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Abstract

We describe a new real-valued lapped transform for 2D-signal and image processing. Lapped transforms are
particuiarly useful in block-based processing, since their overlapping basis functions reduce or prevent block artifacts.

Our transform is derived from the moduiated lapped transform (MLT), which is a real-valued and separable transform.

Like the discrete cosine transform, the MLT does not allow to unambiguously identify spatial orientation from modulus

spectra or spectral energy. This is in marked contrast to the complex-valued discrete Fourier transform (DFT). The new

lapped transform is real vaiued, and at the same time allows unambiguous detection of spatial orientation from spectral

energy. Furthermore, a fast and separable algorithm for this transform exists. As an application example, we investigate

the transform's performance in anisotropic spectral approaches to image restoration and enhancement, and compare it to

the DFT. O 2000 Elsevier Science B.V. All rights reserved.

Zusammenfassung

Wir beschreiben eine neue reeilwertige überlappende Transformation frir 2D-Signal- und Bildverarbeitung. Überlap-
pende Transformationen sind besonders geeignet für blockweise Verarbeitung, da sie Blockartefakte reduzieren oder

vermeiden. Die neue Transformation wird aus der reellwertigen und separierbaren Modulierten Überlappenden Trans-

formation (MLT) abgeleitet. Im Gegensatz zur Diskreten Fourier-Transformation (DFT) erlauben die MLT wie auch die

Diskrete Cosinus-Transformation (DCT) keine eindeutige Detektion von Orientierung allein auf der Basis spektraler

Energieverteilung. Die neue überlappende Transformation ist reellwertig, und ermöglicht eindeutige Orientierungsdetek-

tion aus der spektralen Energieverteilung. Ein schneller, separierbarer Algorithmus für die Transformation existiert. Die

Transformation wird in spektraien Ansätzen zur Bildrestauration und Verbesserung eingesetzt, und mit der DFT

verglichen. O 2000 Elsevier Science B.V. A1l rights reserved.
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R6sum6

Nous d6crivons dans cet article une transformation röelle ä recouvrement nouvelle pour le traitement de signaux 2D et
d'images. Les transformations ä recouvrement sont particuliörement utiles en traitement par blocs, car leurs fonctions de
base ä recouvrement r6duisent ou empöchent les artefacts de bloc. Notre transformation est d6riv6e de la transformatlon
ä recouvrement modul6e (MLT), qui prend des valeurs röelles et est s6parable. De möme que la transformation discröte en
cosinus (DCT), la MLT ne permet pas d'identifier sans ambigüitö I'orientation spatiale ä partir des spectres d'amplitude
ou de l'önergie spectrale. Ceci contraste avec la transformation de Fourier discröte (DFT), qui prend des valeurs
complexes. La transformation ä recouvrement nouvelle prend des valeurs r6elles, et permet aussi une d6tection sans
ambigüitö de I'orientation spatiale ä partir del'6nergie spectrale. De plus, un algorithme rapide et s6parable existe pour
cette transformation. Pour donner un exemple d'application, nous 6tudions les performances de cette transformation
dans des approches spectrales anisotropes de restauration et de rehaussement d'image, et les comparons ä celles de la
DFT. O 2000 Elsevier Science B.V. All rights reserved.

Keywords. Lapped transform; Spatiai orientation; Energy spectrum; Image restoration; Spectral amplitude estimation

1. Introduction

Calculation of block or short-space spectra from
images and image reconstruction from processed
block spectra are standard operations in many im-
age processing tasks. Prime examples are image
compression [1a] and restoration by spectral am-
plitude estimation 13,6,2If. These methods rely on
the ability of the spectral transform to concentrate
signal energy into only a few coefficients. As shown
inll,2ffor image restoration and enhancement, the
performance of block spectra-based algorithms can
be considerably improved if perceptually important
information, like oriented lines and edges, can be
detected and processed in a special manner. In this
respect the discrete Fourier transform (DFT) is
particularly advantageous since the presence of lo-
cal orientation within a block results in concentra-
tion of spectral energy along the line perpendicular
to spatial orientation and passing through the ori-
gin [2,11]. The drawback of the DFT, however, is
that in order to avoid spurious high-frequency arti-
facts, each block must be windowed prior to trans-
formation. Perfect reconstruction then requires
overlapping blocks [16]. When using standard
windows like the triangular Bartlett window [21]
or the cosine-shaped Hanning window [2], the
blocks overlap by half the block size in each dimen-
sion. Each pixel is hence part of four blocks, result-
ing in a fourfold increased data volume.

Unlike the DFT, the discrete cosine transform
(DCT)does not require windowing. Perfect recon-

struction of the unprocessed image hence avoids
the necessity of overlapping blocks and redund-
ancy. Additionally, DCT basis functions approxim-
ate eigenvectors of a first-order Markov process
with reasonably high intersample correlation
[8,15]. The DCT is therefore widely used in image
compression techniques (JPEG, MPEG). The DCT
basis functions, however, do not generally decay
smoothly to zero at the block boundaries. They
thus exhibit discontinuities when thought of as
being padded by zeros beyond the boundaries. In-
dependent processing of the DCT spectra of adjac-
ent blocks therefore generates the well-known
block artifacts.

