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Abstract. A major issue with change detection in video sequences is to guarantee robust detection results in the presence of

noise. In this contribution, we first compare different test statistics in this respect. The distributions of these statistics for the

null hypothesis are given, so that significance tests can be carried out. An objective comparison between the different statistics

can thus be based on identical false alarm rates. However, it will also be pointed out that the global thresholding methods

resulting from the significance approach exhibit certain weaknesses. Their shortcomings can be overcome by the Markov

random field based refining method derived in the second part ofthis paper. This method serves three purposes: it accurately

locates boundaries between changed and unchanged areas, it brings to bear a regularizing effect on these boundaries in order

to smooth them, and it eliminates small regions if the original data permits this.

Zusammenfassung. Ein wichtiger punkt bei der Anderungsdetektion in Videosequenzen ist die Robustheit der Detektionsresul-

tate gegenüber Rauschen. In diesem Beitrag werden zuerst verschiedene Teststatistiken in dieser Hinsicht miteinander ver-

glichen. Die Verteilungen dieser Teststatistiken bei gegebener Nullhypothese werden angegeben, so daß Signifikanztests

durchgeführt werden können. Ein objektiver Vergleich der verschiedenen Teststatistiken kann dann auf der Basis gleicher

Fehldetektionsraten vorgenommen werden. Es werden aber auch einige Unzulänglichkeiten der aus dem Signifikanzansatz

resultierenden globalen Schwellwertmethode aufgezeigt. Diese Schwächen können durch die im zweiten Teil beschriebene, auf

Markov-Zufallsfeldern basierende Methode zur Verfeinerung von Anderungsmasken ausgeglichen werden. Diese Methode

verfolgt drei Ziele: die Grenzen zwischen geänderten und ungeänderten Regionen werden genau lokalisiert, durch Regulari

sierung werden die Grenzen gegebenenfalls geglättet, und kleine Regionen werden, falls sie durch Fehldetektionen zustandege-

kommen sind, entfernt.

R6sumö. Dans la dötection des changements dans les söquences d'images il est de trös grande importance d'assurer la fiabilit6

de d6tection en cas de söquences bruitöes. A cet 6gard, la contribution compare tout d'abord des difförentes fonctions ä tester.

Les fonctions de distribution de ces fonctions pour I'hypothöse nulle sont donnöes ensuite; ainsi des tests de signification

statistique peuvent ötre effectuös. Une comparaison objective entre les diff6rentes fonctions devient donc possible sur la base

des taux de faux alarmes identiques. euelques limitations des 'm6thodes du seuil global' r6sultant de la möthode de signification

seront traitöes. Leurs inconv6nilnts peuvent ötre surpassös par une möthode de traitement de la'masque'de changement. Cette

möthode se base sur les champs al6atoires Markoviens et sera expliqu6e dans la deuxieme partie de la contribution. Elle r6alise

trois objectifs: elle augmente la pr[cision sur les frontidres entre les rögions chang6es et celles inchangöes, elle lisse de fagon

adaptative ces frontiöies par r6gularisation et enfin elle ölimine les rögions de faible taille qui sont susceptibles de provenir

d'erreurs de d6cision.

Keywords. Image analysis; image coding; change detection; significance tests; Markov random fields; deterministic relaxation;

regularization.
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l. Introduction

T. Aach et al. / Statistical model-based chanpe detection

The detection of image areas where significant
intensity changes occur between two subsequent
frames of a sequence is an important issue in image
coding (e.g. [, 12,33D as well as in image analysis
(e.g. [5, 6, 19, l8]). Region-oriented coding
strategies of moving video, for example, require the
sequences to be partitioned into regions corre-
sponding to objects in the depicted scene. A change
detector often forms an early step towards this
goal, since it gives an initial rough estimate of mov-
ing image areas and static background [], 12,22].
In conditional replenishment coders, a change
detector may similarly be helpful to limit replen-
ishing to those areas which actually have
changed [23].

In dynamic scene analysis, motion detection is
often tied to change detection [3]. For instance,

16, 20, 351 describe methods for generating masks
which correspond to moving objects of the scene
to be analyzed, and for tracking these masks
through the sequence. Input to these algorithms
are, among others, temporal change detection
results.

A peculiarity of change detection, however, is
that it is not straightforward to formulate the prob-
lem precisely, because temporal intensity variations
occur permanently. They can be due, for example,
to motion or drifts in illumination, or to noise. On
the other hand, it is by no means certain that a
moving object necessarily causes perceivable tem-
poral intensity variations, since the amount of
temporal variation depends not only on the
motion, but also on the spatial intensity gradient
inside the moving region (cf. [17]). The objective
of change detection is to distinguish temporal
variations caused by noise from those within other
categories.

Change detection algorithms used in image
coding usually start with the grey value difference
image between the two frames considered. The
local sum (or mean) of absolute difference is com-
puted inside a small measurement window which
slides over the difference image. At each location,
Signal Processing

this local sum of absolute differences is compared
against a threshold. Whenever this threshold is
exceeded, the center pixel of the current window
location is marked as changed.

