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Defect Interpolation in Digital Radiography — How
Object-Oriented Transform Coding Helps

Til Aach, Volker Metzler

Institute for Signal Processing, Medical University of Lübeck
Ratzeburger Allee 160, D-23538 Lübeck, Germany

ABSTRACT

Today’s solid state flat panel radiography detectors provide images which contain artifacts caused by lines, columns
and clusters of inactive pixels. If not too large, such defects can be filled by interpolation algorithms which usually
work in the spatial domain. This paper describes an alternative spectral domain approach to defect interpolation.
The acquired radiograph is modelled as the undistorted image multiplied by a known binary defect window. The
window effect is then removed by deconvolving the window spectrum from the spectrum of the observed, distorted
radiograph. The basic ingredient of our interpolation algorithm is an earlier approach to block transform coding
of arbitrarily shaped image segments, that extrapolates the segment internal intensities over a block into which the
segment is embedded. For defect interpolation, the arbitrarily shaped segment is formed by a local image region with
defects, thus turning extrapolation into defect interpolation. Our algorithm reconstructs both oriented structures
and noise-like information in a natural-looking manner, even for large defects. Moreover, our concept can also be
applied to non-binary defect windows, e.g. for gain correction.

Keywords: Flat panel X-ray detectors, defect interpolation, spectral deconvolution, object-oriented transform cod-
ing

1. INTRODUCTION

Digital radiography has started to undergo profound changes with the advent of large flat panel detector systems.1,2

Such electronic detector systems are, for instance, based on charge coupled devices (CCDs), which are optically
coupled to an x-ray sensitive screen by fibers or lenses.3 An alternative design uses a selenium panel which is
charged homogeneously by a bias voltage before exposure to x radiation.2 Yet another detector system which
has been developed from flat panel display technology consists of a large array of light sensitive pixels that is
manufactured from amorphous silicon (a-Si).1,4,5 Sensitivity to x radiation is achieved by a coating of thallium-
doped cesium-iodide (CsI:Tl). Advantages of electronic flat panel detectors over conventional radiography include
the almost immediate availability of the acquired radiographs for viewing, the elimination of film costs, the possibility
to digitally compensate over- or underexposure within certain limits, and the possibility of enhancement by digital
filtering.1,6,7 Moreover, a-Si flat panel detectors1,4 also allow x-ray fluoroscopic imaging. Compared to current
fluoroscopy detection front ends that consist of an image intensifier (II) optically coupled to a camera,1,8 a flat
detector is less bulky and avoids the geometric distortions caused by the generally convex entrance screen of the II.
Furthermore, a flat panel detector is free of distortions which are caused by scattering in the II, like veiling glare.

Practically, large area flat solid state detectors contain inactive pixels (see e.g. Ref. 2, p. 287). Usually, the inactive
pixels are known from calibration measurements. Defects in the acquired images can then be filled from adjacent
pixels by suitable interpolation. The simplest approach is nonadaptive linear interpolation. A better reconstruction
of orientated structures crossing a defect, like bone edges or catheters, is possible by nonlinear interpolation, for
instance by a median filter,2 or adaptive linear interpolation.9 These interpolation algorithms work directly in the
spatial domain, and generally give satisfactory results for defects that are sufficiently small. Since spatial domain
interpolation includes weighted averaging of grey levels surrounding a defect, interpolated defects exhibit a different
noise structure which may give the radiograph a somewhat unnatural appearance.

In this paper, we therefore describe an alternative interpolation algorithm that works in the spectral domain, and
which is able to cope with both large defect areas and noise-like structures. Towards this end, the acquired distorted
radiograph is modelled as the undistorted image multiplied by a known binary defect window. The effect of the
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defect window is then removed in the Fourier domain by deconvolving the window spectrum from the spectrum of
the observed radiograph. In the spatial domain, the deconvolution corresponds to an extrapolation of the observed
signal over the area where the binary window is zero. From the point of view of spectral analysis, deconvolution is
equivalent to eliminating the smearing influence of the window spectrum. If successful, this permits the calculation
of a higher resolved spectrum from the observed signal than allowed by the uncertainty relation.