One possibility to avoid block artifacts in trans-
form-based processing is to use a window which
moves pixel by pixel, as described for the DCT in
[33,34]. The redundancy ofthis approach, however,
is even higher than that of the above windowed DFT
methods. In this paper, we therefore consider so-
called lapped transforms like the lapped orthogonal
transform (LOT) l27f or the modulated lapped
transform (MLT) l24f to reduce or even prevent
block artifacts. Essentially, these real-valued trans-
forms yield a non-redundant image representation
using overlapping basis functions. Fast algorithms
for these transforms exist 124,25]. In addition, lap-
ped transforms generally exhibit good energy com-
paction performance for the mentioned first-order
Markov data model [10]. These transforms are
therefore particularly attractive for compression,
for instance of medical images [12].



Unlike the DFT, the discussed real-valued trans-
forms do not allow unambiguous detection of
oriented structures from spectral energy concentra-
tion. The reason for this is that the DCT is derived
as the Fourier transform of vertically and horizon-
tally mirrored blocks 122). On the one hand, this
avoids the spurious high-frequency artifacts of the
DFT. On the other hand, spatial orientation is
mirrored, too. A given spatial orientation can
therefore not be distinguished from its mirrored
counterpart when looking at spectral energy distri-
bution.

More generally, this observation results from the
fact that in 2D-signal processing, DCT, LOT and

T. Aach, D. Kunz I Signal Processing 80 (2000) 2347-2364 2349

MLT are each separable into two 1D-transforms,
like the DFT. Regarding a block transform as
a decimated filter bank [9], the filters are separable
and real valued. Their modulus transfer functions
are therefore fourfold-symmetric about the origin,
as shown in Fig. 1 for the DCT, and in Fig.2 for the
MLT. Hence, a filter is equally sensitive for two
orientations, unless it is horizontally or vertically
oriented.

The complex-valued Fourier basis functions do
not exhibit this symmetry (see Fig. 3). Accordingly,
complex-valued lapped transforms have been de-
veloped, albeit not explicitly with the aim of unam-
biguous orientation detection in mind. In [35],

Fig. 1. DCT basis function of size 32 x 32 pixels for the spatial frequency coefficient (4,4) (a), and quasi-continuous centered log-modulus

transfer function (b). The transfer function was calculated by using the DFT after zero-padding the basis function to a size of 256 x 256.

The filter corresponding to the basis function clearly is equally sensitive to two different orientations. The spectral sidelobes are caused

by the discontinuities at the block boundary.

Fig. 2" MLT basis function of size 64 x 64 pixeis for coefficient @,Q @), and quasi-continuous log-modulus transfer function (b),

calculated as in Fig. 1. As before, the fllter corresponding to the basis function is equally sensitive to two different orientations. Spectral
sidelobes are reduced by the smooth window.
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Fig. 3. Real part of windowed DFT basis function of srze 32 x32 pixels for coefficient (a,0 @), and quasi-continuous 1og-modulus

transfer function (b), calculated as in Fig. 1. Because of the complex basis function; the spectrum exhibits no symmetry about the origin.

a complex lapped transform (CLT) is developed by
extending the LOT. It is used for motion estimation
by evaluating cross correlation in the spectral do-
main. The specific aim is to avoid artifacts from the
DFT-based circular convolution without zero pad-
ding the input data. Like the windowed DFT, the
ID-CLT is redundant by a factor of two. A fast
algorithm, based on the FFT, is given. The 2D-
CLT is separable, and redundant by a factor of
four. Approximate LOT-coefficients can be ob-
tained from real and imaginary pafi of the CLT.

A complex extension of the MLT for 1D-signals
is described in 126). Termed the modulated
complex lapped transform (MCLT), it improves
performance of spectral subtraction and echo
cancellation algorithms. Unlike the MLT, the
MCLT results in a diagonal matrix when direct and
inverse transform are cascaded [26]. Time-domain
aliasing cancellation in the overlapping blocks, as
required by the MLT, is therefore not needed.
While time-domain aliasing from unprocessed
blocks cancels exactly, this is generally not the case
for independently processed MLT-transformed
blocks. The resulting artifacts limit the perfor-
mance of e.g. echo cancellation. The MCLT avoids
these artifacts. As applied to lD-signals, it is re-
dundant by a factor of two. A fast algorithm based
on the DCT-IV and the discrete sine transform-IV
is also provided.

In this paper, we derive a new lapped transform
for 2D-signals which permits unambiguous ori-

entation detection from modulus or energy spectra.
Unlike the CLT and MCLT, our transform is real
valued, but not separable. The central idea is to
perform two MLTs with different but in some sense
complementary basis functions, and to combine the
resulting spectra. The transform results in only
a twofold increased data volume, and is hence less
redundant than the windowed DFT and the CLT
in [35]. The fact that the basis functions of the new
transform - named the lapped directional trans-
form (LDT)- are not separable is no serious draw-
back since the LDT is computed from the separable
MLTs by a simple butterfly operation. Another
consequence of using MLTs is that the basis func-
tions are smooth and overlapping, thus avoiding
block artifacts. A first description of the LDT was
presented in [20].

In the remainder of this paper, we first review the
MLT, and then derive the LDT. We then describe
applications of the LDT to the restoration and
enhancement of noisy images by anisotropic spec-
tral amplitude estimation before finishing with
conclusions.

2. Modulated lapped transform

The ID-MLT decomposes a signal into over-
lapping blocks of 2L samples l2al. The overlap
between adjacent blocks is ,L samples so that each
sample belongs to two blocks.
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Fig. 4. Sinusoid components of 1D-MLT basis functions for

k :0,1,2, and L : 32.

