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ABSTRACT

The evolution of colon cancer starts with colon polyps. There are two different types of colon polyps, namely
hyperplasias and adenomas. Hyperplasias are benign polyps which are known not to evolve into cancer and,
therefore, do not need to be removed. By contrast, adenomas have a strong tendency to become malignant.
Therefore, they have to be removed immediately via polypectomy. For this reason, a method to differentiate
reliably adenomas from hyperplasias during a preventive medical endoscopy of the colon (colonoscopy) is highly
desirable. A recent study has shown that it is possible to distinguish both types of polyps visually by means
of their vascularization. Adenomas exhibit a large amount of blood vessel capillaries on their surface whereas
hyperplasias show only few of them. In this paper, we show the feasibility of computer-based classification of
colon polyps using vascularization features. The proposed classification algorithm consists of several steps: For
the critical part of vessel segmentation, we implemented and compared two segmentation algorithms. After a
skeletonization of the detected blood vessel candidates, we used the results as seed points for the Fast Marching
algorithm which is used to segment the whole vessel lumen. Subsequently, features are computed from this
segmentation which are then used to classify the polyps. In leave-one-out tests on our polyp database (56
polyps), we achieve a correct classification rate of approximately 90%.

Keywords: Polyp, classification, colon, cancer, endoscopy, colonoscopy, vessel segmentation

1. INTRODUCTION

Cancer of the colon is the fourth most common type of cancer and the second leading cause of cancer death
in the USA. The greatest risk factors are age, and personal and family history of cancer.1 But other factors
like a chronic inflammatory bowel disease,2 smoking, physical inactivity, alcohol, and diabetes3 increase the risk
of developing colorectal cancer as well. Each year more than 135,000 new cases are diagnosed and over 56,000
people die from colorectal cancer in the United States.

The evolution of colon cancer starts with colon polyps. There are two different types of colon polyps, namely
hyperplasias and adenomas. Hyperplasias are benign polyps which are known not to evolve into cancer. In
contrast, adenomas have a strong tendency to develop cancer (via the so called adenoma-carcinoma sequence4)
and, therefore, they have to be removed immediately via a polypectomy. Hyperplasias which do not hamper
the normal colon function should not be removed as every polypectomy poses a risk for the patient (in about
10% of all cases a polypectomy causes a complication5). Indeed, polypectomies can cause serious bleedings in
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the patient’s colon if the patient is on blood thinning pharmaceuticals. They may even cause perforations of the
colon.

In 1994 Kudo et al. published a method6 to distinguish visually between adenomas and hyperplasias. It is
based on the so called pit pattern which describes a polyp’s surface structure. Pit patterns can only be observed
during chromo endoscopy where a dye is sprayed onto the polyp. If the pit pattern shows roundish spots, the
polyp is likely to be hyperplastic. If the pit pattern shows tubular or villous structures, the polyp it is likely to
be adenomatous. After the polyp inspection, the staining must be flushed away as it hampers the detection of
further polyps. Possibly, the endoscope’s lens becomes stained as well and needs to be cleaned before the polyp
can be inspected.

A recent study7 has shown that the classification of colon polyps by means of vascularization features provides
a sensitivity and specificity which are comparable to those of Kudo’s method. For the detection of vessels on
colon polyps, an imaging technology to enhance vessels like narrow band imaging (NBI) must be applied. In
NBI, a special light source is used in front of which a color filter wheel rotates. In this filter wheel, several optical
narrow band pass filters are integrated which produce an illumination well absorbed by hemoglobin. Therefore,
blood vessels can be distinguished more reliably from the remaining polyp tissue compared to normal white light
endoscopy. This technology is much easier to use than chromo endoscopy as the physician can switch the light
source from white light mode to NBI mode and back at any time.