Similar deconvolution problems arise in object oriented image analysis or coding, when the spectrum of a signal
is needed which can only be observed inside a segment of arbitrary shape.10–12 In the simplest case, the segment
is zero-padded and embedded in a rectangle before applying a binary window which is one inside the segment, and
zero outside. Both spectral feature extraction and efficient transform coding require that the window spectrum be
removed.13,14

In the following, we first review approaches to the spectral analysis of windowed discrete signals. We then describe
our interpolation algorithm, and show a number of results for synthetic as well as clinical data before concluding
with a discussion.

2. SPECTRAL ANALYSIS, EXTRAPOLATION, AND SEGMENT CODING

For simplicity of notation, we consider a univariate discrete signal f(n) of length N . Only a portion g(n) of f(n)
can be observed inside a binary window w(n), i.e. g(n) = f(n) · w(n), where g(n) and w(n) are also of length N .
Convolution of the sought but unobservable spectrum of f(n) with the window spectrum generates the spectrum
G(k) of the windowed observation g(n), where the dominant spectral lines of F (k) are smeared out. Estimation
of the discrete Fourier spectrum F (k) of f(n) for 0 ≤ k < N then consists of identifying the significant spectral
lines of f(n), and estimating their complex values. The iterative algorithm for bandlimited extrapolation in Ref. 15
assumes that the spectrum of f(n) is limited to a known frequency band. Due to the window w(n), the spectrum
G(k) of g(n) exhibits contributions outside the known frequency band, which are set to zero, yielding a first spectral
estimate F̂ (1)(k). Applying an inverse Fourier transform to F̂ (1)(k) yields a first extrapolated signal f̂ (1)(n). Due
to the bandpass filtering, f̂ (1)(n) generally differs from the observed samples g(n) of f(n). Therefore, the samples
of f̂ (1)(n) are replaced by the known samples inside the window w(n). The resulting composite signal c(1)(n) =
g(n) + (1 − w(n)) · f̂ (1)(n) then again exhibits spectral contributions outside the known frequency band, which in
turn are eliminated by bandpass filtering. The iteration is continued until a sufficiently accurate estimate F̂ (i)(k) is
reached. The algorithm is illustrated in Fig. 1. In Ref. 16, the algorithm is extended by an adaptive bandpass filter
which selects only those in-band coefficients whose magnitude exceeds an adaptive threshold. The iterations can be
viewed as alternating projections onto convex sets in spatial and Fourier domain, and convergence thus be proven.
Obviously, each iteration of the extrapolation procedure requires a forward and an inverse DFT. One-step solutions
to bandlimited extrapolation can be found in Refs. 17,18.

From the point of view of “good” extrapolation, the assumption of band limitation is often disadvantageous
because it leads to extrapolations which rapidly decay outside the known observation interval. With respect to object
oriented coding, these algorithms lack a selection and estimation strategy which is optimal in the sense of generating
only a minimum number of nonzero frequency coefficients for a given reconstruction quality of f(n) as evaluated
inside the known observation interval. The latter issue is addressed by the “selective deconvolution” methods in
Refs. 19,20, where the bandpass filtering in Fig. 1 is replaced by a selection of dominant conjugated spectral line
pairs and optimal estimation of their complex values. The selective deconvolution algorithm also generates “good”
extrapolations both for univariate signals and 2D image segments. Like Ref. 15, selective deconvolution is iterative
and requires a forward and an inverse DFT per step.

An algorithm for spectral analysis and extrapolation which works completely in the Fourier domain was derived
in Ref. 12, starting from ideas of selective deconvolution in Refs. 19,20. It combines optimal selection and estimation
of DFT line pairs, and needs only one foward DFT at the beginning of the iteration, and an inverse DFT when it
ends.