Let s(n), n : 0, ... ,2L - 1 denote the 2L samples
in a block. The real-valued MLT basis functions
are based on (co-)sine waves being symmetric about
(L - l)12 and anti-symmetric about (3L - l)12, as
shown in Fig. 4. Hence, there are only L different
functions satisfying both symmetry constraints.
These functions are modulated by a sine-shaped
window function with period 4l which is symmet-
ric about the block centre (2L - l)l2.Denoting the
window by h(n). it is given by2

The transform is then defined by a (L,2L)-matrix
with entries

r - ( . .  L - r \ / ,  1 \ l
w ( k , n l : h ( n ) ' c o s l  7 (  n -  .  l (  l r + ;

L L \  -  / \  - ) ) '

k  :  0 ,  . . .  , L  -  l ,  n  : 0 ,  . . , , 2 L  -  l .  ( 2 )

Note that with this definition, there is an offset of j

between the spectral index k of w(k,n) and the
actual frequency k + + of the cosine. These basis

2These basis functions differ by a sign from the ones rnl24].
The underlying reasoning, however, remains unchanged.

Fig. 5. Modulated 1D-MLT basis functions and modulating

window /r(n).

functions are depicted in Fig. 5. The basis functions
p(k,l ,n,n) of the 2D-MLT obey

P(k, l ,n ,m) :  w(k,n) 'w( I ,m),  (3)

where we have assumed that the basis functions
are defined over a quadratic support of 2Lx2L
samples. The indices k,l denote spatial frequen-
cies, and n,m spatial coordinates. The MLT coeffi-
cients S(k, /) for a 2D-signal block s(n,m) are then
given by

2 L - l  2 L - l

S(k,D: I  I  s(n,m)p(k, I ,n,m) (4)
n = 0  m = Q

for k,l - 0, .. . ,L - 1. When processing images, 2D
localized spectra can thus be obtained by cascading
a ID-MLT along rows and another ID-MLT
along columns, or vice versa. An example basis
function was shown in Fie. 2.

3. Lapped directional transform (LDT)

For the LDT we need another MLT, where we
exchange positions of the symmetry and anti-sym-
metry constraint in each basis function. The anti-
symmetry constraint is now positioned at (L - I)12,
and the symmetry constraint at (3L - l)12. We
denote this transform - which corresponds to

-  /  r \ l
# ( ,  - ;  )  l .  n  : 0 .  . . . . 2 L - r .
o - \  o / J

(1)
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n

Forword LDT

Fig. 7. Block diagram of the LDT and its inverse. The forward

transform is calculated from MLT (Eq. (a)) and MLT' (Eq. (7)),

each of which is applied as a cascade of 1D-transforms along

rows and columns. LDT coefficients are obtained from sums and

differences of the MLT coefficients and MLT' coefficients.

our new transform is to compute both MLT and
MLT', and to obtain new spectra from the sum and
the difference of these, as shown in Fig. 7. We will
show that taken together, spectral energy then dis-
tinguishes between mirrored orientations, thus per-
mitting unambiguous orientation detection from
spectral energy distribution.

For every block of 2L x 2l samples s(n,m) of an
image, there are .L x .L coefficients each for the
MLT and the MLT'. We combine these to LDT-
coefficients Y(i,j) by

i f i > 0 , j > 0 ,

l l 2 )  i f  i > 0 , j < 0 ,

i f i < 0 ,

where i , j  :  L  ++, -  L  +t r , . . . ,+ ,+, . . . ,L-+, ,
L - i. Note that, compared to the previous equa-
tions, we have here shifted the spatial frequency
index of each dimension by j, resulting in nonin-
teger indices l,j. Unlike in (2), the indices i,j of Y(i,j)
do hence correspond again to the spatial frequen-
cies of the sinusoids (see (10)). Moreover, the above
defined local spectrum is symmetric with respect to
the origin rather than to $,j). Formally, this spec-
trum consists of.4L2 real coefficients, which due to
the symmetry result rn 2L2 independent coefficients.
In total, this representation therefore contains
twice as many coefficients as the original image.

Fig. 6. Basis functions of ID-MLT' for k :0,1,2 and modula-

ting window h(n).

a time-inverted MLT except for a sign - by MLT'.
The basis functions of the ID-MLT' are given by

. f n (  t - 1 \ / .  1 \ rw ' ( k , n ) : h ( n ) s i n l  + (  n -  . 1 ( t + i ) 1 ,L - \  -  , / \  ' / J

k : 0 ,  . . . , L  -  l ,  n : 0 , . . . , 2 L  -  l .  ( 5 )

Examples of these basis functions are shown in
Fis. 6.

lttr 
- tlz,i - U2) - s'(i - rl2,i - rl2)

y(i,j) :irt, - rl2, - i - Il2)+ s'(i - Il2, - i -

[Y( 
- ; '  - i)

(8)

The basis functions of the
given by the product

P' (k, l, n, m) : w' (k, n)' w' (1, m)

and MlT'-coefficients of the 2D-signal s(n,m) arc
calculated by

2 L - t  2 L - 7

S'(k, l ) :  I  I  s(n,m)"p'(k, l ,n,m).  (7)
n = 0  m = O

Taken alone, neither of the local spectra S(k,l) and
S'(k, D can distinguish, based on spectral energy,
between mirrored orientations. The central idea of