The crucial point here is the determination of
optimal decision thresholds, allowing for minimal
error probabilities, and thus guaranteeing results
which are robust against noise. However, these
thresholds are often arrived at empirically. In [4],
two thresholds are used, introducing a third uncer-
tain state in addition to the two states 'changed,

and 'unchanged'. This third state is eliminated dur-
ing a second run over the detection result. Thres-
hold values are given for illustration, but appear
to be adapted empirically to the respectively pro-
cessed sequence. The change detector in [331 uses
one threshold which is adapted to the variance esti-
mate of the camera noise, but again the relation-
ship is heuristical.

In this contribution, we describe a method for
determining decision thresholds which are related
to the false alarm rate associated with change
detection. We obtain the decisions by methods of
hypothesis testing, in particular, by significance
tests. This is the appropriate approach since only
the statistical properties for one hypothesis, namely
the hypothesis that some observed temporal
intensity variation is caused by noise only, are
assumed to be known. The objective can now be
formulated more precisely: a site on the image grid
shall be marked as changed when evidence, col-
lected from temporal grey level difference, does not
support the assumption that the observed variation
is arising from noise. The advantage of this
approach is not only that we can specify the deci-
sion thresholds in terms of false alarm rates, but it
also allows comparing objectively the performance
of different test statistics by choosing their respec-
tive thresholds such that the (theoretical) false
alarm rates are identical. These experimental com-
parisons give some insight about miss rates, which,
due to the lacking characterization of changes,
cannot be determined analytically. Three such sta-
tistics will be investigated. The first one is the local
sum of squared, normalized grey level differences,
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for which some justification can be given under

the assumption of additive, white Gaussian camera

noise. Similarly, it will be shown that the use of

the second statistic the local sum ofabsolute grey

level differences can be traced back to the

assumption of Laplacian noise in the grey level

difference. Finally, the local average of difference

values is briefly examined.

Significance testing has been employed in image

processing for the purpose of detecting small

objects embedded in a (nonstationary) background

process [30,32]. There, detection is based on the

residuals ofa linear background process prediction

with adaptively estimated predictor coefficients. In

this context, the problem of change detection

may be formulated as the detection of objects

in noisy difference images. Since the noise is

white, we can in this case proceed without the

(causal ) whitening transform associated with pre-

diction.
A different approach to change detection which

also uses significance tests has been described by

Hsu et al. [8]. Without evaluating a difference

image, in their contribution least-squares fitted

biquadratic polynomial approximations to the

image data are computed in test areas of two subse-

quent frames. The residual error for the case that

a separate approximation has been carried out for

each of the two test areas is compared against the

residual error of one biquadratic approximation to

the combined image data of both test areas. The

decision between 'changed' and 'unchanged' for

the considered test area then leads to a generalized

likelihood ratio test. The pdf of this ratio can be

established for the hypothesis that the image data

of the test areas are compatible, so that a signifi-

cance test can be carried out. Their approach thus

relies on the assumption that the texture content

inside each test area can be captured by a biquad-

ratic polynomial, so that the residual error in

unchanged areas may be assumed as being solely

due to camera noise. An approach via the differ-

ence image avoids this assumption, since the

difference imase is free of texture content in the

static areas,' thus rendering a texture model unnec-

essary. Furthermore, the necessity to perform the

polynomial approximations makes the method

computationally rather complex.

In Section 3, we describe a method for refining

change detection results. It serves three main pur-

poses. Firstly, it considerably improves the accur-

acy of the localization of boundaries between

changed and unchanged areas, thus compensating

for the blurring effect generally introduced by using

measurement windows. Secondly, it smoothes

these boundaries. Thirdly, and more or less as a

by-product, it eliminates small, nonsignificant

regions if the image data allow for it. In contrast

to postprocessing methods like median filtering of

the detection result and eliminating all small

regions whose sizes are below a given threshold,

the proposed method does not ignore the input

grey value data.

2. Change detection using significance tests

2. I. Gaussian-distributed camera noise

We start by computing the grey level difference

image D: {da}, with d*: yt(k) - yz(k), between the

two considered pictures Y1:{y1ft)} and Yz:

{yr(k)\. The index k denotes the pixel locations on

the image grid. Under the hypothesis that no

change occurs at location k, the corresponding

difference da obeys a zero mean Gaussian distribu-

t ion N(0,  o)  wi th var iance o2.  that  is .

p(c tA*u) :  " - r { -4^ , \  ( l )' t  
2 o " )

Since the camera noise is uncorrelated between

different frames. the variance o' is equal to twice

the variance of the assumed Gaussian camera noise

distribution. 110 denotes the null hypothesis, i.e.

'This holds when the uncorrupted background texture con-

tents in both images are identical, as may well be assumed here.

In other applications, like medical imaging or satellite imaging.

this is often not the case, so that adaptive correlation cancella-

tion techniques are applied [8, l4].

V o l  3 1 ,  N o  2 ,  M a r c h  1 9 9 3
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the hypothesis that there is no change at pixel k.
Expression (1) reveals that p(dklHs) depends only
on the squared ratio of the grey level difference
normalized with its standard deviation, that is, on
(do/o)'.It therefore seems reasonable to decide on
the label for pixel k based on this squared ratio.
The unknown parameter o can be estimated off-
line for the used camera system, or recursively on-
line from unchanged regions while working on a
sequence as described in [33, p.202].

