In-Situ Surface Roughness Measurement of Laser Beam Melted Parts – a Feasibility Study of Layer Image Analysis

Joschka zur Jacobsmühlen¹, Stefan Kleszczynski², Alexander Ladewig³, Gerd Witt² and Dorit Merhof¹

¹RWTH Aachen University
²University of Duisburg-Essen
³MTU Aero Engines AG
Motivation of Studies

Laser Beam Melting of Metal Components

- Production of complex and individual components
- Of special interest for aerospace and aero engine industry
- First production lines established at MTU Aero Engines AG in Munich, Germany

High requirements
- quality assurance
- process stability
- reproducibility
Motivation

Surface Roughness

Target of optimization in LBM produced parts

- Reduce post-processing
- Optimize internal structures for which post-processing is impossible (e.g. channels)

Related Work

- Minimization of surface roughness (Yasa and Kruth, 2011)
- Identification of dependencies between roughness and process parameters (Strano, 2013)
- Inline 3D surface metrology using optical coherence tomography (Schmitt, 2013)

In-situ measurement is highly desirable

- Inspect surface roughness of internal surfaces
- Check fulfilment of design requirements
Layer Image Acquisition

zur Jacobsmühlen, J.; Kleszczynski, S.; Schneider, D. & Witt, G.
High Resolution Imaging for Inspection of Laser Beam Melting Systems
IEEE International Instrumentation and Measurement Technology Conference (I²MTC), 2013
Layer Images

5 mm

scan line: ca. 90 µm

1 pixel: 25…35 µm
Objective

Replicate physical surface roughness measurements

layer images

z

y

x

...
Objective

Replicate physical surface roughness measurements

segmented contour

layer images
Objective

Replicate physical surface roughness measurements

segmented contour

layer images
Objective

Replicate physical surface roughness measurements

- Extract surface profiles

layer images

segmented contour
Objective

Replicate physical surface roughness measurements

- Extract surface profiles

![Diagram showing segmented contour and layer images in 3D space with x, y, and z axes.]
Objective

Replicate physical surface roughness measurements

- Extract surface profiles

[Diagram of layered images with segmented contour]
Objective

Replicate physical surface roughness measurements

- Extract surface profiles
- Compute surface roughness
Outline

• Motivation
• Experimental Setup and Physical Measurements
• Segmentation of Part Contours
• Surface Profile Reconstruction
• Surface Roughness Measurements
• Results
• Discussion and Conclusion
Experimental Setup and Physical Measurements

EOSINT M270, NickelAlloy IN718

- 2x 12 faces for measurements (outside and inside), placed at multiples of 30°
- Measurement of R_z (EN ISO 4287) using Mitutoyo SJ-400 profilometer:
 - divide each profile (A - C) into five segments
 - measure maximum peak-to-peak distance for each segment $R_z (i)$
 - compute average

$$R_z = \frac{1}{5} \sum_{i=1}^{5} R_z (i)$$

- Average of three R_z measurements yields surface roughness for each pyramid face
- Part is built nine times: 216 measurements

Segmentation of Part Contours

- Goal: identify part boundary
- Powder appears as noise-like background
 - edge detection yields false positive edges
Segmentation of Part Contours

Difficult Regions
Segmentation of Part Contours: Edge Detection 1

Problems

- Multiscale results (fine to coarse)
- Many edges in powder regions (fine scale)
- Combine scales for optimum result

➢ But: no closed boundary!

Jacob, M. & Unser, M.
Design of steerable filters for feature detection using canny-like criteria
Pattern Analysis and Machine Intelligence, IEEE Transactions on, 2004, 26, 1007 -1019
Segmentation of Part Contours: Edge Detection 1

Problems

- Multiscale results (fine to coarse)
- Many edges in powder regions (fine scale)
- Combine scales for optimum result

➢ But: no closed boundary!

Jacob, M. & Unser, M.
Design of steerable filters for feature detection using canny-like criteria
Pattern Analysis and Machine Intelligence, IEEE Transactions on, 2004, 26, 1007 -1019
Segmentation of Part Contours: Edge Detection 1

Problems

- Multiscale results (fine to coarse)
- Many edges in powder regions (fine scale)
- Combine scales for optimum result

➤ But: no closed boundary!