2D-MLT' are then

(6)
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A closer look at the LDT's basis functions re-
veals its ability to identify orientation. Writing the
inner product to calculate the LDT-coefficients
from s(n, nr) as the sum

2 L - l  2 L - l

Y(i,j): I I e(i, i ,n,m)s(n,m), (9)
n = 0  m = O

we obtain for the LDT basis function e(i,i,n,m) for
i , j > 0

q(i, j ,n,m)

: w(i - ä,n)*(i - t,*) - w'(i - i,n)w'(i - i,*)

r - / /  L - 1 \  /  r l \ \ l
:h (n )h(m)cor l  ; (  t (  n -  .  l+1(^ - :

L r - \ \  L  /  \  2  ) ) l

(10)

The last line of (10) is an orientated cosine wave of
spatial frequency l,j, which is multiplied by the
separable 2D-window function h(n)h(m). A similar
relation holds for i > 0,j < 0. These directional
basis functions are shown in Fig. 8 in comparison
to their non-directional counterparts from the
MLT and MLT'. Unlike the MLT and MLT'basis
functions, the 2D-LDT basis functions are not sep-
arable into real-valued lD-basis functions. The
modulus transfer function of a LDT basis function
is symmetric about the origin, but not fourfold
symmetric (Fig. 9). The LDT therefore allows to

- .t'E'(, - ?)]'-[ä(' - ?)]]

: h(n)h(m) 
{.".[;,(, 

- 
?)]

f n /
x cosl;i(/,,_?)l

Fig.8. Example2D-MLTandLDTbasisfunctionsofsize64x64pixels, i .e. L:32:(a)basisfunctionforcoeff icient(3,2) oftheMLT,

(b) of the MLT', (c) LDT basis function (3.5,2.5), (d) LDT basis function (3.5, - 2.5).
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Fig. 9. LDT basis function for coefficient (4,4) and L : 32 (a), and its quasi-continuous log-modulus transfer function

uniquely identify orientation from energy or abso-
lute spectra.

The LDT can easily be inverted since both MLT
and MLT' coefficients can be recovered from the
LDT coefficients as follows:

s (k , / )  :+ l y (k+L t+ i l+v ( t  ++ , -  / -ä )1 ,  (11 )

s'(k, /) : +L - Y(k + +,t + +) + Y(k + +, - I - +)l
(12)

In principle, one of these data sets - S(k, I) or S'(k, l)
- is enough for perfect image reconstruction. There-
fore, when LDT-based spectral processing is to be
combined with MlT-based encoding, it suffices to
calculate either MlT-coefficients S(k,i) by (11) or
MLT'-coefficients S'(k, /) by (12) from the processed
LDT-coefficients, which are then fed to the codec.
In this case, the redundancy of the LDT does not
affect the compression stage (cf. for the MCLT in
audio processing [26]).

The drawback of this approach to reconstruction
is that orientation of the remaining basis functions
is ambiguous, which may produce artifacts when
weighted by a large coefficient.In the following, we
therefore reconstruct the processed image with re-
spect to the oriented basis functions by calculating
both the inverse MLT and inverse MLT', and tak-
ing the average of these. This is also illustrated in
Fig.7. The final division by four accommodates the
division by two in Eqs. (11) and (I2), and the aver-
aging operation.

4. Image restoration by local spectral analysis

4.1. Spectral amplilude estimation

We have applied the LDT within an algorithm
for image restoration, which is based on analysing
local spectra of the image data using overlapping
windows. The central idea is to estimate the ampli-
tudes of the spectral coefficients of a block from the
noisy observations Y(k,l), and to reconstruct the
restored data from these estimates. Spectral analy-
sis is carried out by block transforms like DFT,
DCT, MLT, or by filter banks. Known as spectral
amplitude (or magnitude) estimation, this approach
is widely used in speech processing [13,32], and
more recently also in image processing 13,5,6,21).
Estimation exploits the following properties of
spectral transforms: first, we view the transform
coefficients as uncorrelated. This assumption is mo-
tivated by the similarity of Fourier-type transforms
to the Fourier series expansion, which decorrelates
the analysed signal if the analysis interval exceeds
the correlation length of the transformed signal
[31]. Furthermore, each transform coefficient is
a weighted sum of the intensities in the processed
block. Invoking the central limit theorem, we re-
gard the coefficients of real transforms as Gaussian
distributed, and of complex transforms as complex
Gaussian distributed (cf. for speech [17,28]). The
coefficients can then be assumed to be statistically
independent, so that the amplitude estimate can be
determined separately for each coefficient. Starting
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from a minimum mean-square-error (MMSE) ap-

proach, and denoting an uncorrupted coefficient by

F(k,l), it is estimated by F1k,l7 : EIF(k,l)lY(k,l)l-

Since a spectral transform compresses the energy of

correlated image samples into only a few coeffi-

cients [30], we assume for each block that the

uncorrupted image signal appears in only a fraction

of the transform coefficients, with the rest repres-

enting noise. The conditional expectation can then

be expressed as

1

F 1k, 11 : I nyr 1t<, DIY (k, t), H lk, l)f
i = 0

x PfH ;(k, /)l Y(k, /)l . ( 1 3)

Here, H y(k,/) denotes the hypothesis that the obser-
vation Y(k,t) contains signal and noise, and Hs(k,l)
the hypothesis that Y(k,l) contains noise only (null
hypothesis). The probability P(Il; ( k, l)lY (k, /)) is the
conditional probability of hypothesis H;(k,/) given
Y(k,l).  Clearly, we have EIF(k,I)IY(k,D,Ho(k,l)f
:0. Furthermore, without any additional prior

knowledge about F(k,l) except that it is corrupted
by additive zero mean Gaussian noise, we have
EIF(k,l) lY(k,[),Hr(k,t)):  Y(k,/) '  Eq. (13) then re-
duces to F1k,q: Y(k,l) 'PlHJk,l) lY(k,l)f .  The
noisy observation is hence attenuated the more, the
lower its conditional probability is to contain sig-
nal. As the attenuation is a probability, it is always
non-negative and real valued.