The discussed approaches to spectral analysis and extrapolation employ the discrete Fourier transform, and rely
on the convolution theorem. In object oriented image coding, it is often desired to use other transforms like the
discrete cosine transform (DCT). A DCT-based approach to segment oriented image coding can be found in Ref. 21.
With respect to extrapolation, this algorithm is afflicted with the drawback of favouring lowpass-like extrapolations.



Figure 1. Illustration of the recursive algorithms for bandlimited spectral analysis in Refs. 15,16.

In Refs. 11,10, extrapolation and spectral analysis is approached from the point of view of linear approximation.
A special framework — termed successive approximation — is developed which combines optimal approximation
of the observed signal with estimation of its unknown values outside the observation window. The framework
works with any orthogonal transform, including the DFT, the DCT, the Walsh transform and the discrete Hartley
transform. The algorithms provide transform representations for efficient transform coding as well as generally good
extrapolations. When the DFT is used, Ref. 10 boils down to the Fourier domain deconvolution of Ref. 12 discussed
above, and which we use as a main ingredient of our extrapolation algorithm.

3. DEFECT INTERPOLATION BY SPECTRAL DECONVOLUTION
3.1. The Interpolation Algorithm
For notational convenience, we start with a univariate analysis. We model the observed signal g(n) as

g(n) = f(n) · w(n) ◦−•G(k) =
1
N
F (k) ∗W (k) =

1
N

N−1∑
l=0

F (l) ·W (k − l), 0 ≤ n, k < N (1)

where f(n) is the undistorted signal, and w(n) a binary defect window, with w(n) = 1 for L < N samples, and
w(n) = 0 if pixel n is inactive. G(k), F (k) and W (k) are the DFT spectra of g(n), f(n) and w(n), respectively.
Both f(n) and g(n) are real valued, hence, G(k) = G∗(N − k) and F (k) = F ∗(N − k). Our goal is to estimate
F (k) •−◦ f(n) for 0 ≤ n, k < N . Let us select a spectral line pair G(s) and G(N − s) of G(k). If F (k) consisted only
of two lines at s and N − s, i.e.

F (k) = F̂ (k) = F̂ (s)δ(k − s) + F̂ (N − s)δ(k −N + s) (2)

convolution with the window spectrum W (k) would yield for the observed pair

G(s) = 1
N

(
F̂ (s) ·W (0) + F̂ ∗(s) ·W (2s)

)
G∗(s) = 1

N

(
F̂ ∗(s) ·W ∗(0) + F̂ (s) ·W ∗(2s)

)
(3)

where F̂ (s) and F̂ (N − s) = F̂ ∗(s) are the estimated coefficients. From (3), F̂ (s) can be found to

F̂ (s) = N ·
(
G(s)W (0)−G∗(s)W (2s)

)(
|W (0)|2 − |W (2s)|2

) (4)



The estimated spectrum F̂ (k) would then be given by (2). Generally, F (k) consists of more than two spectral lines.
The error after deconvolution (4) at s and N − s in the spectral domain is given by

G(1)(k) = G(k)− 1
N
· F̂ (k) ∗W (k) = G(k)− 1

N

(
F̂ (s) ·W (k − s) + F̂ ∗(s) ·W (k + s)

)
(5)

G(1)(k) is the spectrum of the window internal difference signal

g(1)(n) = g(n)− f̂(n) · w(n) = w(n)
(
f(n)− f̂(n)

)
(6)

Clearly, G(1)(k) = 0 for k = s and k = N − s.
Given s and N − s, the estimates F̂ (s) and F̂ (N − s) are optimal in the minimum mean square error (MMSE)

sense if the energy Eg of g(1)(n) is minimized. Using Parseval’s theorem, Eg can directly be evaluated in the spectral
domain according to

Eg =
N−1∑
n=0

(
g(1)(n)

)2

=
1
N

N−1∑
k=0

|G(1)(k)|2 =
1
N
· EG (7)

In the appendix, it is shown that (4) indeed provides MMSE estimates for the sought frequency coefficients.

