Fast and Accurate Connectivity Analysis between
Functional Regions based on DT-MRI

D. Merhof':2:*, M. Richtet', F. Ender$?, P. Hastreitelr?,
0. Ganslandt, M. Buchfeldef, C. Nimsky?, and G. Greinér

L Computer Graphics Group, University of Erlangen-Nurergb&ermany
2 Neurocenter, Dept. of Neurosurgery, University of Erlanffuremberg, Germany

Abstract. Diffusion tensor and functional MRI data provide insightifunction
and structure of the human brain. However, connectivityyambetween func-
tional areas is still a challenge when using traditionalrfilbacking techniques.
For this reason, alternative approaches incorporatingrtiee tensor information
have emerged. Based on previous research employing patigfifuat connectiv-
ity analysis, we present a novel search grid and an improestfanction which
essentially contributes to more precise paths. Additignahplementation as-
pects are considered making connectivity analysis vergieffi which is crucial
for surgery planning. In comparison to other algorithms, phesented technique
is by far faster while providing connections of comparahlaldy. The clinical
relevance is demonstrated by reconstructed connectidngée motor and sen-
sory speech areas in patients with lesions located in betwee

1 Introduction

In recent years, medical imaging techniques such as diffitsinsor imaging (DTI) and
functional MRI (fMRI) have emerged enabling the exploratid function and structure
of the human brain. DTI measures the diffusion of water wligchnisotropic in tissue
with a high degree of directional organization. For the catafion of diffusion tensors,
diffusion-weighted images for at least six non-collinetadjent directions are acquired.
The respective diffusion tensors provide information dliba location and orientation
of white matter structureis vivo. The localization of active brain areas such as motor
and sensory speech areas is accomplished with fMRI.

In neurosurgery, the localization of functional areas andhrtex and their white
matter connectivity is of great importance for preopemanning. With respect to
the motor and sensory speech areas, the Broca’'s and Wesnigkas located in the
cerebral cortex, it is generally accepted that these areaguactionally related in
speech processing. To avoid neurological deficits afteraseugical procedures, elo-
quent structures such as the speech areas as well as cagnelaiie matter structures
have to remain intact. For this reason, analysis of whitetenaonnectivity between
functional areas is of high interest for neurosurgery arteotisciplines in neuro-
science.
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Standard techniques for the reconstruction of white mattectures from DTI data
rely on the orientation of the major eigenvector of the diffun tensor [1]. Thereby,
streamline-based techniques are employed to propagdib¢nerhese approaches en-
able the reconstruction of major tract systems such as ttaapgial tract or the corpus
callosum. However, the reliability of standard trackingteiques is affected by imag-
ing noise and partial volume effects in case of crossing antihing fibers.

For this reason, standard tracking algorithms are notaéfitea connectivity anal-
ysis involving sub-cortical or cortical regions. First apaches addressing this prob-
lem used probabilistic or regularization techniques [2(Bler a large number of itera-
tions, the process yields a connectivity probability retktio the number of probabilistic
streamlines found in a volume element. Another class ofralgus derived from level
set theory considers arrival times of diffusion fronts [#)8 most recent work based on
level sets, the problem of white matter connectivity is medes wavefront evolution
based on a cost function which depends on the entire diffiusiosor [5]. Considering
the arrival times of the wavefront, connections are derlwgdhinimizing the cumula-
tive travel cost along the path. Another recent approack gkbal optimization and
dynamic programming for fiber reconstruction [6]. A graptsEanned over the do-
main with assigned cost for each edge connecting two voBgisneans of dynamic
programming, connections with highest probability are pated.

In this work, we extend previous research for connectiviigigsis based on pathfind-
ing [7]. Basically, pathfinding algorithms are highly eféait techniques commonly
used in artificial intelligence for problems associatechvétstate space search using
cost functions. They are applied to derive the minimum-pash between a start and a
target region. To investigate neuronal connectivity, & asction based on the proba-
bility distribution function of each tensor is employednfiarly to other connectivity
algorithms [5, 6], the entire tensor controls the pathfigdimocedure to circumvent
biasing of the major eigenvector in isotropic regions. Wespnt several crucial en-
hancements of the basic algorithm such as an improved costidm, a novel search
grid and an optimized implementation. As an important refsulclinical application,
the presented algorithm is considerably faster than oduemtly presented connectivity
algorithms and provides at the same time comparable agcurac

2 Method

Pathfinding algorithms are commonly used in computer seidoc different types
of search problems. Since there are highly efficient sahstisuch as the Aalgo-
rithm [8], it is straightforward to apply pathfinding in themtext of white matter
connectivity analysis which can be considered as an instaha minimum-cost path
problem [5-7].

