Robust Calibration Marker Detection in Powder Bed Images from Laser Beam Melting Processes

TF-010464 Joschka zur Jacobsmühlen, Jan Achterhold, Stefan Kleszczynski, Gerd Witt and Dorit Merhof

ICIT 2016

Taipei Taiwan

Design (3D)

Design (3D) Slices (2D + 1D)

• Layer-based, iterative

• Layer-based, iterative

- Layer-based, iterative
- Laser melts metal powder according to layer geometry

- Layer-based, iterative
- Laser melts metal powder according to layer geometry

Laser Beam Melting – "3D Printing with Metal"

hip implant [www.slm-solutions.com]

injection nozzle [www.eos.info]

turbine blade (demo) [RTC Duisburg]

spiders [RTC Duisburg]

impeller [RTC Duisburg]

Detect flaws

Visual Inspection of Produced Layers

Detect flaws

Detect flawsAcquire images of powder bed and melt result

Visual Inspection of Produced Layers

Visual Inspection of Produced Layers

after laser exposure

Detect flaws

Ζ

Acquire images of powder bed and melt result

Visual Inspection of Produced Layers

Visual Inspection of Produced Layers

Layer Image Acquisition

zur Jacobsmühlen, J.; Kleszczynski, S.; Schneider, D. & Witt, G. High Resolution Imaging for Inspection of Laser Beam Melting Systems IEEE International Instrumentation and Measurement Technology Conference (I²MTC), **2013**

Layer Image Acquisition

Camera Position Causes Perspective Distortion

nstitute of

maging and

Computer Vision

Perspective Correction of Layer Images

Perspective Correction of Layer Images

Analysis requires orthographic images

Perspective Correction of Layer Images

Analysis requires orthographic images

Perspective Correction of Layer Images

• Analysis requires orthographic images

We need a reliable calibration method

Perspective Correction of Layer Images

• Analysis requires orthographic images

- We need a reliable calibration method
- Support different camera positions and view angles

Perspective Correction of Layer Images

Analysis requires orthographic images

- We need a reliable calibration method
- Support different camera positions and view angles
- Automate calibration for best user experience and accuracy

- ✓ Laser Beam Melting
- ✓ Layer Image Acquisition
- Methods
 - Perspective Correction
 - Marker Detection
 - Shape Extraction
 - Classification
 - Homography Optimization
- Conclusion

• 2D transformation estimation from four point correspondences (homography)

• 2D transformation estimation from four point correspondences (homography)

- 2D transformation estimation from four point correspondences (homography)
- Markers are "drawn" by LBM system's laser in powder bed

• 2D transformation estimation from four point correspondences (homography)

nstitute of maging and

Computer Vision

- Markers are "drawn" by LBM system's laser in powder bed
- Detect marker center points
Sample Powder Bed Images

- Full resolution: 6576 x 4384 px, 20...35 µm/px (different field of view)
- N = 265 images from 54 different build jobs for training and testing

Sample Powder Bed Images

- Full resolution: 6576 x 4384 px, 20...35 µm/px (different field of view)
- N = 265 images from 54 different build jobs for training and testing

Sample Marker Images

Large Variations between Builds

Exposure series (T = 105, 125, 145 ms) for each lighting

Identify regions of interest

- Identify regions of interest
- Cannot use direct template matching
 - Varying appearance of markers
 - False positives

Quotient of Gaussians (G)

Percentile of DoG (P)

Local variance (V)

- Identify regions of interest
- Cannot use direct template matching
 - Varying appearance of markers
 - False positives

Quotient of Gaussians (G)

Percentile of DoG (P)

Local variance (V)

- Identify regions of interest
- Cannot use direct template matching
 - Varying appearance of markers
 - False positives
- All methods achieve 100% sensitivity using 6 calibration images

Quotient of Gaussians (G)

Percentile of DoG (P)

Local variance (V)

- Identify regions of interest
- Cannot use direct template matching
 - Varying appearance of markers
 - False positives
- All methods achieve 100% sensitivity using 6 calibration images

Quotient of Gaussians (G)

- Cannot use direct template matching
 - Varying appearance of markers
 - False positives
- All methods achieve 100% sensitivity using 6 calibration images