If the selected line pair F̂ (s) and F̂ (N − s) is dominant in a sense specified below, its convolution with W (k)
tends to “hide” other, less dominant spectral coefficients of F (k). This influence is removed by (5), so that another
line pair can be selected from G(1)(k), estimated and subtracted. This leads to the following iteration for spectral
deconvolution:

• Initialization: F̂ (0)(k) = 0, G(0)(k) = G(k), i = 1.

• i-th iteration step: Select a pair of spectral coefficients G(i−1)(s(i)), G(i−1)(N − s(i)) out of G(i−1)(k).

• Estimate F̂ (s(i)), F̂ (N − s(i)) according to (4) such that G(i)(s(i)) = G(i)(N − s(i)) = 0, i.e.

G(i−1)(s(i)) = 1
N

(
F̂ (s(i))W (0) + F̂ ∗(s(i))W (2s(i))

)(
G(i−1)(s(i))

)∗ = 1
N

(
F̂ ∗(s(i))W (0) + F̂ (s(i))W ∗(2s(i))

)
(8)

⇒ F̂ (s(i)) = N
(
G(i−1)(s(i))W (0)−

(
G(i−1)(s(i))

)∗
W (2s(i))

)
/
(
|W (0)|2 − |W (2s(i))|2

)
| (9)

• Accumulation: Form the i-th estimate of F (k) by the update F̂ (i)(k) = F̂ (i−1)(k) + F
(i)
∆ (k), with (see (2))

F
(i)
∆ (k) = F̂ (s(i))δ(k − s(i)) + F̂ ∗(s(i))δ

(
k − (N − s(i))

)
.

• End this step by forming the new error spectrum G(i)(k) = G(i−1)(k)− 1
N F

(i)
∆ (k) ∗W (k).

• Start step i+ 1 by selecting a new line pair of G(i)(k).

Since we seek to minimize the error (7), the line pair we should select in the ith iteration is the one which
maximizes the energy reduction ∆E(F̂ (s(i)), which can be calculated to (see (5) and (24) in the appendix)

∆E

(
F̂ (s(i))

)
=

1
N2

N−1∑
k=0

|F̂ (s(i))W (k − s(i)) + F̂ ∗(s(i))W (k + s(i))|2 (10)

what can be rewritten to

∆E =
1
N2

F̂ ∗(s(i))
∑N−1
k=0

[
F̂ (s(i)) |W (k + s(i))|2 + F̂ ∗(s(i))W (k + s(i))W ∗(k − s(i))

]
+

1
N2

F̂ (s(i))
∑N−1
k=0

[
F̂ ∗(s(i)) |W (k − s(i))|2 + F̂ (s(i))W (k − s(i))W ∗(k + s(i))

]
(11)



For a binary window, we have w2(n) = w(n). Inserting this into Parseval’s theorem, we obtain

∑N−1
k=0 |W (k + s(i))|2 =

∑N−1
k=0 |W (k − s(i))|2 =

∑N−1
k=0 |W (k)|2 = N

∑N−1
n=0 w(n) = N ·W (0)∑N−1

k=0 W (k + s(i))W ∗(k − s(i)) = N
∑N−1
n=0 w(n) exp

{
−j2π 2s(i)

N n
}

= N ·W (2s(i)) (12)

Inserting (12) into (11) yields

∆E = F̂ ∗(s(i)) ·G(i−1)(s(i)) + F̂ (s(i)) ·
(
G(i−1)(s(i))

)∗ (13)

Since we know how to estimate F̂ (s(i)) optimally (9), F̂ ∗(s(i)) can be eliminated, thus expressing the error energy
reduction depending on the available error spectrum line G(i−1)(k(i)

s ) as

∆E = N ·
2 |G(i−1)(s(i))|2 W (0)− 2Re

{(
G(i−1)(s(i))

)2

·W ∗(2s(i))
}

|W (0)|2 − |W (2s(i))|2
(14)

Selecting the best line pair in each iteration hence implies finding s such that ∆E according to (14) is maximum.
Because of the symmetry of the DFT spectra of real valued signals, it suffices to search over only half the coefficients
of G(i−1)(k), i.e. from k = 0 to k = N/2, to find s(i).

