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ABSTRACT
We describe an algorithm for change detection which is in-
sensitive to both slow and fast temporal variations of scene
illumination. Our algorithm is based on statistical decision
theory by using a Bayesian approach. The goal is to de-
tect only temporal changes which are induced by true scene
changes, like motion, but not changes due to noise or vary-
ing illumination. To this end, our algorithm uses a simple
illumination model which is invariant to common camera
nonlinearities like gamma-nonlinearity. This is combined
with a model for the influence of noise as well as an a pri-
ori model for the expected properties of the sought change
masks. Key ingredients of the resulting algorithm are a suit-
able test statistic and an adaptive threshold mechanism. As
the algorithm can be applied in a noniterative manner, it is
also computationally attractive.

1. INTRODUCTION

In scene analysis for object oriented coding schemes or
surveillance applications, it is often required to detect and
segment moving objects in video data which are acquired
by a static camera [1, 2, 3, 4]. Such changes include the
projections of moving objects and their potential shadows
onto the image plane together with any uncovered back-
ground. Statistical methods to detect such changes in the
presence of noise exist, both with [5, 6, 7] and without [1, 8]
the use of a priori models for the sought change masks.
First, these methods employ statistically optimal test statis-
tics. Secondly, they couple the detection procedure to error
probabilities, usually the false alarm rate via a significance
test. Thirdly, Bayesian approaches using a priori knowl-
edge about the change masks strongly reduce error proba-
bilities by making both noise-like false alarms and holes in
changed areas unlikely to appear. Indeed, the benefits of the
Bayesian approach in [5, 6, 7] have led to its use in a variety
of applications, e.g. [4, 9, 10].

Since these algorithms rely on the comparison of the
grey levels at the same locations in subsequent images of

a video sequence, they are insensitive with respect to slow
temporal variations of scene illumination. The reason for
this is that subtraction of subsequent frames, as done in
[5, 6, 7], is a temporal highpass operation. Fast changes of
scene illumination, however, are not sufficiently suppressed
and may therefore lead to detection errors in the sense of
motion detection. For applications where fast illumina-
tion changes cannot be ruled out, so-called illumination-
invariant methods have been developed [11, 12, 13]. Not all
of these are based on statistical decision theory, and none of
these use a priori models for the change masks. In [14, 15],
we proposed two-step approaches to illumination invariant
change detection that employ spatial [14] or spatiotempo-
ral [15] Markov Random Fields (MRFs) as a priori models.
In a first step, the influence of illumination is suppressed
by a homomorphic filter (cf. [16, 17]) before the Bayesian
algorithm of [7, 6] is applied. This method thus uses both
statistical decision theory and an a priori model.

Unlike separating suppression of illumination and
change detection in two steps, [13] uses an ad hoc test statis-
tic which is, within certain limits, insensitive to changes
of illumination in successive image blocks. However, nei-
ther a statistical framework nor a priori models are invoked.
In this paper, we derive a new approach to illumination-
insensitive change detection that combines key ideas from
[6, 7, 13, 14, 15]. The resulting one-step method is com-
putationally similarly appealing as our earlier algorithms in
[6, 7].

2. THE BAYESIAN APPROACH

2.1. The illumination model

Homomorphic filtering [16] models the recorded grey lev-
els g(m,n) as the product of scene illumination i(m,n)
and surface reflectance r(m,n). Clearly, structural scene
changes are captured by r(m,n). Scene illumination is as-
sumed to vary slowly over the spatial coordinates (m,n),
and can hence be suppressed by applying a linear highpass



filter to log(g(m,n)). A similar, but slightly more strin-
gent illumination model is used in [13], where illumination
is modelled as a constant factor within small image blocks.
We note here that this relationship between illumination and
surface reflectance may be altered by potential camera non-
linearities. Commonly, however, the camera gain is de-
scribed by a so-called γ-curve, for which it can be shown
that the multiplicative relationship is preserved [14, 15].

