Elevated Region Area Measurement for Quantitative Analysis Of Laser Beam Melting Process Stability

Joschka zur Jacobsmühlen, Stefan Kleszczynski, Gerd Witt and Dorit Merhof

Introduction

EOSINT M 270 (EOS GmbH, Germany)

Introduction

Process Chamber

Elevated Part Regions

may damage part/recoater blade and cause jammingsmajor risk to process stability

Outline

- ✓ Introduction
- Method
 - Powder Bed Imaging
 - Detection of Elevated Regions
 - Elevation Analysis
 - Visualization
 - Experimental Build Jobs
- Results
- Discussion
- Conclusion

Build platform Powder container

29 MPixel camera (SVS29050, SVS-VISTEK, Germany) Hartblei 120 mm tilt and shift lens (Hartblei, Germany)

Kleszczynski et al. Error Detection in Laser Beam Melting Systems by High Resolution Imaging Solid Freeform Fabrication Symposium, **2012**

Powder Bed Layer Image

Solid Freeform Fabrication Symposium 2015 | Joschka zur Jacobsmühlen | Institute of Imaging and Computer Vision | 12.08.2015

7

Detection of Elevated Regions

Compute threshold from powder bed image, segment elevated regions

Note: small regions (≤ laser diameter) are ignored

zur Jacobsmühlen et al. High Resolution Imaging for Inspection of Laser Beam Melting Systems IEEE International Instrumentation and Measurement Technology Conference (I2MTC), **2013**

Elevation Analysis

۲

Powder container

 Integrate all elevations at any position x₀ to obtain area [mm²] as measure of severity

9 Solid Freeform Fabrication Symposium 2015 | Joschka zur Jacobsmühlen | Institute of Imaging and Computer Vision | 12.08.2015 Institute of Imaging and Computer Vision

Х

Different Analysis Regions for Stability Evaluation

istitute of

maging and Computer Vision

Visualization

Visualization for Single Part

- Compute measurements over x for all layers
- Combine stacked measurements and use color-coding for elevated area

Experimental Build Jobs

Varied Support Structure Configuration

Job A

- Material: Hastelloy X
- 16 parts with overhanging geometry

Job B

- Material: Hastelloy X
- 25 cubes

Results Job A: Overhanging Geometry

Comparison of Different Support Structure Configurations

Identical teeth height 0.9 mm

Results Job B: Cubes – Part Area

Comparison of Elevations inside Part

• Note: parts start at different z positions

Stability Ranking of Parts

- Compute ratio of elevated area and part area for each x position
- Average relative elevated area over all layers
- Quick overview and identification of critical part configurations

nstitute of

Imaging and Computer Vision

- Color-coding uses threshold for critical elevations, $A_{critical} = 0.1 \text{mm}^2$, from accelerometer measurements in [1]:
 - White to orange for $A \le A_{\text{critical}}$, orange to red for $A_{\text{critical}} < A(x, z) \le 3A_{\text{critical}}$
- > Validation of critical threshold desirable to avoid false alarms for stable build jobs
- Differences of relative elevated area in ranking are very low
 - Color scale might exaggerate difference between parts
- Define boundaries for expected values under stable and unstable conditions to provide recommendations for stability optimization

[1] Kleszczynski et al. Improving Process Stability of Laser Beam Melting Systems *Fraunhofer Direct Digital Manufacturing Conference*, **2014**

Summary

- Elevations of part regions pose a major risk to build reliability of laser beam melting (LBM) processes
 - Collisions between recoater blade and part
- Elevations can be detected in powder bed images
- Measurement for entire layers, part regions and part geometry
- ✓ Visualization for all layers in x/z-plot
- Ranking of part stability using relative elevated part area

Future Work

Identify and validate boundaries for developed measures to provide guidelines in the build design phase

Elevated Region Area Measurement for Quantitative Analysis Of Laser Beam Melting Process Stability

Joschka zur Jacobsmühlen, Stefan Kleszczynski, Gerd Witt and Dorit Merhof

http://www.lfb.rwth-aachen.de/en/research/industrial/bigs/ (or scan QR code)

joschka.jacobsmuehlen@lfb.rwth-aachen.de