Let us also mention here that for s(i) = 0 and s(i) = N/2, i.e. the DC-coefficient and the coefficient representing the
highest possible frequency, no conjugate lines exist. We can the only select the single lines G(i−1)(0) or G(i−1)(N/2)
rather than line pairs. As shown in the appendix, the estimation according to (9) of F̂ ∗(s(i)), s(i) = 0 or s(i) = N/2
then simplifies to

F̂ (s(i)) =
N

W (0)
·G(i−1)(s(i)) (15)

Similarly, the calculation of the error energy reduction ∆E according to (14) modifies to

∆E =
2N
W (0)

· |G(i−1)(s(i))|2 (16)

Clearly, when selecting only a single line, the error energy reduction depends only on the modulus spectrum
|G(i−1)(s(i))|, apart from a constant factor. To save computational expense in the selection step, a simplified ap-
proach is to always select s(i) such that |G(i−1)(s(i))| is maximum, regardless of whether a single line is tested, that
is, s(i) = 0 or s(i) = N/2, or a line pair. Practically, the outcome of the iteration remains almost unchanged.

When the estimated spectrum F̂ ∗(s(i)) contains as many lines as there are samples of f(n) inside the window
w(n), the remaining error energy EG vanishes. The backtransformed estimate f̂ (i)(n) is then identical to g(n) inside
the observation window, and contains extrapolated information outside. In practice, the iteration is stopped when
∆E falls below a prespecified level ε, or when a maximum number of iterations is reached.

To achieve high spectral resolution for the interpolated signal, it is often reasonable to apply zero-padding to g(n)
and w(n) before transforming and starting the iteration. An illustration of the entire recursion is given in Fig. 2.

3.2. Implementation using the FFT
Let us briefly discuss the 2D-implementation of our algorithm. Without loss of generality, let us assume the defect
to be embedded in a rectangle of size N ×N pixels. We then observe

g(m,n) = f(m,n) · w(m,n) ◦−•G(k, l) =
1
N2

F (k, l) ∗W (k, l) , 0 ≤ m,n, k, l < N (17)

When selecting and estimating a coefficient at (s, t), conjugated line pairs can be considered except for (s, t) = (0, 0),
(s, t) = (0, N/2), (s, t) = (N/2, 0) and (s, t) = (N/2, N/2), where only a single line can be selected. In the former
case, (14) for the calculation of the reduction of the error energy and (9) for estimation straightforwardly extend to
the bivariate case. In the latter, the bivariate equivalents of (16) and (15) apply. Obviously, because of the symmetry
of the DFT-spectra, it suffices to search only one halfplane in the selection step. Let us finally mention that because
of the implicit periodicity of the DFT, all arguments which may exceed N or be lower than zero must be evaluated
modulo N . For instance, 2s would have to be evaluated as (2s)modN , etc.



Figure 2. Illustration of the recursive spectral deconvolution algorithm. From the final spectral estimate F̂ (i)(k),
the interpolated signal estimate is obtained by an inverse DFT. Unlike the algorithm in Fig. 1, only one spectral
transform is required when starting or ending the iteration, but not two per step.

4. RESULTS

Fig. 3 shows application of our spectral defect interpolation algorithm to a textured image with a large defect of size
32× 32 pixels. The restored image is shown in Fig. 3b). The estimation result was inserted into the defect, with the
original outside the defect window. 100 iterations using the simplified selection by modulus coefficients were applied.
Mathematically, the restoration fr(m,n) is then given by

fr(m,n) = g(m,n) + (1− w(m,n))f̂ (100)(m,n) (18)

Also depicted in Fig. 3c) is the error energy reduction ∆E according to Eqs. (14) and (16), where the image size
N was normalized out. Evidently, the extrapolation result fits well with the known samples, and is almost free of
blurring.