2.2. Change detection as hypothesis testing

To decide whether or not a change did occur between the
successive frames Gt and Gt−1 at pixel (j, l), we compare
the grey levels from Gt and Gt−1 which lie within a small
sliding window, which is centered around (j, l). These grey
levels are ordered into column vectors x and y, respec-
tively. If the window contains N pixels, each of these vec-
tors contains N components x(n) and y(n), respectively,
where n = 1, 2, . . . , N . If no scene change occurs within
the window, and neglecting the effects of noise, both vec-
tors would be identical if illumination remained constant
between times t − 1 and t. Under the same circumstances,
a change in illumination would change the norms of these
vectors, but not their directions. Consequently, in [13] an
ad-hoc test function is employed which detects whether or
not x and y are linearly dependent. If they are, a structural
change did not occur. Here, we now express this reasoning
as a hypothesis test.

Let s = (s(1), . . . , s(N)) denote the noisefree signal
in x. Assuming additive white Gaussian camera noise, we
observe

x = s + ε1 (1)

where ε1 is a noise vector obeying N (0, σ2I). The parame-
ter σ2 is the variance of the camera noise, and I the identity
matrix. If no scene change occurs, y contains the same sig-
nal as x, which may be scaled by a factor k. Hence,

y = k · s + ε2 (2)

where ε2 is another realization of the camera noise which
is independent of ε1. If the illumination remains constant,
we have k = 1, otherwise 0 < k < 1. (This can always be
achieved by assigning x and y accordingly to the frames Gt

and Gt−1, and implies no loss of generality. When deriving
the distribution of our test statistic, we will at one point ap-
proximate the norm of x — but not its direction — by the
norm of s. The relative approximation error is smaller when
x is chosen as done above.) We call the hypothesis that x
and y are given by (1) and (2) the null hypothesis H0.

Let |x| denote the Euclidean norm of x, and xU the unit
vector pointing in the direction of x, given by xU = x/|x|.
The transpose of x is denoted by xT . To find a suitable test
statistic which allows us to decide whether or not to accept
H0 based on the noisy observations x and y, let us consider

the diagram in Fig. 1. We project y onto x, yielding a new
vector that is parallel to x, and whose norm is given by the
absolute inner product |xT

Uy|. Clearly, this vector can be
expressed as xT

Uy·xU . Subtracting this vector from y yields
the difference vector

d = y − xT
Uy · xU (3)

which is zero if and only if x and y are collinear. The
squared norm of d can be calculated as

|d|2 = |y − xT
Uy · xU |2 = |y|2 − (xT

Uy)2 (4)

since xT
UyxU and d are orthogonal (Fig. 1). Testing H0 is

then equivalent to testing if |d|2 can be explained by camera
noise. Like in [5, 7], we assume that the variance σ2 of the
camera noise is known, or can be estimated recursively from
unchanged areas in the images.

Fig. 1. Geometrical interpretation of the projection of y onto x,
given by xT

Uy · xU . Also depicted is the difference vector d.

As we will show in the final paper, d can be expressed
in a suitable basis (which depends on s) such that its compo-
nents d(1), d(2), . . . d(N − 1) are approximately indepen-
dent, while d(N) is negligible. Each component d(n) ex-
cept d(N) is then normally distributed with variance

σ2
d = σ2 ·

(
1 + k2

)
(5)

if the null hypothesis H0 holds, yielding the conditional
probability density function (pdf)

p(d|H0) =
(

1√
2πσd

)N−1

· exp
{
− |d|2

2 · σ2
d

}
(6)

Hence, the squared norm of d normalized by the variance
σ2

d is χ2-distributed with N − 1 degrees of freedom. Since
the parameter k is not known, we estimate its value from the
noisy observations to k̂ = |y|/|x|. Inserting this estimate
into σ2

d, we finally obtain the test statistic

T =
|y|2 − (xT

Uy)2

σ2 ·
(
1 + |y|2

|x|2

) =
|x|2|y|2 −

(
xT · y

)2

σ2 · (|x|2 + |y|2)
(7)

