In-Situ Surface Roughness Measurement of Laser Beam Melted Parts – a Feasibility Study of Layer Image Analysis

Joschka zur Jacobsmühlen¹, **Stefan Kleszczynski**², Alexander Ladewig³, Gerd Witt² and Dorit Merhof¹

¹RWTH Aachen University ²University of Duisburg-Essen ³MTU Aero Engines AG

Laser Beam Melting of Metal Components

- Production of complex and individual components
- Of special interest for aerospace and aero engine industry
- First production lines established at MTU Aero Engines AG in Munich, Germany

High requirements

- quality assurance
- process stability
- reproducibility

11.08.2015

MTU Aero Engines AG

Surface Roughness

Target of optimization in LBM produced parts

- Reduce post-processing
- Optimize internal structures for which post-processing is impossible (e.g. channels)

Related Work

- Minimization of surface roughness (Yasa and Kruth, 2011)
- Identification of dependencies between roughness and process parameters (Strano, 2013)
- Inline 3D surface metrology using optical coherence tomography (Schmitt, 2013)

In-situ measurement is highly desirable

- Inspect surface roughness of internal surfaces
- Check fulfilment of design requirements

Layer Image Acquisition

zur Jacobsmühlen, J.; Kleszczynski, S.; Schneider, D. & Witt, G. High Resolution Imaging for Inspection of Laser Beam Melting Systems IEEE International Instrumentation and Measurement Technology Conference (*PMTC*), **2013**

Layer Images

5

scan line: ca. 90 µm

1 pixel: 25...35 µm

Outline

- Motivation
- Experimental Setup and Physical Measurements
- Segmentation of Part Contours
- Surface Profile Reconstruction
- Surface Roughness Measurements
- Results
- Discussion and Conclusion

Experimental Setup and Physical Measurements

EOSINT M270, NickelAlloy IN718

- 2x 12 faces for measurements (outside and inside), placed at multiples of 30°
- Measurement of R_z (EN ISO 4287) using Mitutoyo SJ-400 profilometer:
 - divide each profile (A C) into five segments
 - measure maximum peak-to-peak distance for each segment $R_z(i)$
 - compute average

11.08.2015

$$R_z = \frac{1}{5} \sum_{i=1}^5 R_z(i)$$

- Average of three R_z measurements yields surface roughness for each pyramid face
- Part is built nine times: 216 measurements

Kleszczynski, S.; Ladewig, A.; Friedberger, K.; zur Jacobsmühlen, J.; Merhof, D. & Witt, G. Position Dependency of Surface Roughness in Parts from Laser Beam Melting Systems *Proceedings of the 26th Internation Solid Freeform Fabrication (SFF) Symposium*, **2015**

Segmentation of Part Contours

- Goal: identify part boundary
- Powder appears as noise-like background
 - edge detection yields false positive edges

Segmentation of Part Contours

Difficult Regions

Problems

- Multiscale results (fine to coarse)
- Many edges in powder regions (fine scale)
- Combine scales for optimum result
- But: no closed boundary!

Jacob, M. & Unser, M. Design of steerable filters for feature detection using canny-like criteria *Pattern Analysis and Machine Intelligence, IEEE Transactions on,* **2004**, *26*, 1007 -1019

Problems

- Multiscale results (fine to coarse)
- Many edges in powder regions (fine scale)
- Combine scales for optimum result
- But: no closed boundary!

Jacob, M. & Unser, M. Design of steerable filters for feature detection using canny-like criteria *Pattern Analysis and Machine Intelligence, IEEE Transactions on,* **2004**, *26*, 1007 -1019

Problems

- Multiscale results (fine to coarse)
- Many edges in powder regions (fine scale)
- Combine scales for optimum result
- But: no closed boundary!

Jacob, M. & Unser, M. Design of steerable filters for feature detection using canny-like criteria *Pattern Analysis and Machine Intelligence, IEEE Transactions on,* **2004**, *26*, 1007 -1019

Problems

- Multiscale results (fine to coarse)
- Many edges in powder regions (fine scale)
- Combine scales for optimum result
- But: no closed boundary!

Jacob, M. & Unser, M. Design of steerable filters for feature detection using canny-like criteria *Pattern Analysis and Machine Intelligence, IEEE Transactions on,* **2004**, *26*, 1007 -1019

Robust Detection

- Structured Forests for edge detection
 - Incorporate texture
 information
 - Edges correlate to subjective results
- Still no closed boundary!