In order to make the detection more reliable,
decisions like the one we are faced with are usually
based on evaluating the set of differences 4 inside
a small decision region instead of only a single
pixel. The idea behind this approach is that by
taking into account a higher number of samples,
the overlap between the distributions of the test
statistic for the cases that all samples are either
'unchanged' or 'changed' can be considerably
decreased. We thus compute the local sum /i of
(do/o)t inside a small sl iding window w,, with i
denoting the center pixel of the window. It is imme-
diately evident that when assuming tlo for all sites
inside w; , the joint distribution of the differences
inside w; depends only on /1. Using the measure-
ment window corresponds to applying a low-pass
filter to the (squared) difference image, thus reduc-
ing the noise on the one hand (cf. [23]), but causing
a blurring effect on the other hand. The reason for
this is that it detects changes anywhere within the
window, attributing the result to the center pixel
regardless of precisely where the changes occur.
Alternatively, one could as well assign the decision
to all pixels inside the window. This 'macro pixel'
approach considerably reduces the number of sites
to be tested, but on the other hand it decreases
the spatial resolution even further. An acceptable
compromise is a window sized between 3 x 3 and
5 x 5 pixels. As already mentioned in the introduc-
tion, a main objective of Section 3 will be to com-
pensate this blurring effect.

The local sum /i is proportional to the sample
mean of (do/o)'as computed inside the window.
Under the assumption that no change occurs inside
the window when centered at location i, the nor-
malized differences d*/o each obev a zero-mean
Signal Proccssing

Gaussian distribution' N(0, l) with variance l.
Thus, the sum 1i obeys a 7t-distribution with as
many degrees of freedom as there are pixels inside
the window. With the distribution p(A?lHo)
known, the decision between 'changed' and
'unchanged' can be arrived at by a significance test
127 ,311. For this purpose, we specify a significance
level a and compute a corresponding threshold ro
according to

a:Prob(Al  > t " lH i .  e)

The statistic /i is now evaluated at each location
i on the image grid, and whenever it exceeds to, the
corresponding pixel is marked as changed, other-
wise as unchanged. The significance level a may
hence be interpreted as the type I error probability,
that is, as the probability of rejecting 110 although
it is true.

We have thus specified the crucial decision
thresholds in terms of error probabilities. In our
experiments, we found that the input parameter a
of the test is not critical: it may be varied between
l0 6 and l0-2 without causing severe impacts on
the detection results. In practice, the relationship
between u and to may be stored in look-up tables.

2.1.1. When would the test be optimal?

Unfortunately, the above considerations leading
to the square sum as a test statistic are not rigorous
enough for a strict assessment of the 'goodness' of
the decision procedure. The reason for this is that
only the characteristics of the null hypothesis were
taken into acount, whereas no precise assumptions
about the alternative hypothesis were made. On the
one hand, it is, ofcourse, highly advantageous that
the test could be designed without any such
assumptions. On the other hand, so far nothing
can be said about the type II error probability. To
gain a little more insight, we briefly consider under

2 Strictly speaking, this is true only if the variance esrlmate
w-ere replaced by the (unknown) true parameter. Assuming that
o2 is estimated from a sample comprising N, pixels, cla/o obeys
a t-distribution with N.- I degrees of freedom. Since N" is usu-
ally rather large, the l-distribution may well be approximated
by a Gaussian one.
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which assumptions for H1 the decision would be
optimal in the sense of the Neyman-Pearson crite-
rion. As is well known, the l ikelihood ratio l(d,):
p(d,lHü/p(d,lHr) is a most powerful test statistic

127 , p. 3701. The statistic / i would be most power-
ful if (4):V(4), i.e., for /(d;) depending only
on4. This is for example the case for the follow-
ing two assumptions: p(delH1) is Gaussian distri-
buted with zero mean and a varian ce o2">> o2 , and
p(d' I Ht):fI1,.., p(d*1I11). In this case, both condi-
tional densities p(d;lHi), j:0,1, depend only on
/1, as does /(d;). Especially the second assumption
is, however, not very realistic (see [9] for deriva-
tions of frame difference correlation in terms of
the image correlation function), so that we cannot
expect the above global thresholding method to
produce minimal miss rate for a given significance.