Jacob, M. & Unser, M.
Design of steerable filters for feature detection using canny-like criteria
Pattern Analysis and Machine Intelligence, IEEE Transactions on, 2004, 26, 1007 -1019
Segmentation of Part Contours: Edge Detection 1

Problems

- Multiscale results (fine to coarse)
- Many edges in powder regions (fine scale)
- Combine scales for optimum result

➢ But: no closed boundary!

Jacob, M. & Unser, M.
Design of steerable filters for feature detection using canny-like criteria
Pattern Analysis and Machine Intelligence, IEEE Transactions on, 2004, 26, 1007 -1019
Segmentation of Part Contours: Edge Detection 2

Robust Detection

- Structured Forests for edge detection
 - Incorporate texture information
 - Edges correlate to subjective results

➢ Still no closed boundary!

Dollár, P. & Zitnick, C.
Structured Forests for Fast Edge Detection
Computer Vision (ICCV), 2013 IEEE International Conference on, 2013
Segmentation of Part Contours: Graph Cuts

Find Optimum Region Boundaries
Segmentation of Part Contours: Graph Cuts

Find Optimum Region Boundaries

- Represent each image pixel as node in a graph
Segmentation of Part Contours: Graph Cuts

Find Optimum Region Boundaries

• Represent each image pixel as node in a graph
Segmentation of Part Contours: Graph Cuts

Find Optimum Region Boundaries

• Represent each image pixel as node in a graph
Segmentation of Part Contours: Graph Cuts

Find Optimum Region Boundaries

• Represent each image pixel as node in a graph
• Edges are assigned weights
Segmentation of Part Contours: Graph Cuts

Find Optimum Region Boundaries

- Represent each image pixel as node in a graph
- Edges are assigned weights
 - High: strong link between neighbors: “don’t cut here”

![Graph Cut Diagram]

- part pixel
- powder pixel
- layer image
- strong link
Segmentation of Part Contours: Graph Cuts

Find Optimum Region Boundaries

• Represent each image pixel as node in a graph
• Edges are assigned weights
 – High: strong link between neighbors: “don’t cut here”
 – Low: weak link between neighbors: “cut allowed”
Segmentation of Part Contours: Graph Cuts

Find Optimum Region Boundaries

- Represent each image pixel as node in a graph
- Edges are assigned weights
 - High: strong link between neighbors: “don’t cut here”
 - Low: weak link between neighbors: “cut allowed”
- Maximize flow between source s and target t

![Diagram showing segmentation process with nodes representing pixels and edges with weights indicating strong and weak links.](image)
Segmentation of Part Contours: Graph Cuts

Find Optimum Region Boundaries

- Represent each image pixel as node in a graph
- Edges are assigned weights
 - High: strong link between neighbors: “don’t cut here”
 - Low: weak link between neighbors: “cut allowed”
- Maximize flow between source s and target t
- Cut weak edges to form regions
Segmentation of Part Contours: Graph Cuts

Find Optimum Region Boundaries

- Represent each image pixel as node in a graph
- Edges are assigned weights
 - High: strong link between neighbors: “don’t cut here”
 - Low: weak link between neighbors: “cut allowed”
- Maximize flow between source s and target t
- Cut weak edges to form regions
Segmentation of Part Contours

Weight Assignment
Segmentation of Part Contours

Weight Assignment

- Set labels for definitive part and powder regions („keep regions“)
Segmentation of Part Contours

Weight Assignment

- Set labels for definitive part and powder regions („keep regions“)
Segmentation of Part Contours

Weight Assignment

- Set labels for definitive part and powder regions („keep regions“)
- Set low edge weight for pixels with edges („cut at edges“)
Segmentation of Part Contours

Weight Assignment

- Set labels for definitive part and powder regions („keep regions“)
- Set low edge weight for pixels with edges („cut at edges“)
Segmentation of Part Contours

Weight Assignment

- Set labels for definitive part and powder regions („keep regions“)
- Set low edge weight for pixels with edges („cut at edges“)
Segmentation of Part Contours

Weight Assignment

- Set labels for definitive part and powder regions („keep regions“)
- Set low edge weight for pixels with edges („cut at edges“)
- Assign lower weights to outer regions („prefer outer boundary for cut“)