Dollár, P. & Zitnick, C. Structured Forests for Fast Edge Detection *Computer Vision (ICCV), 2013 IEEE International Conference on,* **2013**

Find Optimum Region Boundaries

• Represent each image pixel as node in a graph

Find Optimum Region Boundaries

• Represent each image pixel as node in a graph

Find Optimum Region Boundaries

• Represent each image pixel as node in a graph

- Represent each image pixel as node in a graph
- Edges are assigned weights

Find Optimum Region Boundaries

- Represent each image pixel as node in a graph
- Edges are assigned weights
 - High: strong link between neighbors: "don't cut here"

stitute of

maging and computer Vision

Find Optimum Region Boundaries

- Represent each image pixel as node in a graph
- Edges are assigned weights
 - High: strong link between neighbors: "don't cut here"
 - Low: weak link between neighbors: "cut allowed"

laging and

- Represent each image pixel as node in a graph
- Edges are assigned weights
 - High: strong link between neighbors: "don't cut here"
 - Low: weak link between neighbors: "cut allowed"
- Maximize flow between source s and target t

- Represent each image pixel as node in a graph
- Edges are assigned weights
 - High: strong link between neighbors: "don't cut here"
 - Low: weak link between neighbors: "cut allowed"
- Maximize flow between source s and target t
- Cut weak edges to form regions

- Represent each image pixel as node in a graph
- Edges are assigned weights
 - High: strong link between neighbors: "don't cut here"
 - Low: weak link between neighbors: "cut allowed"
- Maximize flow between source s and target t
- Cut weak edges to form regions

 Set labels for definitive part and powder regions ("keep regions")

 Set labels for definitive part and powder regions ("keep regions")

- Set labels for definitive part and powder regions ("keep regions")
- Set low edge weight for pixels with edges ("cut at edges")

- Set labels for definitive part and powder regions ("keep regions")
- Set low edge weight for pixels with edges ("cut at edges")

- Set labels for definitive part and powder regions ("keep regions")
- Set low edge weight for pixels with edges ("cut at edges")

- Set labels for definitive part and powder regions ("keep regions")
- Set low edge weight for pixels with edges ("cut at edges")
- Assign lower weights to outer regions ("prefer outer boundary for cut")

segmentation

200

region

- Set labels for definitive part and powder regions ("keep regions")
- Set low edge weight for pixels with edges ("cut at edges")

powder

powder

 Assign lower weights to outer regions ("prefer outer boundary for cut")

stitute of

maging and Computer Vision

Comparison of Edge Detectors

- Compared to manually annotated ground truth
- bidirectional local distance measure

Median: 39.1 µm

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 Bidirectional Local Distance to Reference [mm]

Median: 27.7 µm

Kim et al. Bidirectional local distance measure for comparing segmentations *Medical Physics*, **2012**, *39*, 6779-6790

31 vor407 In-Situ Surface Roughness Measurement of Laser Beam Melted Parts DDMC 2016 | Institute of Imaging and Computer Vision | 16.03.2016

Comparison of Edge Detectors

- Compared to manually annotated ground truth
- bidirectional local distance measure

Median: 39.1 µm

Kim et al. Bidirectional local distance measure for comparing segmentations *Medical Physics*, **2012**, *39*, 6779-6790

31 vor447 In-Situ Surface Roughness Measurement of Laser Beam Melted Parts DDMC 2016 | Institute of Imaging and Computer Vision | 16.03.2016

Segmentation of Part Contours: Errors

Glare / shadows introduce edges inside of part

Surface Profile Reconstruction

Measurement Profiles

Ζ

- Measure surface roughness of pyramid segments
- Use multiple profiles to capture roughness statistics
 - Additional rays at +/- 3° for each face

layer images

Surface Profile Reconstruction

Measurement of Internal and External Contour

- · Intersections of radial rays and contours yield surface points
- Surface profile as difference of segmented contour and reference geometry

Roughness Component from Filtration according to ISO16610-21

• Limit wavelength λ_c =2,5 mm

In-Situ Surface Roughness Measurement of Laser Beam Melted Parts
 DDMC 2016 | Institute of Imaging and Computer Vision | 16.03.2016

Visualization

46

- Determine R_z from reconstructed surface profiles (ISO16610-21)
- Average three values of R_z for each face

Results

Compare to profilometer measurements (gray)

- Normalized values for analysis of correlation
- Deviations are not captured correctly

No consistent correlation

47 In-Situ Surface Roughness Measurement of Laser Beam Melted Parts | DDMC 2016 | Institute of Imaging and Computer Vision | 16.03.2016

- Comparison against profilometer measurements
 - Absolute error [µm]
 - Error between normalized measurements

1.0 1.0 0.8 0.8 Probability 700 Propability Probability 0.6 0.4 0.2 0.2 0.0 0.0 100 200 300 400 -0.6 -0.4-0.2 0.0 0.2 500 Error of Roughness Measurement [µm] Error for Normalized Roughness [a.u.]