2.2. Sum of absolute dffirences as test statistic

In this section, we derive how the methods of
hypothesis testing can be adopted for the case that
the local sum of absolute difference values is used
as a test statistic. We thus consider

A,:  L  y ldo l ,  (3)
k eu,i

where 7-r is a normalization parameter adaptable
to different noise levels. Tracing the considerations
outlined above backward, let us search for the pdfs
for I1o and Hl which depend only on A, , so that
this also holds for l(d1). We thus require the joint
pdf for ä0 (as well as that one for .F11) to be of the
form

The subscript N denotes the size of the window w;
in pixels, which influences the structure offiy lsee
Appendix A). In particular, we have for a single
pixel  (N: l ) :

pt(d*lHi: f ' (y ldi l .  (5)

It is shown in Appendix A that conditions (4) and
(5) lead to the biexponential distribution (or

Laplace distribution), which is widely used, e.g. for
the description of prediction error images. Hence,
d1 obeys

v
p(dr lH i : iexp{ -y ldp l } .  (6 )

z

The variance o2 of this pdf is related to the para-
meter 7 by

')
2 -

o - :  ^ .
v'

The normalized variable 6e:2ydp is
buted according to

(7 )

then distri-

_ | f-  ta,tJ
PaGt lHü:-  exp{-- - r : i '  } .  (8)

4  [ 2 ) '
and thus its absolute value obeys

prar( lär l  I  Hs) :2e(6)pu@,,1Hü,  (9)

with e(x) denoting the unit step function.
Equation (9) describes a 72-pdf with two degrees

of freedom. In order to be able to use the tables
for the 72-distribution, we replace the /; of (3) bV
Ä,:2Ai, which is a sum of terms ldrl, each of
which is distributed according to (9). Thus,
p(Ä,lHi is a f-pdf with twice as many degrees of
freedom as there are samples inside the local win-
dow w; . With this pdf known, the significance test
can be performed as described above. Note again
that, once the test statistic is chosen, the test does
not depend on the assumptions for H1.

What remains to be done is to calculate the pdf
p6(x) of the camera noise, when the difference pro-
cess is supposed to be described by (6). We have
hence to find a pdf which, when convolved with
itself, results in (6). This (de-)convolution is best
performed using the Fourier transform; taking the
square root ofthe characteristic function of(6) and
subjecting the result to a Fourier transform yields

v
px@):L Ko(lx l) ,

fr
( 1 0 )

with K6(x) denoting the zeroth-order Macdonald's
function. This density bears some resemblance to

Vol 31, No 2. March 1993

p*({dr , ;kew} lH,) : f - ( I  r la . l ) .  (4)
\ k e w i  /
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the biexponential density; it exhibits, however, a
singularity for x:0.

2.3. Other test statistics

Apart from squared and absolute differences,
other test statistics have been used as well. presum-

ably the most important alternative approach is to
compare the magnitude l/; l :1l0.',,(do/o)l of the
local sum of differences (or the local mean) with a
threshold. This approach is motivated by the fact
that inside of regions which may be well approxi-
mated by bilinear functions, motion can lead to
a spatially homogeneous 'offset' in the difference
image. However, highly textured moving areas,
which manifest themselves in the difference image
as closely spaced spots of differences of differing
sign, are prone to be overlooked by this statistic.
This effect is confirmed in the results section, where
l/,1 is compared with the statistics discussed above
(Fig. I l). Towards this end, a significance test has
again been performed. Establishing the pdf
pQTllHo) is straightforward, with p((d1,/o)lH6)
being a zero-mean Gaussian pdf with unit
variance, p(A|Hi is a zero-mean Gaussian pdf
with variance N, and p(lA)läo) is given by
p(Al lHi :2e(A)p(A; lH0).  Wi th th is  pdf  known,
thresholds can be computed from significance
levels as described above.

3. MAP - change detection

As can be seen in Section 4, the change detection
schemes analyzed above exhibit some shortcom-
ings which were to be expected. First, there inevit-
ably occur decision errors. Typically, these errors
appear as small isolated spots inside otherwise cor-
rectly labeled regions. Another drawback is that in
some critical image areas the boundaries between
differently classified regions tend to be somewhat
irregular. Since the change mask is assumed as
being due to movements of usually compactly
Signal Processing

shaped objects in the scene against static back-
ground, we would, however, rather expect smooth
region boundaries.

To tackle these problems, many authors refine
their change masks by eliminating all regions with
size below a given threshold, and/or by applying
a median filter to the binary change mask. This
approach, however, appears questionable since it
operates solely on the binary label field while com-
pletely disregarding the original image data, i.e.
the difference field. These operations thus falsely
eliminate areas which should definitely be marked
as changed, but are being caused by small moving
objects or by homogeneous objects exhibiting only
small apparent motion. The small region elimina-
tion step is also disadvantageous from a computa-
tional point of view, since it requires that a
connected component analysis be at least partly
performed. Perhaps most important, however, is
that these operations do not tackle a problem
which is inherent to all algorithms employing some
sort of measurement window. As already men-
tioned, using the window corresponds to a low-
pass filtering operation, thus introducing a blurring
effect which reduces the spatial resolution. This
may impede the proper localization of the region
boundaries, leading to the typical 'corona'-effects.

The median filter, as applied to a change mask, is a
purely morphological operation on a binary image
[24], and while eliminating speckles, it even tries to
preserve the region boundaries, inaccurate though
they may be.

3.L MAP estimation

To avoid these shortcomings, we propose to
modify the above change masks subject to the
MAP criterion. This approach enables us to influ-
ence the outcome of the detection by bringing to
bear our expectations about change masks, while
it still allows the data to play a role. Hence, we try
to find the change mask Q: {qe} which maximizes
the a posteriori density p(QlD), where D is the
given difference image. The label qe at location k
can take either the value u for 'unchanged' or c for
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'changed'. According to Bayes' rule, maximizing

the a posteriori density is equivalent to maximizing

the product p(DlQ)pQ):p(D, Q), which is com-
posed of the l ikelihood p@10 and the a priori

density p(Q). Here, we have taken advantage of
the fact that the pdf for a given difference image is

fixed, and may thus be ignored for the maximiza-
tion process.