To test the ability of our extrapolation algorithm to cope with noise without generating an unnatural appearance,
we replaced the texture image by simulated white noise (Fig. 4). Processing parameters were the same as for Fig.
3, but the number of iterations was increased to 500. Clearly, our algorithm is able to cope with noise, and to
extrapolate noise signals in a natural manner. This is remarkable since unlike the textured image, white noise by
definition does not possess dominant spectral lines. The steep drop-off of the error enregy reduction over for the first
iteration step is due to the fact that for purposes of visualization, a positive mean value was added to the originally
zero-mean signal, which is estimated first.

Fig. 5 shows results for a radiograph of size 482 × 482 pixels, which is subjected to a synthetically generated
defect map. For testing purposes, the depicted defects are larger and more numerous than in real detectors. The



a) b) c)

Figure 3. a) Textured image of size 64 × 64 pixels with a defect of size 32 × 32 pixels in its centre. b) Image a)
with the restored defect inserted. c) Normalized spectral error energy reduction ∆E/N over iterations.
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Figure 4. a) Simulated white noise image of size 64× 64 pixels with a defect of size 32× 32 pixels in its centre. b)
Image a) with the restored defect inserted. c) Normalized spectral error energy reduction ∆E/N over iterations.

defective image is shown in Fig. 5c), and the restored one in Fig. 5d). Enlarged detail areas are shown in Fig. 6.
While one would usually limit the algorithm to a rectangle embedding a large defect, we have here processed the
entire image based on blocks of size 64× 64 pixels, which overlapped by 32 pixels in each dimension. Each block was
zero padded to 128× 128 pixels. After each block was extrapolated, the extrapolation result from the central region,
i.e. from (17, 17) to (48, 48) of each block was inserted into the defective image. The simplified selection procedure
by the maximum modulus was used.

Results for another radiograph are given in Fig. 7. Processing parameters were identical to those in Fig. 5.

5. DISCUSSION AND CONCLUSIONS

As an alternative to spatial domain defect interpolation algorithms, we have in this paper described a spectral domain
approach. While in the spatial domain defect generation can be modelled as multiplication of the undistorted image
by a defect map, we have in the spectral domain a convolution between image spectrum and spectrum of the defect
window. Defect interpolation then corresponds to a deconvolution of these spectra. We have shown that similar
problems have been addressed in the area of transform-based segment oriented image coding.10 Our approach is
particularly suited to large defective areas or to cases where simple algorithms cause problems because of their explicit
or implicit averaging. The good behaviour of our method was demonstrated both with texture signals containing
dominant spatial frequencies and with noise-like signals with a spread-out spectrum. The price to pay is a relatively
high computational complexity of our algorithm. Practically, one would therefore apply this algorithm to a few large
defects only, where spatial domain interpolation fails. To reduce the number of iterations needed, one could replace
the estimation of a line pair by simultaneously estimating all so far selected lines (successive best-approximation10,12).
This limits the theoretical maximum number of iterations to obtain a vanishing error energy to about half the number
of observed samples. However, each iteration step then becomes computationally more expensive. Another possibility
to reduce the number of iterations is to first apply a spatial interpolation algorithm, and to initialize F̂ (0)(k) in Fig.
2 by the DFT spectrum of the interpolation result of this algorithm. Since this is generally a much better initial
estimate than the empty defect, less iterations should be required to reach an artifact-free final interpolation.



a) b)

c) d)

Figure 5. a) Example part of a radiograph of size 482 × 482 pixels, b) synthetic defect map (exaggerated), where
inactive pixels are black, c) simulated defective acquired radiograph, d) defective radiograph after spectral restoration.
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Figure 6. Detail area from (140,233) to (181,319) from Fig. 5 for a) the original, b) the defective image and c) the
restored image.