The denominator of T is just a normalization factor, while
the numerator is easily interpreted in terms of the Cauchy-
Schwarz inequality: it is zero if and only if x and y are
collinear, otherwise it is larger than zero. The pdf p(T |H0)



of T conditioned on H0 is approximately a χ2-pdf with N−
1 degrees of freedom. A significance test can now be carried
out as follows [18, 5]: we specify an acceptable false alarm
rate α, from which a decision threshold t is derived such
that

α = Prob(T > t|H0) =
∫ ∞

t

p(T |H0)dT (8)

using a χ2-table for N − 1 degrees of freedom. If T ex-
ceeds t, we reject H0, and assign the label c for changed to
the window centre, otherwise, we accept H0 and assign the
label u for unchanged. We express this decision by

T
c
>
<
u

t (9)

Eq. (9) is a valid decision procedure. It does, however, not
yet allow the use of an a priori model. In the following, we
therefore briefly sketch how (9) is developed into a maxi-
mum a posteriori (MAP) decision by extending the deriva-
tions in [7], where the details can be found.

2.3. MAP change detection

Given the alternative hypothesis H1, we model the condi-
tional pdf p(d|H1) by [5, 7]

p(d|H1) =
(

1√
2πσc

)N−1

· exp
{
− |d|2

2 · σ2
c

}
(10)

with σ2
c � σ2. Furthermore, we model the sought change

masks by an MRF such that the detected changed regions
tend to be compact and smoothly shaped. From this model,
a priori probabilities Prob(c) and Prob(u) for the labels c
and u can be obtained. The MAP decision rule then is

p(d|H1)
p(d|H0)

c
>
<
u

Prob(u)
Prob(c)

(11)

This can be manipulated into the context adaptive decision
[7]

T
c
>
<
u

t + (4− νc) ·B (12)

where T is the test statistic of (7), and t the threshold ac-
cording to (8). The parameter νc denotes the number of pix-
els that carry the label c and lie in the 3× 3-neighbourhood
of the pixel to be processed (Fig. 2). These labels are known
for those neighbouring pixels which have already been pro-
cessed while scanning the image raster (causal neighbour-
hood). For the pixels which are not yet processed we sim-
ply take the labels from the previous change mask (anti-
causal neighbourhood). Clearly, the adaptive threshold on
the right hand side of (12) can only take the nine different
values νc = 0, 1, . . . , 8. The parameter B is a positive cost.

The adaptive threshold hence is the lower, the higher the
number νc of adjacent pixels with label c. It is obvious that
this behaviour favours the emergence of smoothly shaped
changed regions, and discourages noise-like decision errors.
The nine different possible values for the adaptive threshold
can be precomputed and stored in a look-up table.

i

Fig. 2. 3 × 3-neighbourhood of a pixel i, with its causal neigh-
bours shown shaded.

3. RESULTS

Fig. 3 shows one frame of a sequence where a beam of light
moves quickly across the scene. Application of the illumi-
nation sensitive Bayesian algorithm of [6, 7] generates the
expected compact change masks, but detects both the mov-
ing engines and the changes caused by varying illumination.
The significance test of (9) using the illumination insensitive
test statistic of (7) results in a change mask which almost
completely ignores the effects of light, but contains noise-
like false alarms. These are eliminated by the MRF-based
MAP-algorithm.

a) b)

c) d)

Fig. 3. a) Original frame from a sequence with moving toy
engines. A beam of light crosses this scene quickly from left to
right. b) Result of the illumination sensitive change detection al-
gorithm in [7]. c) Result of illumination invariant change detection
according to Eqs. (7), (8) and (9). d) Result of the MAP-algorithm
according to Eqs. (7), (8) and (12).



4. CONCLUSIONS

We have described a new algorithm for illumination-
invariant change detection by combining an illumination
model from [13] with decision theoretic approaches to
change detection from [5, 6, 7]. The core of our algorithm
is a new statistical test for linear dependence of noisy ob-
servations arranged into vectors, which can be carried out
as a significance test or be integrated into a Bayesian frame-
work. In the latter approach, an MRF-based prior model for
the sought change masks can be brought bear in a similar
manner as in our earlier illumination-sensitive change de-
tection methods. Noise-like decision errors are then almost
fully eliminated.
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