2.1 Pathfinding

The A* algorithm was designed to efficiently compute the path vatbdst cost between
a start and a target region. For this purpose, the algorithitddup a graph with nodes
and edges, where the edges are assigned a local cost. Inteation, the path with
lowest cost is expanded until the target region is reachedmfortant fact about the



A* algorithm is its optimality [9] which guarantees that thesbpossible solution is
found with the smallest computational effort.

For performing the search, the algorithm maintains tws liah open list comprising
all nodes currently under consideration and a closed listaining nodes that have
already been processed. In the beginning, the open list isespall nodes from the
start region and the closed list is empty. Each node stoeasitvement cosf; required
to travel along the path to the respective néd&he cost functionf;, = g; + h; is
evaluated for each node of the open list to decide which opeoiwess next. Therehly;
denotes an estimate of the remaining cost (also calledste)to the target which may
optionally be added to direct the search towards the targ&trg the algorithm more
efficient. Otherwise, the search would equally spread inliadictions. It is important
to note thath; does not affect the optimality of Aas long as:; is not higher than the
actual cost necessary to reach the target.

To compute the minimum cost path, the algorithm repeatezlcss the node with
lowestf; from the open list, adds all its neighbors to the open listrandes the selected
node to the closed list. These processing steps contind¢hetarget node is added to
the open list and the path with the lowest cost is found.

2.2 Grid for partitioning the search space

For navigating in three-dimensional space, the searchittigorequires a grid which
should provide a regular structure uniformly covering tlearsh space and a small
step-size between neighbor nodes. The angle between dugedd be small to provide
enough flexibility to follow the direction of anisotropicffiision. For this reason, we
use a hexahedral grid connecting each node to 74 neighbsh®as in Figure (left).

In comparison to a grid with 26 neighbors, further directi@me provided reducing the
angle between neighbor edges and offering a considerablpied choice of different
directions thus fulfilling the flexibility criterion. The gt size has to be chosen suffi-
ciently small to guarantee a small maximum step-size whichukl not exceed 2 mm.
The resulting grid is of high resolution and enables a deas®$ng of the search space
as outlined in Figure {middle, right)

Wernicke

Fig. 1. Octant of a grid with 26 and 74 neighbqfieft). Expansion of the search space between
Broca’s and Wernicke’s speech areas using a grid with 7beig and a maximum edge length
of 1.5 mm in a brain tumor patiefiniddle) Close-up view showing details of search dfight).



2.3 Cost function

The cost function is an integral part for all types of conivigtalgorithms since it con-
trols the process of path evolution. To overcome the linaitet encountered with fiber
tracking arising from the reduction of the tensor inforroatio the principal eigenvec-
tor, the cost function for connectivity algorithms has tearporate the entire tensor
information. For this reason, the surface of the tensopsid, with half-axes aligned
to the eigenvectors of the tensor and scaled according ttetiggh of the respective
eigenvalues,; ;-1 2,3, is commonly used as probability profile [5—7]. Thereby,hab-
ability of a fiber following a certain direction correspontdsthe distance between the
center of the ellipsoid located &b, 0,0)7 and the intersection point on the surface
of the ellipsoid. To obtain probabilities between 0 and & tbnsor ellipsoid is nor-
malized using\; resulting in a maximum length of 1 for any segment connedtireg
center of the ellipsoid with its surface. As a result, théugiion probabilityp; (r) for
any direction can be directly obtained from the profile of tleemalized ellipsoid:

kgl
pi(r) = N 1)
However, the resulting probability profile results in a biewards spherical ellip-
soids since they are traversed more easily due to a high Ipitipdor all directions.
In [5], this is addressed by incorporating fractional atigpy (FA) [10] into the cost
function. In this work, we propose to model the anisotroiaracteristic of a tensor by
subtracting the isotropic part represented\pypefore normalization:

_rl=2s
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pi(r)
This is motivated by considering the probability profile béttensor. In Figure 2, the
probability profiles for a linear and a spherical tensor dott@d as a function of the
azimuthal and polar angle of the corresponding ellipsaidcdse of Equation fleft
plot in each section)the almost spherical tensor yields very high probabdifier all
directions resulting in a bias of isotropic tensors. Thigiisumvented by the probability
profile resulting from Equation Zright plot in each sectionyvhich on the one hand
perfectly maintains the shape of the probability profile twis the isotropic fraction.
In this way, the probability function is solely based on tkador probability profile
and no additional term in the cost function is necessary.réhelting cost function is
thus defined asg;(r) = 1 — p;(r) with p;(r) derived from Equation 2. Based on this
approach, a more comprehensive probability profile is glediwhich better captures
the tensor properties making the incorporation of FA inm¢bst function redundant.

2.4 Minimum cost path

Based on the cost function, minimum-cost connections sgmting neuronal structures
are derived. For this purpose, minimum-cost paths are mi@ted by summing up all
local costsc; encountered along the path to nadesulting in a global cosj; for the
whole path [5-7]:

gi:chHmin. 3)

j=1
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Fig. 2. Tensor probability profiles (z-axis) of a linear and an alhspherical tensor for Eq. (left
in each sectionand Eq. Aright in each section)plotted as a function of the azimuthal and polar
angle (x- and y-axis) of the corresponding ellipsoid.

In this way, connections are derived fulfilling the globatiopum condition. Thereby,
the pathfinding algorithm preferably propagates paths leithglobal cost by compar-
ing the cost of all nodes on the open list. As a result, the agetgbconnections between
all voxels of the start region and the target region are guaeal to be optimal.

2.5 Efficient search

To ensure that the search is oriented towards the targef\th@gorithm takes ad-
vantage of an estimate of the remaining cost (heuristic). If no heuristic is usdus t
algorithm expands equally in all directions resulting inraajer search space and an
increased computational cost.Mf is admissible, i.e. it never overestimates the cost to
the target, then Ais guaranteed to find the path with lowest cost. For this psepa
gradienth, is employed in the cost functiofy = g; + h; to direct the search towards
the target: d;

hi = 4

Smam

Therebyd,; denotes the Euclidean distance of néde the target which is normalized
according to the maximum step length,,.. within the grid. The minimum number
of steps to the target; /s, is multiplied with the estimated average cost per gtep
which is determined by sampling the data for short connastia regions with high
FA. The smallest cost among the samples is then assigriedtos additional term of
the cost functiory; directs the search towards the target. According to ourrebtens,

it can be empirically approved that the heuristic is adrhisssince the resulting paths
did not differ from paths computed without heuristic. Thenguting time for the search
could be reduced considerably which is outlined in moreitiet&ection 3.

3 Results and Discussion

For evaluation purposes, two proband and three patient fdseéts (voxel size:
1.875x<1.875x<1.9 mn?, 128x 128x 60 voxels) were acquired with a Siemens Sonata
1.5 Tesla scanner. For all datasets, seed regions coridiggdn the Broca’s and Wer-
nicke’s speech areas derived from fMRI were available. Alnputations were per-
formed on a PC equipped with an Intel Pentium 4, 3.4 GHz, andB2RAM. For
pathfinding, we used the 74-neighbor grid (see Section AtRawmaximum step length



of 1.5 mm. Similarly to [5—7], we emploed a FA threshdlg, to restrict the search to
regions of white matter only. In all our experimenis; amounted to 0.3 excluding
nodes with an FA value below the threshold from further psso®gy. Our evaluation
investigates the quality of the obtained paths, the computime is analyzed and a
comparison with other techniques is drawn.

Quality analysis To investigate the accuracy of the proposed cost functigunéon 2)
in comparison to a cost function based on the product of thmalized probability pro-
file (Equation 1) and the local FA value [5], we employed thidiy index introduced
by Jackowski [5]. The validity index computes the scaladuat between path tangent
and major eigenvector for each segment and returns thegaveedue for the whole
path. Accordingly, we also recorded the average probglgititording to the probabil-
ity profile of Equation 2 and the average FA value for each p&sible 1 shows the
minimum, maximum and average value for the connectionseeébetween speech ar-
eas in two of our datasets. As a result, our cost functiorexeisibetter results compared
to the normalized tensor profile commonly employed [5—7hddition to that, our ap-
proach reaches equal accuracy with respect to the valittigx compared to wavefront
evolution [5].