Another advantage of our algorithm is that it can be extended to non-binary windows, i.e. to cases where pixels
are not equally sensitive but still active. For such gain correction, the assumption w2(n) = w(n) would have to be
dropped. Still, equations for line selection and estimation can be derived.

6. APPENDIX

We first indirectly prove that, given s and N−s, the error energy EG is minimized by estimating F (s) and F (N−s) =
F ∗(s) as given in (4). To this end, we consider another estimate F̃ (s) = F̂ (s) + a, which differs from F̂ (s) by a,
where a is complex. The error spectrum then evaluates to

G̃(1)(k) = G(k)− 1
N

(
F̃ (s) ·W (k − s) + F̃ ∗(s) ·W (k + s)

)
= G(1)(k)−D(k) (19)

where D(k) = (1/N)
(
aW (k− s) + a∗W (k+ s)

)
. The difference ∆E(a) between the energy ẼG of G̃(1)(k) and EG in

(5) is given by

∆E(a) = ẼG − EG =
N−1∑
k=0

|D(k)|2 −
N−1∑
k=0

(
G(1)(k)

)∗
D(k)−

N−1∑
k=0

G(1)(k)D∗(k) (20)

and can be rewritten to

∆E(a) =
N−1∑
k=0

|D(k)|2 − 2
N

Re

[
a∗

N−1∑
k=0

G(1)(k)W ∗(k − s) + a
N−1∑
k=0

G(1)(k)W ∗(k + s)

]
(21)

With
∑
k S1(k) · S∗2 (k) = N ·

∑
n s1(n) · s∗2(n), we have

∆E(a) =
N−1∑
k=0

|D(k)|2 −2Re

[
a∗
∑N−1
n=0 g

(1)(n)
(
w(n) exp

(
j2π s

N n
))∗

+a
∑N−1
n=0 g

(1)(n)
(
w(n) exp

(
−j2π s

N n
))∗]

(22)

Since w(n) is a binary window, we have w(n)g(1)(n) = g(1)(n), and thus

∆E(a) =
∑N−1
k=0 |D(k)|2 − 2

[
a∗
∑N−1
n=0 g

(1)(n) exp
(
−j2π s

N n
)

+ a
∑N−1
n=0 g

(1)(n) exp
(
j2π s

N n
)]

=
∑N−1
k=0 |D(k)|2 − 2

[
a∗G(1)(s) + aG(1)(N − s)

]
(23)



a) b)

c) d)

Figure 7. a) Example part of a radiograph of size 482 × 482 pixels, b) synthetic defect map (exaggerated), where
inactive pixels are black, c) simulated defective acquired radiograph, d) defective radiograph after spectral restoration.



According to (4), G(1)(s) = G(1)(N − s) = 0, yielding

∆E(a) =
1
N2

N−1∑
k=0

|aW (k − s) + a∗W (k + s)|2 (24)

which is greater than zero if a 6= 0. Hence, EG is always smaller than ẼG.

Rather than from the reasoning in the beginning of section 3, the equations (9) and (15) for estimating spectral
lines can also be derived by calculating the derivative of the spectral error energy EG with respect to the sought
spectral lines. From (5) and (7), the error energy after the ith iteration step can expressed as

EG =
N−1∑
k=0

|G(i)(k)|2 =
N−1∑
k=0

|G(i−1)(k)− 1
N
· F̂ (i)

∆ (k) ∗W (k)|2 (25)

Eq. (9) can then be obtained by partially differentiating EG with respect to F̂ (i)(s) and F̂ (i)(N − s), and equating
the derivatives to zero. Solving the resulting set of two equations for F̂ (i)(s) and F̂ (i)(N − s) yields (9). If a single
line is F̂ (i)(s) is selected, deriving EG with respect to F̂ (i)(s), equating to zero and solving for F̂ (i)(s) yields (15).
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