Assuming the difference values as conditionally
independent, we can decompose the likelihood into
the product

p(DlD: l7p@olü.
k

( l  l )

For Gaussian camera noise, p(dAqD is identical to
the right-hand side of (l) for the case qk:u. For

the opposite e&sa Qp: c, the difference value d.pma!
stem from one of several random processes (gen-

erally with nonzero mean), each of which describes
the grey value differences inside some subregion of
the changed image area. However, in order to find

a similar expression as we have for the c,zse Qp: u>
we strongly simplify this model by describing the
mixture of different subregions which constitute
the changed area by just one zero-mean Gaussian
process with variance oi . Instead of Gaussian pdfs

for p(dplqp), Laplacian ones can be used as well
([7]); we do not expect the choice between them
to challenge the following considerations (cf. for
restoration t34]). The zero-mean assumption
appears reasonable since, on the average, subre-
gions with a positive mean in the difference image

should occur with the same frequency as those with
a negative mean. The variance o3 reflects these
fluctuations of the mean values, and it is hence
much larger than the variance o2 related to the
camera noise. We thus have

The a priori density p(D should be specified

such that it reflects our expectations on the change
mask. In accordance with what was said above, we
wish to find an expression for p(Q) such that
change masks Q consisting of smoothly shaped
regions are more likely to occur than other ones.
This is possible by modeling the masks, i.e. the
spatial arrays of binary labels 4e, as samples from

two-dimensional Gibbs/Markov random fields. A
good and comprehensive treatment of the theory
underlying these random fields can be found, e.g.,
in I l]. For a detailed treatment, we refer the
reader to [3, l5].

As shown in [25,26], for example, a probability

measure assessing the smoothness of region bound-
aries can be found by considering pairs ofhorizont-

ally, vertically or diagonally adjacent pixels which
are situated across these boundaries. These border
pixel pairs are termed inhomogeneous cliques, since
the labels associated with the pair's pixels are
different. ln 126,1ll i t is shown that the boundary
is smoother when the number of inhomogeneous
cliques associated with a region is lower. Hence,
we assign to each horizontally or vertically oriented
border pixel pair a positive cost term (called
potential) .8, and to each diagonally oriented
inhomogeneous clique another positive potential

C. Modeling the change mask Q as a second-order
Gibbs/Markov random field, the a priori density
p(Q) is given by the exponential expression

1
nQ) :2exP{ -Ee} ,

with

Eq:nsB*n6C.

(  l 3 )

(12)

The likelihood specified so far by (1), (l l) and (12)

depends on the observed difference values dp, and
thus enables the data to take the desired influense
on the outcome of the estimation.

p(dÄq, :c ) :  * r { - * }

(  l4 )

Aq is the energy associated with a particular change
mask Q, and na and ng denote the numbers of
respectively horizontally / vertically and diagonally
oriented border pixel pairs, which occur in Q. The
so-called partition function Z is just a normalizing

constant whose value will not be needed during the
optimization step to be described. p(Q) exhibits the
desired properties: the smoother the regions of a
particular change mask Q are shaped, the lower

Vol 31, No 2, March 1993
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are the numbers np and nc of that mask, and the
lower is in turn its energy Eq.The lower the energy
associated with that mask, the higher its probabil-
lty to occur.

The potentials B and C shall reflect the inter-
action between the pixels of a clique, which should
vary inversely with the distance between pixels. We
model the interaction to be inversely proportional

to the squared distance of the pixel centres of a
clique, thus relating B and C by C: B/2.

3.2. Contour relaxation

In this section, we devise an optimization algo-
rithm which iteratively modifies change masks
according to the derived MAP criterion. As
pointed out above, the major deficiences of these
initial masks are inaccurate localization of region
contours and their possibly irregular shapes. Thus,
we focus our attention on the region contours, or
more precisely, on the pixels located at the
boundaries.

Let us scrutinize the situation of a border pixel
k. As a result from the previous change detection,
it carries a label qp, and we wish to decide whether
we should flip qp or keep it as it is. Let Q" denote
the change mask with Qp:u, &nd Q" the mask
when Qr: c. We decide on Qr:u when
p(Q"lD)>p(QÄD), otherwise we decide qe:c.

The only part of the likelihood p@lQ) affected
by these considerations is the local contribution
p(dÄq). The a priori densityp(Q) can similarly be
split into a local term and a global one. This is due
to the fact that the underlying Markov field implies
that the probability of qp conditioned on the rest
of Q depends only on the label constellation in the
neighbourhood in Fig. l, where those cliques are
depicted of which pixel k is a member. The energy
Eq is thus composed of a global portion 86, which
is not affected by qo, and a local contribution
Ep(qp).With vr(qt) and vs(q) denoting the num-
ber of inhomogeneous cliques to which pixel k
belongs when its label is qr, E*(q*) is given by

EÄq): v B(qp)B-r vc(q)C.
Signal Processing

( l s )

Fig. l. Neighbourhood of pixel k, with the cliques which

depend on its label 41 depicted as black bars.