We propose an algorithm consisting of several stages, which are reflected by the structure of our paper. In
the following section, we describe the preprocessing in which differences in illumination are reduced and specular
reflections detected on the polyp’s surface are excluded from further processing. In sec. 3, we elaborate on the
evaluated vessel segmentation algorithms. In sec. 4 we derive vascularization features which were selected in
cooperation with two specialists in endoscopic colon examination. Subsequently, we give information on our
polyp database, explain the classifier we use, and show the results. In sec. 5, we conclude the paper with a
summary of our method.

2. PREPROCESSING

Images acquired during an endoscopy of the colon exhibit properties which hamper their analysis. As the colon’s
surface is wet and the light source is parallel to the optical axis, it is very likely that specular reflections occur on
the polyp surfaces. These specular reflections need to be detected and excluded from later analysis. A further
problem is the inhomogeneous illumination. The endoscope’s light source is focused on the center of the field of
view which leads to strong vignetting. Furthermore, the distance from the endoscope to the polyp differs from
image to image so the overall illumination strength varies between images. In this section, we describe how to
detect specular reflections and compensate for inhomogeneous illumination.

2.1 Detection of Specular Reflections

Several algorithms for detection of specular reflections are known in literature. Gevers8 proposed the comparison
of two different color spaces to detect them. His basic idea is to use one color space in which edges caused by
texture changes as well as edges from specular reflections are observable. The other color space is only sensitive
to edges caused by texture changes and therefore the difference of both edge images contains the edges of the
specular reflections.

We found, however, that detection of specular reflections can be accomplished faster and easier exploiting
the fact that specular reflections exhibit very low color saturations. Unfortunately, not only very bright pixels
but also very dark pixels exhibit low saturations. To avoid the detection of these pixels as specular reflections
we perform an additional test on the pixel’s brightness value. The test to identify specular reflections can by
summarized by

isSpecularReflection =

{

true, if (Saturation < t1) & (Value > t2)
false, otherwise

(1)

where Saturation and Value are the respective components of the HSV color space, and t1 and t2 are the thresholds
on saturation and value, respectively. As this kind of segmentation usually tends to a slight under-segmentation,
a morphological dilatation is used to enlarge the segmented areas using a disc-shaped structure element. Fig. 1
shows an example of specular reflections successfully detected by the described method.



(a) Original image with two large
specular and one small reflections

(b) Binary mask showing detected specular
reflections (black)

Figure 1. Detection of specular reflections

2.2 Gray Value Conversion and Normalization of Image Brightness

From now on, we restrict our algorithm to work on monochromatic images. Therefore, like in ophthalmology,
we use the green color channel as it provides the best contrast for blood vessels.9 To reduce the effect of
inhomogeneous illumination, we now normalize the image brightness locally to the interval [0, 1]. To this end,
each pixel’s value is divided by the maximum value of the pixel’s local neighborhood, e. g. a 13 × 13 neighborhood.

3. VESSEL SEGMENTATION

As vessel segmentation is a critical part of our algorithm, we tested and compared two different algorithms: A
combination of Bredno’s directional stamping algorithm10 and Frangi’s vesselness filter,11 and a combination of
Kovesi’s features from phase symmetry12 and Sethian’s fast marching.13 In the following, these algorithms are
shortly summarized.

3.1 Directional Vesselness Stamping

The directional stamping algorithm relies on the structure tensor14 to identify oriented image content. The
structure tensor

T =

∫

Ω

(

gxgx gxgy

gxgy gygy

)

dΩ (2)

contains information on the orientation of the local gray level structure. Ω is the local neighborhood of the
pixel to be analyzed, and gx and gy are the partial derivatives of the gray value image g in x and y direction,
respectively. These derivatives are computed by convolutions with derivatives of a Gaussian function, i. e.

gx = g ∗
∂

∂x

(

1

2π
√

|Σ|
exp

(

−
1

2
~xT Σ−1~x

)

)

(3)

where ~x = (x, y)T , Σ is the covariance matrix, |.| is the determinant and ∗ is the convolution operator. The
derivatives in y direction are computed analogously.

