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SPECTRAL ESTIMATION FILTERS FOR NOISE REDUCTION IN X-RAY
FLUOROSCOPY IMAGING

Til Aach and Dietmar Kunz
Philips GmbH Research Laboratories

Weisshausstr. 2, D-52066 Aachen, Germany
e-mail: aach@pfa.research.philips.com

ABSTRACT
In clinical x-ray fluoroscopy, moving images are acquired
at very low x-ray dose so that only 10–500 x-ray quanta
contribute to each pixel. The resulting Poisson statistic
causes the images to be strongly affected by quantum
noise, which, in the observed images, is spatially cor-
related and signal-dependent. In this contribution, we
develop a spatial frequency domain method for intra-
frame quantum noise reduction, which takes the non-
white noise power spectrum into account. Each image
is subjected to a block DFT or DCT. The magnitude
of each observed spectral coefficient is compared to the
expected noise variance for it, which is derived from a
suitable quantum noise model. Depending on this com-
parison, each coefficient is more or less attenuated, leav-
ing the phase unchanged. Finally, the image is back-
transformed and re-assembled. Using this method, noise
power reductions of 60% are possible.

1. INTRODUCTION

In clinical procedures like gastro-intestinal examina-
tions, catheterization or balloon angioplasty, x-ray fluo-
roscopy is used as an imaging technique to monitor and
provide visual guidance for the diagnostic examination
or therapeutical intervention. The resulting moving im-
ages are viewed immediately on a CRT monitor while
the clinical procedure is carried out. Patient and medi-
cal staff are hence exposed to radiation during prolonged
periods of time. To keep these exposures to a minimum,
very low x-ray dose rates are used for the imaging pro-
cess, which, however, result in considerable degradations
of image quality through x-ray quantum noise.

Quantum noise originates inherently from low dose
x-ray beams, where only between 10–500 x-ray quanta
per pixel are available for image acquisition. If the frame
rate is sufficiently high, temporal filters can be employed
to reduce quantum noise [1, 2, 3]. Their efficiency, how-
ever, diminishes with decreasing frame rates often used
in pulsed fluoroscopy [4], and high erratic local motion.
In order to complement temporal filtering in general,
and to provide an alternative to temporal filtration for
the mentioned cases, we therefore concentrate here on
intra-frame noise reduction algorithms.

Spatial processing of individual images has to ex-
ploit structural differences between noise-free images
and noise. Whereas modelling of noise can be guided by
knowledge of the underlying physical processes, appro-
priate modelling of noise-free medical images is difficult
if not impossible. The often used Markov random field
models, for example, do not capture sufficient medical
detail if kept mathematically tractable. It is therefore
desirable to keep the assumptions on the image as weak
as possible. We hence rely here on a noise model as
starting point and assume those input observations as
containing image signal (in addition to noise) that can-
not be explained well by noise only.

As quantum noise can be described as a Poisson ran-
dom process, its power is signal dependent [5, 6]. The
originally white noise process is filtered by the imag-
ing system’s transfer function, resulting in a lowpass
shaped, non-white noise power spectrum (NPS) [6]. A
relatively high proportion of the overall noise power is
hence contributed from low spatial frequencies. Stan-
dard spatial window-based filters, like lowpass convo-
lution kernels, nonstationary Wiener approaches [7], or
order statistic-based filters [8, 9, 10], however, tend to
attenuate high spatial frequency components only. This
has the twofold shortcoming that, firstly, the full noise
reduction potential is not exploited. Secondly, the spec-
tral composition of quantum noise is shifted even more
towards low spatial frequencies by these filters, which
is often visually unpleasing despite a reduction of the
overall noise power. Additionally, order statistic-based
filters tend to generate patches or streaks of constant
intensity [10, p. 1897], [11], which add to the unnatural
appearance of such processed images.

To avoid such artifacts without sacrificing noise re-
duction performance, and in particular to be able to
tailor our filters to spatially coloured noise, we follow
here the concept of so-called spectral magnitude estima-
tion [12, 13], where noise attenuation is carried out in the
spectral domain. Based on a decomposition of the input
images into overlapping blocks which are then subjected
to a standard block transform (Discrete Fourier Trans-
form (DFT) or Discrete Cosine Transform (DCT)), the
central idea is to compare each transform coefficient to



its counterpart from the NPS [14]. Each coefficient is
then attenuated depending on how likely it is that it
contains only noise.