Applying Bayes' theorem to the conditional
probability PlHJk,l)lY(k,I)1, and inserting the
above Gaussian assumptions, we obtain the follow-
ing estimation rule (for details see [1,3,6]):

^  t  (  , ' ( t . f l l t - i t
F 1 k , / ;  :  Y ( k . U l l + ) ( k . I ) e x p {  -  ' ' ' f  

t'  
L  

' 1 .  , x  ) )
: Y(k,l)f lr(k,l)f, (14)

where/[r(k, /)] is denoted the attenuation function'

The attenuation function depends on the so-called

instantaneous signal-to-noise ration (SNR) 121k,11,

which is defined by

1.,  , .  lv(k '  Dl 'r ' (k. l l : f f i .  (15)

lü(k, /) is the noise variance of the (k, I)th spectral

coefficient. The parameter c is a weighting factor

similar to the one used in a generalized Wiener
filter (cf. [23]). The parameter 2(k, /) is obtained to

R(k. /) Po(k.l)^(k't):röffi '  (16)

where R(k, D is the variance of coefficients contain-

ing both signal and noise. Finally, Po(k,t) is the

unconditional a priori probability for IIs(k,l). Ver-

balizing ).(k,t), it is the signal-plus-noise-to-noise
ratio weighted by the ratio Po(k,l)111, - Po(k,l)1.

In practice, the precise values of R(k,l) and

Po(k,l) are not known. A common simplification is

to regard l(k,t) as a free parameter balancing noise

reduction and signal preservation, which does not

vary over (k, t). As derived in the [1], an alternative

is to determine ,t as a function of the significance of

a hard decision between the hypotheses Ile and

II1. The shape of f(r) for different values of ,t is

shown in Fig. 10. As /(r) increases monotonically

ovef r, an observed coefficient is attenuated the

more, the smaller its instantaneous SNR r2.

Fig. 11 illustrates this algorithrn. After decompo-

sing the input image into blocks and transforming

these, the absolute value of each coefficient is taken

in the lower branch. For each coefficient, the

instantaneous SNR is then calculated, and the

attenuation determined. After multiplication accord-

ing to Eq. (14), the restored image is reconstructed.
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c  u . o

€ o.s
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0
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Square  roo t  r  o f  ins tan taneous SNR

Fig. 10. Illustration of the noise attenuation function /(r) for

different values of,1, and a : 1.
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Fig. 11. Block diagram of spectral amplitude estimation.

The box labelled 'noise model' stores the spectral
noise variance N(k, /), which is assumed to be
known for each coefficient.

4.2. Anisotropic spectral amplitude estimation

So far, the restoration algorithm is isotropic in
the sense that the same attenuation function is
applied to all coefficients, regardless of their posi-
tion (k, /). This is a consequence of assuming the
parameter .i to be independent of (k, /). With respect
to oriented patterns like lines and edges, however,
the performance of spectral amplitude estimation
can be enhanced if orientation is detected, and the
attenuation function adapted for coefficients which
are likely to contribute to orientation. More specifi-
cally, we extend our algorithm to take into account
the prior knowledge that a block can exhibit an
arbitrary orientation. When using the LDT or the
DFT, spectral coefficients contributing to the local
orientation concentrate along a line perpendicular
to the spatial orientation which passes through the
origin. The central idea is to apply less attenuation
to coefficients along these coefficients, with this
behaviour the more pronounced, the more promin-
ent the local orientation is [2].

4.2. l. Orientation detection
An approach to detect local orientation in the

Fourier domain was described in [11]. The local
Fourier energy spectrum is analysed by means of
a 2x2 inertia matrix, the eigenvectors of which
determine the two axes along which energy concen-
tration is strongest (local orientation) and least
in a least-squares sense, respectively. The cor-
responding eigenvalues measure how well the con-
centration is pronounced. By means of Parseval's
theorem, this approach was transformed into the
spatial domain. This resulted in the same algorithm

for orientation detection as in [18], where orienta-
tion detection was formulated as the detection of
the direction in which spatial intensity variance is
least.

For our purposes, the spectral-domain formula-
tion in [11] is suited best, where we have carried
out the following modifications with respect to the
calculation of the inertia matrix:
o Calculation of the inertia matrix is based on the

instantaneous SNR r2(i,) rather than on the
coefficients Y(i,j) alone. This increases robust-
ness against noise. Additionally, potential noise
anisotropies, which may occur, e.g. in images
recorded in interlaced mode, are normalized out.

r The inertia matrix is rotated and normalized
such that its eigenvalues range between a max-
imum of + 1 for the local orientation axis, and
a minimum of - 1 for the axis perpendicular to
local orientation. These values are reached for
optimal concentration of energy along the local
orientation axis.

r To weight all spectral coefficients equally inde-
pendent of their distance from the origin, all
coefficients are'projected'onto the unit circle. In
other words, spectral energy is thought to be
concentrated on the unit circle.