Cost Function Equation 1, FA Equation 2
Patient 1 Patient 2 Patient 1 Patient 2
Number of fibers 17 21 19 23
avg min maxavg min maxavg min maxavg min ma
Validity Index 0.75 0.69 0.8[0.83 0.82 0.860.77 0.70 0.880.86 0.85 0.8f
Probability Profile 0.68 0.65 0.7p0.63 0.62 0.640.75 0.73 0.820.70 0.69 0.70
Fractional Anisotropy| 0.58 0.54 0.6[10.56 0.55 0.5f0.61 0.57 0.680.56 0.55 0.5[

Table 1. Evaluation based on validity index, probability profile a8 represented by average,
maximum and minimum value of all fibers.

For illustration, the local probability according to Eqioat 2 is visualized in each
step by color encoding assigning red to a low and green totamMailyie of the probability
profile from Equation 2. In Figure 3, color coding is used tonpare standard fiber
tracking based on streamline propagation [1] (RK-4 intégna step size 0.5 mm) and
pathfinding with regard to their exactness. The red segnamteuntered in case of
fiber tracking indicate that spherical tensors were crasSedtrarily, a more reliable
path was obtained using pathfinding which takes into accthenentire probability
profile of the local tensor which resulted in paths includamisotropic tensors.

Computing time Since the algorithm aims at clinical application requirast interac-
tion times, computational cost is of major concern in addito accuracy (see Table 2).
Implementation features essentially contributing to higbcessing times are an effi-
cient implementation of the open and closed list since thepenter frequent access
and have to administrate a high number of nodes. For thisneage used a combina-
tion of buckets and sorted vectors for the open list and a hegthfor the closed list.
Incorporation of the heuristic resulted in a speed up of axprately 70%, compared
to pathfinding solely using the cost function. In each cdserésulting paths remained
the same, since the heuristic is admissible according targrajobservations.



Patient 1

Fig. 3. Upper row (Patient 1):Patient with a cavernomaower row (Patient 2)Patient with a
glioblastoma multiforme (WHO grade V) having speech damnice on the right hemisphere.
The respective lesion is shown in red in each patient. Palihfir{left) vs. fiber trackingright),
color coding shows that pathfinding provides more precisalta

Performance Computing Time Number of Grid Nodes
Patient 1 Patient 2 Patient 1 Patient 2

fi=gi 42.0 seq 82.8 seq 240705 318163

fi=gi+h; 14.9 secq 19.5 sed 106 414 163586

Table 2. Computing time and size of search grid (number of nodes)darch based on global
costg; (Eq. 2) and speed up encountered with heuristic

Comparison with other approachesAs outlined in Figure 3, standard fiber track-
ing is inappropriate for connectivity analysis in subazatiareas requiring alternative
approaches. Since it is anticipated that neuronal cororestare kept optimal [11],
minimum-cost approaches have been developed to model ctritye[5-7]. In com-
parison to the normalized tensor profiles employed in reas@nk [5—7], connectivity
results were significantly improved using our novel costction characterizing both
shape and anisotropy of the local tensor. From the algorttipwint of view, pathfind-
ing is computationally more efficient than other graph-blasehniques such as [6],
since it can be proven that no other search algorithm whiguéranteed to find the
minimum-cost path requires less computational expenseAld9]. Apart from that,
the presented grid structure provides high resolution awhaiderably increased num-
ber of neighbor nodes to sample the search space very demsiely is superior com-
pared to the grid used in [6]. Overall, the presented apprpasvides comparable or
even better accuracy compared to other approaches anthis sgtme time, by far faster
than other current approaches.



4 Conclusion and Future Work

Based on previous work introducing pathfinding for the peoibbf neuronal connectiv-
ity within the human brain, we presented an improved costtion, a high resolution
grid for sampling the search space and an efficient impleatient enabling interac-
tive application. Accurate paths according to differerdlgy measures were obtained.
The approach has several advantages over existing methwas,as highly efficient
processing times which is important for clinical applicati

Since the quality of the obtained connections would furthenefit from tensor
field regularization or higher-order tensor representatiderived from high angular
resolution diffusion images, future work will aim at incemation of these techniques.
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