations and

bootstrap resampling was subsequently applied 100 times, as

described in Section II-D.

1) Accuracy: The predicted accuracy generated by decision

for the highest class membership probability in a GM model

rises considerably (from 85.13% to 93.39%) when a third PC

is included before discriminant analysis, and increases slowly

for increasing number of PCs (up to 96.51%). Figure 3 (left)

shows the predicted accuracy rates for the GM model (denoted

by red lines) and FDA (black) classification by the bootstrap

estimator, and the associated apparent and expected accuracy

rates. The classification via GM model outperformes the FDA

classification for any number of PCs. Another advantage over

linear boundaries (not yet taken into account in this analysis)

is the enhanced interpretability of the results provided by the

class membership probabilities, as discussed in Section III-D.

2) Detection rates: The detection rate of suspected and

beginning dementia rises clearly when a third PCs is added

for further analysis (see Figure 3, right), similarily to the

previously calculated accuracy rates. It reaches 66.28% for

three PCs and its maximum at 72.89% for the inclusion of
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Fig. 3. Accuracy (left) and detection rates (right) in percent for any number of PCs, where red coloring denotes rates achieved by GM classification, and
black coloring denotes rates achieved by evaluating linear boundaries. Left: Accuracy rates are expressed by predicted accuracy (solid), expected accuracy
(dotted) and apparent accuracy (dashed).

18 PCs. The improvement on the detection of early dementia

compared to linear boundaries is more pronounced than in

the analysis of accuracy, and thereby underlines the benefits

regarding the increased sensitiveness of a GM model to small

deviations of the data from normality.

B. Robustness

The GM distribution accross bootstrap iterations is in gen-

eral very robust. The percentage of correct classification of two

cases within the boostrapped training set despite a deliberate

mislabel is over 91% for any number of PCs greater than two,

as depicted in Figure 4 by the red line. It can also be seen

that GM classification clearly outperformes linear boundaries

for any number of PCs, with respect to this type of robustness

analysis.

With respect to the ratio of classmeans-distance, resampling

analysis produces very similar robustness of the classifiers:

the generalized distance of cases to their classmean is nearly

constant at 0.23 for any number of PCs, and the mean angles

between the linear boundaries computed for comparison are

very small and do not exceed 11◦ for any number of PCs.

However, it should be noted that the robustness of the preced-

ing multivariate analysis has a major impact on the final clas-

sification result. Results of prior studies suggest, that PCA and

subsequent MDA applied to SPECT data is reasonable robust

only for the first few PCs. As a distinct increase of accuracy

and detection rates can be observed especially between the

inclusion of the second and third PC, and significant drops

of robustness can be observed by inclusion of the first five
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Fig. 4. Percentage of correctly classified cases despite mislabel for any
number of PCs. Red coloring denotes rates achieved by GM classification,
and black coloring denotes rates achieved by evaluating linear boundaries.

PCs [5], a good trade-off between robustness and accuracy is

found for three PCs. This is also consistent with the results

of [5], where robustness of PCA applied to functional datasets

was assessed systematically.

C. Trade-off

This section summarizes all results for the trade-off deter-

mined above, i.e. all results based on three PCs:

The predicted accuracy of probabilistic classification with GM

models reaches an average of 93.39%, an average detection

rate of 68.54% is achieved, and the method is fairly robust

with 93.41% correctly classified cases despite mislabel and a

ratio of classmean-distance of 0.214 (CTR-class), 0.225 (AD)

and 0.229 (FTD).

Figure 2 (right) depicts a comparison via boxplots of both

classification by GM models and by linear boundaries (via

FDA) for accuracy and detection rate performance in all

bootstrap iterations, where the superiority of probabilistic

classification by GM models becomes apparent.

Furthermore, the difference between those two classification

methods was statistically significant for three PCs with respect

to both accuracy and detection rates (p = 0.05).

D. Probabilistic information of the GM model

So far, the validation of the GM classification after multi-

variate analysis is based on the maximum class membership

probability but does not take into account further probabilistic

information conveyed by the GM model. Whereas the proba-

bility density function (as depicted in Figure 2, left) describes

group characteristics (e.g. the more complex disease pattern of

AD results in a wider and less decisive mixture component),

posterior probabilities are used to evaluate the classfication of

each case within the training set. Below, an example for a

GM model, which was constructed based on a stratified but

not bootstrapped training set, is discussed:

1) Posteriors of training set: On the left side of Figure 5,

the posterior probabilities of all training set cases (x-axis) are

depicted, where class membership (y-axis) and the confidence

of classification (color encoded) can be deduced. All CTR

cases were classified correctly, with a mean probability of

91.11%. Two cases were classified with a noticeable low con-

fidence of less than 70%, and an increased probability of FTD



Fig. 5. Posterior probabilities of a stratified training set (left) and testcases affected by early or mixed dementia (right); The training set contains (from left
to right) CTR, AD cases and FTD cases, testcases include suspected or beginning AD, FTD and four cases of mixed AD/FTD (from left to right).

membership (more than 25%). This suggests in both cases a

slight or beginning disease, which was confirmed in one of

the cases. AD was classified overall with a mean probability

of 90.58%. Two of the AD cases were misclassified to FTD,

but both with less than 60% confidence. In a rereading of

these datasets it transpired that in both cases the left temporal

lobe was affected by the dementia. The first AD case has

a CTR membership probability of 33.75% indicating a mild

form of dementia. The mean of FTD membership probability

was 91.86%, and only one case was misclassified with 65.84%
probability to AD. Rereading of this case confirmed a mixed

form of AD and FTD.

2) Posteriors of early and mixed dementia: On the right,

Figure 5 shows the probabilities of each set of testcases (early

and mixed dementia) belonging to CTR, AD or FTD. In this

example, both early AD and FTD were detected with high

confidence, with exception of five cases. Three AD cases were

classified to FTD, and two FTD cases to AD. In four of these

cases, clinical rereading resulted in a confirmation of a mixed

form of AD and FTD, or a hindered classification due to

atrophy.

Mixed cases of AD and FTD were all classified correctly but

only for the first and last case within the set the class mem-

bership probabilities showed the ambivalence of the disease,

the two other cases were classified with high probability and

according to more prevalent FTD-specific characteristics.

IV. CONCLUSION

The predicted accuracy of probabilistic classification based

on GM models increases significantly if the variable space

of the original datasets is reduced to three dimensions during

multivariate analysis, i.e. by projecting the data into a subspace

using only the first three PCs before performing discriminant

analysis. This is concordant with prior results regarding the

differentiation via MDA.

The performance of the probabilistic classifier was compared

to linear boundaries achieved by FDA with respect to robust-

ness, accuracy and detection rates: The robustness of a GM

distribution is sufficiently high for any number of 25 PCs,

and outperforms FDA with respect to mislabeled cases within

the training set. Furthermore, the probabilistic classification

via GM models does not only exceed FDA significantly

in accuracy and detection of dementia in early stages, but

conveys also valuable information regarding mixed forms of

neurodegenerative dementia and stages of disease.

All results were confirmed using bootstrap resampling and

cross validation applied to datasets with assured diagnosis

of dementia and asymptomatic controls, and furthermore by

testing the GM models evaluated within each iteration by

application to a set of test cases composed by image data

of patients affected by suspected, beginning or mixed forms

of dementia.
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