2. THE QUANTUM NOISE MODEL

In x-ray fluoroscopy, quantum noise is by far dominating
so that other noise sources can be neglected (quantum-
limited imaging). Two aspects of quantum noise will be
taken into account:
• Being Poisson-distributed [5], the quantum noise

power is signal dependent.
• As quantum noise originates from the x-ray beam

before images are picked up by the x-ray detector,
it is filtered by the transfer function of the imaging
system.

The basic idea for our noise model is to separate these
two aspects.

Quantum noise as it originates from the x-ray beam is
white and Poisson distributed, with its variance equal to
the mean number of x-ray quanta absorbed per frame
within pixel area. After image detection, usually by
an image-intensifier/TV camera chain, the video signal
may experience an intended nonlinear gain curve (white
compression) before being displayed. Hence, the rela-
tion between noise power and signal intensity is char-
acterized by an approximately linear rise over low and
medium intensities caused by the Possionian noise na-
ture, and a drop-off towards high intensities caused by
white compression (Fig. 1).
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Figure 1: Noise variance versus intensity for original
and processed images. The original image is shown in
Fig. 4, and the DFT-processed one in Fig. 5. The DCT-
processed picture is not shown, but looks similar to the
DFT-based result.

Let us now consider an image region of approximately
constant signal intensity I. The quantum noise process
in these regions exhibits a lowpass-shaped NPS due to
filtering by the system transfer function. Regarding the
system transfer function as signal independent and lin-
earizing the white compression curve around the operat-
ing point corresponding to I, we can separate the NPS

into a scale factor which determines the overall noise
power σ2(I), and a reference NPS model pd(ω) deter-
mining the NPS shape, the noise power of which inte-
grates to unity (scale/shape separability). The NPS is
thus given by

Pd(ω) = σ2(I) · pd(ω) , (1)

where ω denotes spatial frequency. For discrete trans-
forms like DFT or DCT, pd(ω) can be estimated by well-
known periodogram techniques. Up to a scaling factor,
(1) then represents the noise variance estimate for each
coefficient. Both the σ2(I) and the shape pd(ω) are as-
sumed to be known for the image acquisition parameters
and system in use.

3. SPECTRAL MAGNITUDE ESTIMATION

Two approaches will be derived, one motivated by the
Wiener filter and one based on minimum mean square
error (MMSE) estimation. The block diagram for both
algorithms is depicted in Fig. 2: First, the image is de-
composed into overlapping blocks. Each block is sub-
jected to the DFT or DCT, where in case of the DFT
windowing prior to the transform prevents leakage. The
magnitude of each spectral coefficient is compared to the
corresponding noise standard deviation, which is stored
in the box marked “noise model” in the form of σ(I)
and

√
pd(ω) (cf. eq. (1)). Each coefficient is attenu-

ated according to this comparison, leaving the phase
unchanged. Back-transform and re-assembly produce
the noise-reduced final image.

Figure 2: Basic structure of the algorithms.

3.1 Generalized Wiener filter-based estimation
The observed noisy signal g(n) is modelled to consist of
the undistorted signal f(n) and additive noise d(n). Un-
like for d(n), the statistical properties of f(n) are usually
unknown and non-stationary. However, we can assume
the spectral content of the undistorted signal to be con-
stant over sufficiently small blocks. The block transform
coefficients of the (in case of the DFT windowed) obser-
vation, undistorted signal, and noise are denoted Gw(ω),
Fw(ω) and Dw(ω), respectively. A generalized Wiener
filter produces an estimate F̂w(ω) by

F̂w(ω) = Gw(ω)·
(

E(|Fw(ω)|2)
E(|Fw(ω)|2) + α · E(|Dw(ω)|2)

)β

.

(2)
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Figure 3: Attenuation functions (a) for power subtrac-
tion (3), (b) Wiener filter-based estimation (4), and (c)
MMSE filter (5) as a function of the square root r of the
a posteriori SNR, all for α = 1, and (c) λ = 1.5.

For α = β = 1, this is the Wiener filter, whereas α =
1, β = 0.5 yields the power spectrum equalizing filter.
The drawback of (2) is that E(|Fw(ω)|2) is unknown.
Assuming that F̂w(ω) were already available, this quan-
tity could be estimated by Ê(|Fw(ω)|2) = |F̂w(ω)|2. In-
serting this estimate into (2), and observing that (2)
does not affect the (DFT) phase, the resulting expres-
sion can straightforwardly be solved for β = 0.5 and
β = 1 to yield F̂w(ω).