The decision thus reduces to

p(dÄu:u) exp{-Ep(u)}

u

? p(dÄqo:  c)  exp{-Ee(c)} . ( 1 6 )

Exploiting (l), (12), (15) and taking the logarithm
on both sides of the above inequality finally leads

to the decision rule

,  - 2 -2  /
d i22  1 , ' o  , ( t n  a+ (va (c ) -  vp (u ) )B

u  O l . - 6 - \  O

Similarly, the Laplacian assumption (6) and (7)
yields the decision rule

, , , {  6 , 0  (  o . .
l d Ä Z  o . '  .  l l n : r + ( v r ( c ) -  v a @ ) ) B

u  a / l \ O r -  O )  \  O

+(v6(c)  - " , (ü4.  (17)

+(v6(c)  - r , (ü4.  (18)

The right-hand side (RHS) amounts to a context

dependent threshold t(Lv6, Av6.), since it depends
not only on the parameters o7, o', but additionally
on the differences A,v B: v s@) - v a@) and

\

ffiil]
T P

E. ffi

# I
ffi \
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L,v 6: v s(c) - v c@). The threshold thereby varies
adaptively according to the labels surrounding the
considered pixel k as follows. When there are more
changed pixels than unchanged ones in the neigh-
bourhood, the numbers vn(q*), vg(q) of inhomo-
geneous cliques will be lower for the case qp: c
than for qp:u. This means that the differences
Lv s, Lv a; are negative, thus reducing the value of
the threshold, and hence biasing the decision in
favour of qo: c. Similarly, the value of the thres-
hold increases when there are more unchanged pix-
els in the neighbourhood, thus favouring the
decision for 'unchanged'. This behaviour is in
accordance with Gerhard's heuristical approach
described in [6, pp. 69, 196;21), and with the
approach via 'thresholding with hysteresis' as
described in [ 10, 23]. Furthermore, it is noteworthy
that for the extreme case of very high values for
parameters B and C, the decision acts similarly as
a binary median filter, which assigns that label to

4p which has the majority inside the neighbour-
hood. For very large parameters, the RHS of (17)
and (18) take negative values when more changed
pixels occur in the neighbourhood, hence neces-
sarily inducing qr:c. If unchanged pixels form a
majority, the threshold could become high enough
to result nearly always in qo:u. The decision thus
reduces to a 'hard' one by majority.

Refining a given initial change mask Q is carried
out by a deterministic relaxation (of the ICM type

t2l) by repeatedly performing raster scans. When-
ever a pixel situated at a region boundary is
encountered, its label is determined according to
the decision rule (17). Convergence of this local-
ascent method is guaranteed, even if only to a local
maximum of the a posteriori density p(QlD). This,
however, is no serious drawback since the starting
field provided by the previous change detection
generally is good enough to ensure convergence of
the contour relaxation to a reasonable result. Since
the parameters o2 and of, are estimated from such
good starting fields, it is not necessary to update
them according to the label changes.

In practice, convergence is rapid for the first few
raster scans. The relaxation may hence be termin-

ated when the number of label changes per scan
falls below a pre-specified level, e.g. 100 for
256 x 256 images. The fact that only border pixels
are to be considered further speeds up the
procedure.

Alternatively, the label updates may be per-
formed in parallel as described in [2] (synchronous
updating). It is of particular advantage here that
the parameters o', and o2 in (17) need not be
updated, thus leaving only the label field Q to be
affected. Since both these parameters are known
before the relaxation starts, the adaptive threshold
depends only on the clique differences L,v s and
Av6', and this relationship could be stored in a
look-up table, offering another opportunity for a
speed up.

4. Experimental results

In Fig. 2 the first and third frame out of a head
and shoulders scene are shown, each consisting of
256 x 256 pixels. Figure 3 gives change masks when
the local square sum inside a 5 x 5 window is used
as test statistic. The significance level a was chosen
to a : l0 6 (left), resulting in a threshol d, to:74.5,
and to a : l0-2, resulting in a lower threshold r" :

44.3 (right). The variance o2, which is necessary
for normalizing the test statistics, was estimated to
o2:4. The results illustrate their robustness
against variations of the input parameter a, which
has been varied by several orders of magnitude
without causing severe effects. In Fig. 4, we have
the resulting change mask when the sum of abso-
lute differences is employed in connection with the
same significance level as in Fig. 3 (left). As could
be expected, both change masks are very similar.

The following illustrations exemplify the behav-
iour of the contour relaxation as applied to the
previous results. Figure 5 is obtained by applying
the relaxation to Fig. 3. Note that the changed
regions above the person's right shoulder are
caused by moving shadow. The cost parameters B
and C were chosen rather high in this example, to

Vol  31 .  No 2 .  March  1993
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Fig. 4. Change mask obtained by employing the sum ofabso-
lute dif ferences. a: l0-6, r":  I  13.