Number of false positives

40

30

20

10

0

G

Ρ

Method

Radon Transform for robust shape extraction

• Radon Transform for robust shape extraction

$$P(r,\varphi) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} i(x,y)\delta(x\cos\varphi + y\sin\varphi - r)dx \, dy$$

Radon Transform for robust shape extraction

Radon Transform for robust shape extraction

• Radon Transform for robust shape extraction

Radon Transform for robust shape extraction

Input

Polar Angle φ [°]

Polar Angle φ [°]

Polar Angle φ [°]

Polar Angle φ [°]

Robust ellipse fit even for weak, discontinuous lines

Discard non-marker matches

Discard non-marker matches

Ellipse detection

Discard non-marker matches

Ellipse detection

inliers
binarized points

Discard non-marker matches

Ellipse detection

inliers
binarized points

 $\frac{\text{Data points} \cap \text{ mask}}{\text{\# pixel in mask}}$

Discard non-marker matches

Ellipse detection

inliers
binarized points

 $\frac{\text{Data points} \cap \text{ mask}}{\text{\# pixel in mask}}$

Goodness of fit

Discard non-marker matches

Ellipse detection

Marker template built from detected shapes

inliers
binarized points

 $\frac{\text{Data points} \cap \text{ mask}}{\text{\# pixel in mask}}$

Goodness of fit

Discard non-marker matches

Ellipse detection

inliers
binarized points

 $\frac{\text{mask} \cap \text{binary patch}}{\text{\# pixels in mask}}$

 $\frac{\text{Data points} \cap \text{ mask}}{\text{\# pixel in mask}}$

Goodness of fit

72 Robust Calibration Marker Detection in Powder Bed Images from Laser Beam Melting Processes | Joschka zur Jacobsmühlen | Institute of Imaging and Computer Vision | ICIT 2016 | 15.03.2016

Marker template built from detected shapes

Features for Classification of Candidates

Discard non-marker matches

Ellipse detection

inliers
binarized points

 $\frac{\text{mask} \cap \text{binary patch}}{\text{\# pixels in mask}}$

 $\frac{\text{Data points} \cap \text{ mask}}{\text{\# pixel in mask}}$

Correlation

Marker template built from detected shapes

Goodness of fit

Features for Classification of Candidates

Discard non-marker matches

Ellipse detection

inliers
binarized points

mask ∩ binary patch # pixels in mask

Correlation

Marker template built from detected shapes

Goodness of fit

Verify shape detection

Identify True Markers

Random Forest classifier

- Random Forest classifier
 - Supports few samples with high dimensionality

- Random Forest classifier
 - Supports few samples with high dimensionality
 - Implicit feature selection

- Random Forest classifier
 - Supports few samples with high dimensionality
 - Implicit feature selection
- Split 54 build processes into training and test set

- Random Forest classifier
 - Supports few samples with high dimensionality
 - Implicit feature selection
- Split 54 build processes into training and test set
- Evaluate by 10-fold cross validation (repeated 10 times)

Identify True Markers

- Random Forest classifier
 - Supports few samples with high dimensionality
 - Implicit feature selection
- Split 54 build processes into training and test set
- Evaluate by 10-fold cross validation (repeated 10 times)

correct results

Identify True Markers

- Random Forest classifier
 - Supports few samples with high dimensionality
 - Implicit feature selection
- Split 54 build processes into training and test set
- Evaluate by 10-fold cross validation (repeated 10 times)

correct results detectable errors

Identify True Markers

- Random Forest classifier
 - Supports few samples with high dimensionality
 - Implicit feature selection
- Split 54 build processes into training and test set
- Evaluate by 10-fold cross validation (repeated 10 times)

correct results detectable errors unrecognizable errors

Identify True Markers

- Random Forest classifier
 - Supports few samples with high dimensionality
 - Implicit feature selection
- Split 54 build processes into training and test set
- Evaluate by 10-fold cross validation (repeated 10 times)

correct results detectable errors unrecognizable errors

Identify True Markers

- Random Forest classifier
 - Supports few samples with high dimensionality
 - Implicit feature selection
- Split 54 build processes into training and test set
- Evaluate by 10-fold cross validation (repeated 10 times)

correct results detectable errors unrecognizable errors

All features

Identify True Markers

- Random Forest classifier
 - Supports few samples with high dimensionality
 - Implicit feature selection
- Split 54 build processes into training and test set
- Evaluate by 10-fold cross validation (repeated 10 times)

correct results detectable errors unrecognizable errors

All features

96.3 % correct,1 detectable error, 1 unrecognizable error

Identify True Markers

- Random Forest classifier
 - Supports few samples with high dimensionality
 - Implicit feature selection
- Split 54 build processes into training and test set
- Evaluate by 10-fold cross validation (repeated 10 times)