Median: 131.3 µm

Median: -0.135

- Absolute error is very high (reference value range: 70...160 µm)
- Most normalized roughness values are too low (some large outliers)

Discussion

 Image resolution (20...30 µm/px) may be too low to capture roughness deviations (20...50 µm)

- Image resolution (20...30 µm/px) may be too low to capture roughness deviations (20...50 µm)
- Accuracy of segmentation: median error 27.7 μm

- Image resolution (20...30 µm/px) may be too low to capture roughness deviations (20...50 µm)
- Accuracy of segmentation: median error 27.7 μm

32 von 47 52 In-Situ Surface Roughness Measurement of Laser Beam Melted Parts | DDMC 2016 | Institute of Imaging and Computer Vision | 16.03.2016

- Image resolution (20...30 µm/px) may be too low to capture roughness deviations (20...50 µm)
- Accuracy of segmentation: median error 27.7 μm

32 von 47 53 In-Situ Surface Roughness Measurement of Laser Beam Melted Parts | DDMC 2016 | Institute of Imaging and Computer Vision | 16.03.2016

- Image resolution (20...30 µm/px) may be too low to capture roughness deviations (20...50 µm)
- Accuracy of segmentation: median error 27.7 μm
- Melt extensions below current layer are possible cause of roughness deviations

32 von 47 54 In-Situ Surface Roughness Measurement of Laser Beam Melted Parts | DDMC 2016 | Institute of Imaging and Computer Vision | 16.03.2016

- Image resolution (20...30 µm/px) may be too low to capture roughness deviations (20...50 µm)
- Accuracy of segmentation: median error 27.7 μm
- Melt extensions below current layer are possible cause of roughness deviations

32 von 47 55 In-Situ Surface Roughness Measurement of Laser Beam Melted Parts | DDMC 2016 | Institute of Imaging and Computer Vision | 16.03.2016

Conclusion

- Image-based method for in-situ measurement of surface roughness
 - Replicates physical measurement method
 - Extract surface profiles from contour segmentation

- Image-based method for in-situ measurement of surface roughness
 - Replicates physical measurement method
 - Extract surface profiles from contour segmentation
- High measurement errors compared to reference profilometry in experiments

- Image-based method for in-situ measurement of surface roughness
 - Replicates physical measurement method
 - Extract surface profiles from contour segmentation
- High measurement errors compared to reference profilometry in experiments
- Not suitable for direct quantitative measurements

In-Situ Surface Roughness Measurement of Laser Beam Melted Parts – a Feasibility Study of Layer Image Analysis

Joschka zur Jacobsmühlen¹, **Stefan Kleszczynski**², Alexander Ladewig³, Gerd Witt² and Dorit Merhof¹

¹RWTH Aachen University ²University of Duisburg-Essen ³MTU Aero Engines AG

- zur Jacobsmühlen, J.; Kleszczynski, S.; Schneider, D. & Witt, G. High Resolution Imaging for Inspection of Laser Beam Melting Systems IEEE International Instrumentation and Measurement Technology Conference (I2MTC) 2013, 2013, 707-712
- Kleszczynski, S.; Ladewig, A.; Friedberger, K.; zur Jacobsmühlen, J.; Merhof, D. & Witt, G. Position Dependency of Surface Roughness in Parts from Laser Beam Melting Systems *Proceedings of the 26th Internation Solid Freeform Fabrication (SFF) Symposium*, 2015
- Schmitt, R.; Pfeifer, T. & Mallmann, G.
 Machine integrated telecentric surface metrology in laser structuring systems ACTA IMEKO, 2013, 2, 73-77
- Strano, G.; Hao, L.; Everson, R. M. & Evans, K. E.
 Surface roughness analysis, modelling and prediction in selective laser melting Journal of Materials Processing Technology, 2013, 213, 589 - 597
- Yasa, E. & Kruth, J.
 Application of Laser Re-Melting on Selective Laser Melting Parts
 Advances in Production Engineering & Management, 2011, 6, 259-270