In a first step, we hence calculate the following
matrix,4:

/ . -  i2  ) , .  . .  i i  \
I L ;r-,--zr'(i,j) L z::=r'ti,jl\

^  l i , j .  
- r J  

i , j ,  
- r J  

IA : |  
'"  

. ,- l ,  ( I7)
l -  l l  ^  t '  I

\L zi=rti.il L zLr-r'(Lj) |
\ t , j ,  

- T J  
i , j t  

- r J  
I

where the sums extend over all sites in a block
spectrum. The division of each matrix entry by
it + jt is responsible for the projection of r2(i,i)
onto the unit circle. With respect to a 'genuine'

inertia matrix, ,4 is rotated by 90". To obtain eigen-
values between - 1 and * 1, another matrix B is
calculated from A accordins to

) /b, b2 \B : _ A _ l : ( ; '  ' .  
) ,  ( t s )

trace(A) \b, - br/

where b1 and b2 are easily identified. I is the 2x2
identity matrix. The eigenvalues of B are

, /:---------t

d 1 : n / b i l b i : 4 ,  d z :  - d .  ( 1 9 )



Fig. 12. 2D spatial frequency domain for each block, where (k, I
are the coordinates of an observed coefficient Y(k, I). The bold
line is the orientation axis, while ö is the angle between the
orientation axis and the vector pointing to (ft, I).

The eigenvectors of B point parallel to and perpen-
dicular to the local orientation axis, respectively. In
the ideal case that all non-zero coefficients are
restricted to the orientation axis, we have d: I,
whereas an ideally isotropic distribution of the
12(r,7) results in d : 0.

It is not necessary to determine the eigenvectors
explicitly. We rather evaluate for each site (k, /) in
the spectral domain the expression

(k , t ) . 8 ' ( k , [ ) '
g(k , l \ : f f i  :  d ' cos (26 ) ,  (20 )

where ö is the angle between (k,I) and the local
orientation, which needs not to be known explicitly
(see Fig. 12, and Appendix A). Clearly, the max-
imum of g(k,l) is equal to the eigenvalue dt : d,
which is reached if (k,l) is situated on the orienta-
tion axis. As mentioned above, the maximum d
is the larger, the more prominent the local orienta-
tion is.

4.2. 2. Anisotropic attenuation
The orientation inforrnation is used to modulate

the attenuation depending on the processed coeffic-
ient's position relative to the orientation axis. The

which can be motivated by the 'signal-equivalent'

approach in [7,19].
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statistical vehicle to do so is to decrease the noise-
only probability P0(k, /) for locations k, / close to
the detected orientation, thus implying that spec-
tral coefficients close to or along the orientation
axis contribute to signal even when their instan-
taneous SNR is low. To this end, we define a'selec-
tivity'function

M(k,t) -maxlg(k'I)'of8 (21)
a

which ranges between zero and one, and increases
sharply when k, / is close to the orientation axis.
The exponentiation by eight serves to make M(k,l)
sufficiently selective. The maximum operation is
necessary since g(k, I) also takes negative values (see
(20)), which would become positive after exponenti-
ation, hence introducing unwanted mirror orien-
tations. For coefficients lying on the orientation
axis, the normalization by d7 ensures M(k,t1 : 4.
Assuming Po(k,l) to decrease sharply when ap-
proaching the orientation axis, we model

" 
"09'j] 

,, - 1 - M(k,t). (zz)
1 -  Po(k, l )  

'

This model is inserted into expression (16) for 1(k,[),
which now varies over (k,I) if orientation is detec-
ted. From (14), (16) and (22), we obtain for the
attenuation function /(r)

flr(k,t)f

l - .  f  , ' ( k ,D l r ' - ' ):  l  t  *  tro]o - M(k, l \)expt,  -  ---- .------ :  |  | ,L  
^ t  a  ) )

(23)

where lo : R(k,l)lN(k,I) is assumed to be constant.
The attenuation function in Fig. 10 then fans out to
an angle-dependent family of attenuation functions,
which is illustrated in Fig. 13. Alternatively or addi-
tionally, one could assume the parameter a to be
variable according to

u:  u(k ,D:  
T*k, t )

(24)
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Fig. 13. Orientation-dependent family of attenuation functions

as given by Eq. (23), with io : 1.0 and a : 1. Depending on the

angle of a coefficient's position relative to the dominant orienta-
tion the attenuation is reduced. For this plot, ideal orientation,
i .e. d: I  was assumed.

4.2.3. Enhancing orientation
In addition to adaptive attenuation, spectral ori-

entation information can also be used to selectively
enhance the detected oriented patterns. Generally,
sharpness can be improved by bandpass or high-
pass filtering. Isotropic filtering, however, increases
noise considerably. Confining the enhancement to
coefficients contributing to local orientation allows
to keep noise amplification moderate due to the
limited number of coefficients involved and their
relatively good SNR. A radial selection of spatial
frequencies that are relevant for appreciation of
image sharpness can be achieved by the bandpass
filter

Fig. 14. Anisotropic transfer function for selective enhancement

as a function of (k, I), plotted for a DFT block spectrum with

K : 32,and - Klz < (k,L) < Kl2. For each block spectrum, the

passband is tuned to the detected local orientation. For this plot,

an ideal orientat ion of - 60' and ß:1 were assumed.

the detected orientation. An instance of this filter is
illustrated in Fig. 14.