![Weight Assignment Diagram](image)
Segmentation of Part Contours

Weight Assignment

- Set labels for definitive part and powder regions („keep regions“)
- Set low edge weight for pixels with edges („cut at edges“)
- Assign lower weights to outer regions („prefer outer boundary for cut“)
Segmentation of Part Contours: Accuracy

Comparison of Edge Detectors

- Compared to manually annotated ground truth
- bidirectional local distance measure

Median: 39.1 µm

Median: 27.7 µm

Kim et al. Bidirectional local distance measure for comparing segmentations
Medical Physics, 2012, 39, 6779-6790
Segmentation of Part Contours: Accuracy

Comparison of Edge Detectors

- Compared to manually annotated ground truth
- bidirectional local distance measure

Kim et al. Bidirectional local distance measure for comparing segmentations
Medical Physics, 2012, 39, 6779-6790

Median: 39.1 µm

Median: 27.7 µm
Segmentation of Part Contours: Errors

Glare / shadows introduce edges inside of part
Surface Profile Reconstruction

Measurement Profiles

- Measure surface roughness of pyramid segments
- Use multiple profiles to capture roughness statistics
 - Additional rays at +/- 3° for each face
Surface Profile Reconstruction

Measurement of Internal and External Contour

- Intersections of radial rays and contours yield surface points
- Surface profile as difference of segmented contour and reference geometry
Surface Profile Reconstruction

Roughness Component from Filtration according to ISO16610-21

- Limit wavelength $\lambda_c = 2.5 \text{ mm}$
Surface Roughness Measurement

Visualization

• Determine R_z from reconstructed surface profiles (ISO16610-21)
• Average three values of R_z for each face
Results

Compare to profilometer measurements (gray)

- Normalized values for analysis of correlation
- Deviations are not captured correctly

No consistent correlation
Results

- Comparison against profilometer measurements
 - Absolute error [µm]
 - Error between normalized measurements

- Absolute error is very high (reference value range: 70…160 µm)
- Most normalized roughness values are too low (some large outliers)

Median: 131.3 µm
Median: -0.135
Discussion
Discussion

- Image resolution (20…30 µm/px) may be too low to capture roughness deviations (20…50 µm)
Discussion

- Image resolution (20…30 µm/px) may be too low to capture roughness deviations (20…50 µm)
- Accuracy of segmentation: median error 27.7 µm
Discussion

- Image resolution (20…30 µm/px) may be too low to capture roughness deviations (20…50 µm)
- Accuracy of segmentation: median error 27.7 µm

Kleszczynski, S.; Ladewig, A.; Friedberger, K.; zur Jacobsmühlen, J.; Merhof, D. & Witt, G.
Position Dependency of Surface Roughness in Parts from Laser Beam Melting Systems
Proceedings of the 26th Internation Solid Freeform Fabrication (SFF) Symposium, 2015
Discussion

- Image resolution (20…30 µm/px) may be too low to capture roughness deviations (20…50 µm)
- Accuracy of segmentation: median error 27.7 µm

Discussion

- Image resolution (20…30 µm/px) may be too low to capture roughness deviations (20…50 µm)
- Accuracy of segmentation: median error 27.7 µm
- Melt extensions below current layer are possible cause of roughness deviations

Discussion

- Image resolution (20…30 µm/px) may be too low to capture roughness deviations (20…50 µm)
- Accuracy of segmentation: median error 27.7 µm
- Melt extensions below current layer are possible cause of roughness deviations
 - Cannot be captured by layer images

Conclusion
Conclusion

- Image-based method for in-situ measurement of surface roughness
 - Replicates physical measurement method
 - Extract surface profiles from contour segmentation
Conclusion

- Image-based method for in-situ measurement of surface roughness
 - Replicates physical measurement method
 - Extract surface profiles from contour segmentation
- High measurement errors compared to reference profilometry in experiments
Conclusion

- Image-based method for in-situ measurement of surface roughness
 - Replicates physical measurement method
 - Extract surface profiles from contour segmentation
- High measurement errors compared to reference profilometry in experiments
- Not suitable for direct quantitative measurements
In-Situ Surface Roughness Measurement of Laser Beam Melted Parts – a Feasibility Study of Layer Image Analysis

Joschka zur Jacobsmühlen¹, Stefan Kleszczynski², Alexander Ladewig³, Gerd Witt² and Dorit Merhof¹

¹RWTH Aachen University
²University of Duisburg-Essen
³MTU Aero Engines AG
References