For β = 0.5, we obtain the power spectrum subtraction
or correlation subtraction formula

F̂w(ω) = Gw(ω)
√

1 − α/r2(ω) , (3)

and for β = 1 the Wiener estimate

F̂w(ω) =
1
2
Gw(ω) ·

(
1 +

√
1 − 4α/r2(ω)

)
, (4)

where r2(ω) = |Gw(ω)|2/E(|Dw(ω)|2) is the a posteriori
SNR, which compares the instantaneous power of an ob-
served coefficient with the expected noise power for that
coefficient derived from the noise model (1). Eqs. (3)
and (4) can be regarded as attenuation functions for
the observed coefficients Gw(ω). The dependency of the
attenuation factor on r(ω) is depicted in Fig. 3 1.

3.2 Minimum mean square error (MMSE) esti-
mation
The alternative estimation algorithm described in this
section is based on the conditional mean F̂w(ω) =
E(Fw(ω)|Gw(ω)), and explicitly exploits the well-
known energy compaction properties of both the
DFT and the DCT. Assuming for each block that
the undistorted image signal appears in only a few
coefficients, each observed coefficient represents ei-
ther noise only (null hypothesis H0), or signal and

1In both equations, it is possible that the expression under the
square root becomes negative, in which case the root is set to zero.

noise (alternative hypothesis H1). Splitting up
E(Fw(ω)|Gw(ω)) according to these hypotheses, we
clearly have E(Fw(ω)|Gw(ω),H0) = 0. Furthermore,
based on the single observation Gw(ω) corrupted by
zero-mean noise, and without further prior knowledge,
we have E(Fw(ω)|Gw(ω),H1) = Gw(ω). Modelling
the coefficients under both hypotheses as Gaussian dis-
tributed (central limit theorem), with known noise vari-
ance under H0, and unknown but much higher variance
in case signal is present (H1), the following attenuation
function can be derived (cf. [15]):

F̂w(ω) = E [Fw(ω)|Gw(ω)] =
Gw(ω)

1 + λ exp (−r2(ω)/α)
.

(5)
The parameter λ depends on signal and noise variances
and on the a priori probability of the observed coefficient
to contain signal, but is regarded here as a free parame-
ter controlling the trade-off between noise reduction and
signal preservation. Eq. (5) is also shown in Fig. 3 as an
attenuation function for Gw(ω). Note that, unlike (3)
and (4), this function is free from steep slopes and bends.
This behaviour can be shown to help avoid certain arti-
facts which may appear in processed images when using
(3) or (4). All subsequent results are therefore based on
(5) with λ = 1.5.

4. RESULTS

An original frame from a fluoroscopy sequence is given in
Fig. 4. Fig. 5 shows the corresponding processing result
obtained by employing the FFT in connection with a
blocksize of 64 × 64 pixel and an overlap of 16 pixel.
The FFT window was a modified separable 2D Hanning
window, whose cosine-shaped drop-off was restricted to
a 16 pixel wide border region. To allow better visual
examination, only the central region of each image is
depicted in both Fig. 4 and Fig. 5.

DCT based processing results are hardly distinguish-
able from those obtained using DFT. Quantitative eval-
uation also shows similar performance (see Fig. 1). Since
the DCT exhibits only negligible leakage, windowing be-
fore taking the transform is omitted. Block overlap is
then only necessary to avoid the block raster from be-
coming visible, what can be ensured by overlaps as low
as two pixel, reducing the computational load by about
40%. The corresponding window operation is now per-
formed within the image reconstruction box in Fig. 2.

5. CONCLUSION

The strength of the non-linear spectral domain noise re-
duction techniques described in this paper is that they
can be tailored specifically to the known properties of
quantum noise, while only very weak assumptions con-
cerning the unknown signal are required. To capture
the spatial correlation and signal dependence proper-
ties of quantum noise, we have first derived a model for
quantum noise power spectra which is based on the as-
sumption of scale/shape separability. Both the signal



Figure 4: Central 256 × 256-pixel region of an original
512×512-pixel image from a fluoroscopy image sequence,
depicting a patient’s vertebrae and a catheter.

dependent overall noise power (scale) and the distribu-
tion of the noise power over spatial frequency (shape)
can be obtained off-line from phantom measurements.

It might appear as a shortcoming of the discussed al-
gorithms that processing is based on an unnatural block
structure. In the context of quantum noise reduction,
however, blockwise processing has the significant ad-
vantage that inevitable ”decision” errors, like mistaking
noise for signal, are dispersed over entire blocks as sine-
like gratings. The occasional appearance of these grat-
ings can easily be concealed by retaining a low wide band
noise floor. The visually much more unpleasing patch-
like artifacts of spatial domain filters are thus completely
avoided. The block raster itself is prevented from be-
coming visible through the use of overlapping blocks.
The computational overhead can be kept to a minimum
when the DCT is employed, which allows for very small
overlaps.
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