As the LDT behaves like the DFT with respect to
local orientation, the LDT can be used within this
framework in the same manner as the DFT. The
algorithm's ability to preserve or even emphasize
visually important structures remains untouched.

5. Results

Fig. 15 shows the original 'boats' image and
a noisy version, where zero mean Gaussian noise
with a variance of o2 :352 : 1225 was added,
yielding a PSNR of 17.25 dB. The size of all images
used in this section is 512 x 512 pixels. From the
processed images, a 32-pixel wide stripe along each
image edge was removed before reproduction here,
since these contain edge artifacts due to the finite
block size. In LDT-based processing, the size of the
basis functions was chosen to 32x 32 pixels. Corre-
spondingly, the blocksize in DFT-based processing
was 32 x 32 pixels, where a Hanning window was
applied to each block, requiring an overlap of 16
pixels in each dimension.

The spectral noise power N(k, D needed to deter-
mine the instantaneous SNR r21k,l1in (15)for each

1 . 0

0 .8

Q.7

.E o.o
c  ' ' -

E 0.4

0.3

H(k, t ) :  f  , in t (
frl , 't,

5 n t n  - ' ' l  ( z s tK T

where the block spectrum is of size K x K. The
parameter B allows to control the amount of ampli-
fication. Selectivity to orientation is obtained by
combining this isotropic bandpass filter with the
selectivity function M(k,l) from (21) by

H"(k, I ) :1*  M(k, l )H(k, l ) .  (26)

The adaptivity of M(k,I) to d ensures that the en-
hancement applied depends on the prominence of
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Fig. 15. Original 'boats' image (left) and its noisy version with a PSNR of l'7.25 dB.

Fig. 16. Resroration of the noisy 'boats'  image using DFT-based ( left ,  PSNR:21.5dB) and LDT-based (r ight, PSNR :21dB)

anisotropic amplitude estimation. Parameters: io : l, a : 4, f :0.

coefficient was measured from 40 images con-
taining only realizations of the unprocessed
additive noise by estimating the expected value
EllY(k,/)ltlHol given that only noise is observed.
This was carried out individually for each trans-
form. For the DFT, the blocksize and the window
function were the same as used for processing the
images. Similarly, a basis function size of 32x32
pixels was used for the LDT. Since the added noise
was nearly white, the estimated spectral noise
power lü(k, /) did not vary strongly over (k, /), yield-

ing about lü(k, /) : o2'128 for the windowed DFT,
and about N(k, /) : o2 for the LDT.

Fig. 16 shows the restoration results obtained by
anisotropic spectral amplitude estimation using the
DFT (left) and the LDT (right). The parameters of
the attenuation function were experimentally deter-
mined to Äo :1 and u:4. Here, no orientation
enhancement was applied, i.e. B :0 in (25) and (26).
The results of simultaneous noise reduction and
orientation enhancement using ß :1 are given in
Fig. 17.
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Fig. 17. Restoration and enhancement of the noisy 'boats' image
PSNR : 20.5 dB) anisotropic amplitude estimation and orientation

Qualitatively, LDT-based and DFT-based ver-
sions of the algorithm perform similarly. For
a quantitative comparison, we applied the above
processing to 40 different realizations of the noisy
image. After processing, the remaining noise was
then estimated by averaging these into one frame,
and subtracting it from each processing result. To
assess the loss of detail information relative to the
original image caused by noise reduction, we have
subtracted the averaged frame from the original
image (which was given on the left-hand side of Fig.
15), and calculated the mean-square error.

Table L summarizes the measured noise reduc-
tion performances of both DFT- and LDT-based
versions of our algorithm for the cases of applying
anisotropic noise reduction only as shown in Fig.
16, and applying anisotropic noise reduction and
orientation enhancement as shown in Fig. l7 " In
addition, quantitative results for isotropic noise
reduction as described in Section 4.1 are also in-
cluded. To obtain the latter results, a constant 2 of
, t : l w a s u s e d .

In Table 2, the measured error energies between
original and averaged processing results can be
found. They prove a slightly better ability of the
anisotropic algorithm to preserve details. Visually,
the effects of anisotropic processing are stronger
than implied by these measurements, since it affects
predominantly the important edge and line in-

using DFT-based (left, PSNR : 2I.2dB) and LDT-based (right,

enhancement (P : 1).

Table 1
PSNR in dB which remains after processing the image in Fig. 15.
Method 1: isotropic noise reduction with A(k,t):  l ,  a:4,

f : 0. Method 2: anisotropic noise reduction with ,10(k, | : 1,
a : 4, f : 0. Method 3: anisotropic noise reduction and orienta-
t ion enhancement with )o(k, l)  :  1, a: 4, ß : 1

Method 1 Method 2 Method 3

LDT
FFT

21
21.5

21
21.5

20.5
21.2

Table 2
Estimated detail loss of noise reduction captured by the mean
square error MSE(^) between original image and the average of
40 processed realizations of the noisy image. The table entries
are calculated as 101og[2552lMSE(^)] dB

Method 1 Method 2

LDT
FFT

J J . Z

J J

J J . +

J J . Z

formation. Of course, the impact of anisotropic
processing is strongest when combined with ori-
entation enhancement.