B:2.5 and C:1.25. In each example, the relaxa-
tion was terminated when less than 100 pixels were
relabeled during a scan over the pictures. To obtain
the left mask of Fig. 5 from the left one of Fig. 3,
Signal koessing
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Fig. 2. First and third frame of a video telephone sequence.

Fig. 3. Change masks for Fig. 2 using the local square sum. a : l0-6, t":74.5 (left), and a : l0-2, t" :44.3 (right)

only three scans were required, carrying out ll3l
relabeling operations altogether. For the right
mask, starting from the right one of Fig. 3, 5659
relabeling operations were necessary requiring six
raster scans. In both cases, the variance o3 was
estimated from the changed regions before the
relaxation started to about o7:q00.

A comparison between the right masks of Figs.
5 and 3 also reveals strikingly the ability of the
relaxation to eliminate small, falsely detected
regions. Although there is no such thing as a mini-
mum size imposed on regions in our algorithm,
most detection errors have vanished. This is in
accordance with our prior expectations as
expressed through the Markov model.

During our experiments, we found that the
relaxation provides the best results when applied
twice to an initial mask, first with relatively low
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Fig. 5. Improved change masks obtained from Fig. 3 by contour relaxation. Cost parameters: B:2.5, C:1.25.

cost parameters (e.g. B:0.5, C:0.25), and subse-
quently with higher values B:2.5, C:1.25. This
means that, during the first step, the region borders
adapt particularly well to the contents of the
difference image, but tend to be very irregular due
to the noise. During the second run, the smoothing
term dominates, thus regularizing the solution.

Figure 6 depicts a change mask which has been
obtained in this way from Fig. 3 (left). The cost
parameters were adjusted as just described. The
first step ofthe relaxation resulted in I 326 relabeling
operations during three scans, and the second one
in 591 relabelings, again requiring three scans. To
judge the accuracy of the boundary localization,
Fig. 6 also shows enlarged portions of the region

boundaries before and after relaxation overlaid in
white over the difference imase between the frames.

Figures 8 and 9 present similar results of a
change detection between frames 80 and 82 of the
well-known sequence Miss America. The variance
o2 is nearly the same as in the previous examples.
The masks in Fig. 8 are obtained with significance
levels a:10-6 and a: l0-2, using the local square
sum. Applying the relaxation to the right mask in
Fig. 8 yields the improved change mask in Fig. 9.
Five scans were required, and a total of 4186 rel-
abel operations were carried out. The parameter

o l  was est imated to o?:400.
Figure 10 depicts masks obtained by the magni-

tude of  local  sum lA, l  a t  a:  l0  2 and a:  10-6.  As
expected, these results are not as good as the previ-

ous ones. A visual comparison with the corre-
sponding difference image revealed that changes
are particularly often overlooked along lines of

I ,
l.
e

Fig. 6. Left: Improved change mask obtained from Fig. 3 (left) by a two step contour relaxation. Cost parameters: B:0.5, C:0.25
for the first step, and B:2.5, C:1.25 for the second step. Right: enlarged edge image depicting the region boundaries of this mask

(right) and the raw one (left) overlaid over the difference image. The difference image has ben amplified by the factor 5.

Vol  31 ,  No.2 ,  March  1993
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Fig. 1. 256 x256-pixel portions of frames 80 and 82 of the sequence Miss America

Fig .8 .  ChangemaskforF ig .T .Tes ts ta t i s t i c :squaresum,a :10-6 ,  t " :74 .5  ( le f t ) ,a :10- ' � , r " :44 .3  1 t1 t1 t11 .

Fig. 9. Improved change mask obtained from the right one of
Fig. 8 by relaxation. Cost parameters: B=2.5, C:1.25.

zero crossings. This behaviour is further illustrated
in Fig. l l .

Finally, we present some processing examples
for a traffic scene, of which Fig. 12 shows two con-
secutive frames. This sequence contains consider-
Signal Proessing

ably stronger noise than the previous ones; we esti-
mated the variance to o2:27. The change masks
for a: 10-6 and a:10-2 are given in Fig. 13. Both
were obtained using the sum of absolute differences
as test statistic. Figure l4 shows how the relaxation
improves the right mask result from Fig. 13. The
relaxation was performed in two steps, first with
low cost parameters, carrying out 5044 relabel
operations, and subsequently with higher param-
eters, resulting in 1695 relabelings during four
scans.

5. Discussion

The main contribution of Section 2 is a frame-
work which allows to replace the usually empirical

a
ta

t

a
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Fig 10.  Change masks obtained by employing the magni tude lA).  " :  l0  2,  r , , :12.9 ( lef t ) ,  a:10 
( ' ,  

t , :24.4 (r ight)

t 7 7

Fig. I L Two-dimensional measurement space with decision
boundar ies for  A; .  Ä,  and l f i l  when the window w, comprises
only two sanlples $/o,  d2/o ( l  x  2-window).  For a:  l0-r ,  we
obtain for  df  the c i rc le (dt /o\2+(d2/o) t :9.2 as decis ion
boundary, the tilted square ldl /ol + | dz/ ol: 4.7 for /,, and the
parallel lines ldt / o + dz/ ol:3.6 for l/ l. The resulting partitions
of the measurement space for di and Ä, are much alike, con-
firming similar performance of both statistics. However, the
subspace for 'unchanged' of l/11 contains vectors of large mag-
nitude which are rather unlikely to be caused by noise. On the
other hand, the subspace where l/,1 decides for'changed' is
nearly completely contained in the corresponding subspaces of
the other two statistics. In conclusion, lll is hence nearly
unable to detect changes which would not be detected by

the other two.