All features

correct results detectable errors unrecognizable errors

Identify True Markers

- Random Forest classifier
 - Supports few samples with high dimensionality
 - Implicit feature selection
- Split 54 build processes into training and test set
- Evaluate by 10-fold cross validation (repeated 10 times)

All features

correct results detectable errors unrecognizable errors

nstitute of

maging and

Computer Vision

Marker Detection Flow Chart

Problem: Imprecise Detection

Problem: Imprecise Detection

•Ellipses are not mapped to circles (original shape)

Problem: Imprecise Detection

•Ellipses are not mapped to circles (original shape)

Improve mapping by minimizing back-projection error

Problem: Imprecise Detection

•Ellipses are not mapped to circles (original shape)

Improve mapping by minimizing back-projection error
 Keep original aspect ratio to enable comparison to CAD drawing

Back-projection of circles from CAD model

Define error measure

Define error measure

Imaging scale is unknown: circle radius in pixels has to be estimated

Minimize shape error

Minimize shape error

Compute shape error using polygonal representation

Minimize shape error

- Compute shape error using polygonal representation
- Optimization problem:

$$\{r^*, H^*\} = \min_{r \in \mathbb{R}, H \in \mathbb{R}^{3 \times 3}} \sum_i A_{error, i}$$

solved using Nelder-Mead

Result of Optimization

- Transformation matrix H* and circle radius r*
- Ellipses which are mapped to perfect circles with radius r*
- Minimal error area between ellipses and detected ellipses

Corrects errors of ellipse detection

Distance of Empse Center to Ground Huth [bx]

Median: 2.0 px (40 - 60 µm)

Median: 2.0 px (40 – 60 μm) 95%-percentile: 4.68 px (93 – 140 μm)

Median: 2.0 px (40 – 60 μm) 95%-percentile: 4.68 px (93 – 140 μm)

Markers with minimum distance to ground truth

Detection Results

Conclusion

Robust automatic marker detection

- Robust automatic marker detection
 - ✓ out of focus blur
 - ✓ different appearance
 - ✓ incomplete markers

- Robust automatic marker detection
 - ✓ out of focus blur
 - ✓ different appearance
 - ✓ incomplete markers
 - Detects 4 correct markers in 52 out of 54 build jobs

- Robust automatic marker detection
 - ✓ out of focus blur
 - ✓ different appearance
 - ✓ incomplete markers
 - Detects 4 correct markers in 52 out of 54 build jobs
- Homography optimization
 - ✓ Achieves minimum shape error between reference and detected marker geometry
 - Ensures correct aspect ratio of output images

- Robust automatic marker detection
 - ✓ out of focus blur
 - ✓ different appearance
 - ✓ incomplete markers
 - Detects 4 correct markers in 52 out of 54 build jobs
- Homography optimization
 - ✓ Achieves minimum shape error between reference and detected marker geometry
 - Ensures correct aspect ratio of output images
 - > Distance to ground truth: median $40 60 \mu m$, 95%-percentile: 93 140 μm

- Robust automatic marker detection
 - ✓ out of focus blur
 - ✓ different appearance
 - ✓ incomplete markers
 - Detects 4 correct markers in 52 out of 54 build jobs
- Homography optimization
 - ✓ Achieves minimum shape error between reference and detected marker geometry
 - Ensures correct aspect ratio of output images
 - > Distance to ground truth: median $40 60 \mu m$, 95%-percentile: 93 140 μm
- Enables automatic calibration of perspective correction for powder bed image inspection

Robust Calibration Marker Detection in Powder Bed Images from Laser Beam Melting Processes

TF-010464 Joschka zur Jacobsmühlen, Jan Achterhold, Stefan Kleszczynski, Gerd Witt and Dorit Merhof

ICIT 2016

Taipei Taiwan