We compared our approach to the FlR/median-
hybrid (FMH) filter which was introduced by
Nieminen et al.129f, and which we found earlier to
possess outstanding detail preservation properties
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Fig. 18. Left: Central portion of the noisy 'boats' image processed by a 7 x 7 FMH f.lter. Right: Central portion of the LDT-processing

result from Fig. 16.

Fig. 19. Original 'lena' image (left) and its noisy version with a PSNR of 20.2d8.

236r

(cf. [a]). The processing result is given in Fig. 18.
Quantitatively, we measured a PSNR of 21dB for
the FMH filter, while its detail loss as measured in
Table 2 was 32 dB, indicating a somewhat higher
loss of detail than for our algorithm. Qualitatively,
the different detail preservation properties of the
FMH-filter and the anisotropic spectral amplitude
estimator are best noticeable when comparing
oriented structures like the rigging in Fig. 18. Also,
the FMH-filtered result shows a needle-like, more
grainy noise texture.

The degree of noise reduction achieved depends
on the parameter settings. While the mentioned
settings reduce noise by 3-4 dB, more reduction is
possible by increasing the values for,l and a, albeit
at the cost of more loss of image detail. As an
example, another test image is shown in Fig. 19.
Here, zero mean Gaussian noise with a variance of
o2 :625 was added (PSNR :20.2dB). Fig. 20
shows LDT-based processing results for anisot-
ropic noise reduction and anisotropic noise reduc-
tion combined with orientation enhancement. The
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Fig. 20. Processing results for the 'lena'image using the LDT. Left: Anisotropic noise reduction (,to : 1.5, u : 5, ß : O).PSNR: 24.8 dB.

Right: Anisotropic noise reduction and orientation enhancement (,i : 1.5, a : 5, ß : 1). PSNR: 24.3 dB.

LDT
FFT

25
25.6

24.8
25.s

z+. -\

25.2

Table 3
PSNR in dB which remains after processing the image in Fig. 19.
Method 1: isotropic noise reduction with 2(k,/):  1.5, a:5,

f : 0. Method 2: anisotropic noise reduction with ,io(ft.0 : 1.5,
a : 5,0 : 0. Method 3: anisotropic noise reduction and orienta-
t ion enhancement with ^o(k, l)  :  1.5, a :  5, P : 1

Method 1 Method 2 Method 3

6. Conclusions

We have derived a new real-valued lapped trans-
form termed the lapped directional transform. Un-
like other real-valued standard transforms as DCT
or MLT, the new transform uses directional basis
functions like the complex-valued DFT. hence pro-
viding for an unambiguous relationship between
orientation in the spatial domain and spectral en-
ergy distribution. The LDT basis functions are real
valued, and not separable. They are also overlap-
ping, and decay smoothly to zero toward the block
boundaries. The LDT is therefore unambiguously
orientation selective, and free of block and leakage
altifacts. As it doubles the data volume rather than
quadrupling it, it is also less redundant than the
DFT in connection with standard data windows.
Although the LDT's basis functions are not separ-
able, it is calculated by invoking a separable trans-
form, viz., the MLT. Since fast algorithms exist for
the MLT, so do fast algorithms for the LDT.

These properties make the LDT especially suited
for image processing and reconstruction by local
spectral analysis. To illustrate this point, we have
applied the LDT in an anisotropic spectral magni-
tude estimation algorithm for image restoration,
where this orientation property was exploited to
improve performance with respect to perceptually

Table 4
Estimated detail loss of noise reduction for processing of the
noisy image in Fig. 19. The measurements were obtained in the
same manner as in Table 2

Method 1 Method 2

LDT
FFT

parameters were set to Äs : 1.5 and a : 5 for
anisotropic noise reduction. The orientation en-
hancement parameter was set to B : 1, as before.

Quantitative measurements can be found in Tables 3
and 4, indicating a noise reduction by 4-5 dB.

34.5
33.9

34.9
34.3
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relevant detail. Both LDT- and DFT-based ver-

sions of this algorithm performed comparably. If

the processed coefficients are to be used in a sub-

sequent encoding stage, the redundancy of the LDT

can be circumvented by reconstructing either

MlT-coefficients or MlT'-coefficients from the
processed LDT-coefficients using (11) or (12). This

is an advantage of the LDT over the DFT.
For future r,vork, we intend to measure quantita-

tively the energy compaction of the LDT in a similar

manner as cione for other lapped transforms in

[10]. With respect to orientation, a more basic

question is how well transforms which are based on

separable 1D-covariance models perform with re-

spect to oriented structures which may not be char-

acterized well by these models. We expect that such

measurements will show that the LDT's orientation

energy compaction allows better separation of lines

or edges from noise than real-valued separable

transforms like the DCT and MLT.

Appendix A

To show that g(k,/) in (20) is equal to d'cos(2ö)

in Fig. 12, let us define the unit vector

u(k,l): (k,qlJF + t'. Then,

g(k,D : u(k,D' B'u(k,t)r . (4 .1)

Let us denote the normalized eigenvectors of B by

e1 and e2,where e1 corresponds to the eigenvalue

dr : d, and e2 lo il, : - d as given in (19). The

eigenvector e1 defines the orientation axis' Since

B is symmetric, the eigenvectors are orthonormal,
and we can develop u(k, /) into

u(k, l )  :  a '  e1 * b '  e2 (4.2)

with a : cos(ö) and b: sin(ä). Inserting (A'2) in
(A.1) yields

g(k,t) :d[cos2(ö) - sin' �1ö)1 : d' cos(2ö) (4.3)
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