threshold selection in change detectors by statist-
ical ones which enable us to compare different sta-
tistics under controlled conditions. It turned out
that the global thresholding methods could be
derived by modeling the samples in the changed

areas as independent. This is, ofcourse, only a very
rough characterization. Taking the dependencies
into account could possibly lead to a variable
threshold, which decreases when there is evidence
for correlation among the samples inside w1 , analo-
gously as described for labels in Section 3.2. This
could lead to improved performance of the detector
in those areas where changes result in only weak,
but nonetheless correlated difference signals.

Inherent blurring effects caused by the window
are largely removed by the estimation procedure
proposed in Section 3. It works on the change
masks pixel by pixel, without a smearing measure-
ment window. The approach reflects both the origi-
nal image data and our a priori expectations on
the detection results. In addition to improving the
accuracy of the boundary localization, the pro-
posed procedure also ensures a data-dependent
small region elimination and boundary smoothing.
The smoothing is due to a statistical regularization
effect: the functional which is formed by the energy
associated with the change masks embodies a stabi-
lizing functional, which represents a generic con-
straint imposed on the desired solutions. The
desired solution may thus be interpreled as one
which is consistent with our prior expectations, but
simultaneously is sufficiently compatible with the
image dara (cf. [28, p. 142;29]). The cost para-
meters B and C act as regularization parameters
by controlling the balance between the regularizing
influence our prior expectations have on the out-
come of the relaxation. and the influence of the
imase data.

Vol  31 ,  No 2 .  March  1993
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Fis. 12. First and second frame of a traffic scene.

F ig .  13 .  Changemasks fo rF ig .  12 .Tes t s ta t i s t c : sumo f  abso lu ted i f f e rences ,a :10  
n .  1 " : l l 3 ( l e f t ) . c : 10 : .  t " : ' 16 .2 ( r i +h l )

Fig. 14. Left: improved change mask obtained from the left one in Fig. l3 by a two-step relaxation. Cost parameters: B:0.5, C:

0.25 for the first step, and B:2.5, C:1.25 for the second step. Right: comparison between the boundary localizations between the

raw mask (left) and the improved one.

The relaxation produces its global result by way

of local operations. Refining can be performed in

parallel, and no connected-component analysis is

required. The method is, of course, applicable to

Signal Processing

any initial change mask, not just to one generated

as described in Section 2. One could even imagine

using the contour relaxation in connection with a

multiresolution change detection scheme. Suppose

.1--rra{
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a change detection is carried out in a subsampled
version of the grey level difference image. Depend-
ing on the degree of subsampling, the change detec-
tion speeds up substantially, but after enlarging the
result to the highest resolution level, the mask will
almost certainly exhibit considerable inaccuracies

with respect to the boundary localization. These

can be mended using the relaxation procedure, thus

offering the possibility of making change detection
highly efficient.

The scope of applications of the methods
described in this paper is not limited to change

detection. Generally, they can serve for the accu-
rate detection of significant deviations between any
two images. If one of the images is a predicted

frame, generated, e.9., by motion compensation,
the resulting prediction error image could also be
segmented by the discussed framework.

Appendix A

LeI ap denote an observation from the camera
noise in a difference image. e.g. at,: \du/o)' ot e1,:
yldpl. The joint pdf for any number N of any obser-

vations shall obey

P w ( a t , . (1e)

In particular, we have for a single observation
( N : 1 )

plat):fi(at). (20)

Furthermore, we assume the noise samples as
independent, yielding

(2t)

It will be shown that conditions (19), (20) and (21)
require that p(a;) be of the exponential form

Taking the logarithm on both sides of (21)
results in

N  -  - / N  \

L .f '(a,):f*l I a' l, (23)
i : l  \ i - r  /

where f: lnl Taking the partial derivative with
respect to any a7 on both sides of (23) yields

{ral:*lr"(,ä ",) (24)

It is clear that the RHS of (24) must be invariate
with respect to all ar,; k*j.This implies thatfr is
a linear function of IL ai, trzrrrrul!

- l x  \  / N  \
. l* l  f .  o, l :  el  >, a, l+ B, (2s)' 

\'Ir / \ilr /

with A and ,B being constants. Forfr(ai) follows

= B
J  t ( a i ) :  A a i  +  -  ,

p (a i ) :  C  exp{Aa i } ,

with A and C denoting constants.

(26)

yielding for fy(ai) the exponential-type pdf

f1@) : exp{ 7'@')} : C exp{Aa;},

C: exp{B /N}. (27)

For a Laplacian distribution, we lake at: yld,l,

and A: -1. For a Gaussian distribution, we have

ai : (d; /o)2 and A:- i .  C fo l lows easi ly  in  both
cases, since the total probability must equal unity.
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