For analysis, the structure tensor’s eigenvalues λ1 and λ2 (without loss of generality λ1 ≥ λ2) with the
respective eigenvectors ~ν1 and ~ν2 are considered. In the case of two large eigenvalues, more than one orientation
is present in the area Ω and the orientations cannot be determined using the structure tensor. If one eigenvalue
is large and the other one is small, one oriented structure (possibly a blood a vessel) is present in the image and
it is aligned with ~ν2. The angle δ of the orientation can be computed by

δ = atan2(ν2,y, ν2,x) (4)



where ν2,y and ν2,x are the y and x components of the vector ~ν2, respectively, and atan2 is the quadrant-aware
arcus-tangens function.

If both eigenvalues are small, no considerable structure is present in the current area Ω. As the structure
tensor is positive semi-definite, only zero-valued or positive eigenvalues can occur and, therefore, the sign of the
eigenvalue cannot be used to distinguish bright from dark structures.

For each detected oriented pixel, the values of an elliptically shaped Gaussian function

G(~x) =
1

2π
√

|L|
exp

(

−
1

2
~xT L−1~x

)

(5)

with the covariance matrix

L =

(

cos(δ) − sin(δ)
sin(δ) cos(δ)

)(

λ1 0
0 λ2

)(

cos(δ) − sin(δ)
sin(δ) cos(δ)

)T

(6)

is calculated. This Gaussian is rotated and scaled in a manner such that it locally approximates the blood vessel.
Subsequently, it is multiplied with the texture patch around the detected oriented pixel and then forms the so
called stamp

S∗ = G · g (7)

For each oriented pixel, the stamp is generated and added to or (metaphorically speaking) stamped onto an
accumulator image, which was initialized with zeros. After all pixels are processed, the accumulator exhibits
high values at locations where oriented structures (possibly blood vessels) occur.

Because the directional stamping algorithm as described above was too sensitive, we combined it with the
vesselness filter to achieve more reliable results. The vesselness filter relies on the second order derivatives
of a gray value image. The second order derivatives are computed by successive convolutions with Gaussian
derivatives as shown in Eq. (3).

Therewith, the Hessian matrix

H =

(

gxx gxy

gxy gyy

)

(8)

can be computed where the gxx, gxy and gyy are the second order derivatives. The eigenvalues γ1 and γ2 (without
loss of generality |γ1| ≥ |γ2|, here |.| is the absolute value) of the Hessian give information on the locally present
gray value variation. Two eigenvalues with large absolute values indicate a disc-shaped gray value structure. If
one eigenvalue’s absolute value is large and the other one is small or equal to zero, an elongated structure like a
blood vessel is the locally predominant structure. If both eigenvalues are (small or) equal to zero the gray values
in the examined area are (nearly or) totally constant. Therefore, the expression

V1 =

(

1 − exp

(

−

∣

∣

∣

∣

γ1

γ2 · α

∣

∣

∣

∣

))

(9)

is close to one if an elongated structure is present at the current image location. Here, α is a regulation parameter.
For robustness against noise, only strong gray value variations should be detected. A measure for the strength
of the gray level variation is the Frobenius norm ||.||F of the Hessian matrix, which can be expressed elegantly
using both its eigenvalues

||H||2F = γ2
1 + γ2

2 . (10)

Therefore, the expression

V2 =

(

1 − exp

(

−
γ2
1 + γ2

2

β

))

(11)

is close to one in the case of strong gray level variations and close to zero otherwise. β is another fine tuning
parameter.
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Figure 2. Directional Vesselness Stamping

The sign of γ1 gives information on whether there is a dark structure on bright background or vice versa.
In our case, the blood vessels are dark on bright background and, therefore, only locations where γ1 > 0 are of
interest. So finally, the vesselness can be expressed as

V =

{

0, if γ1 ≤ 0
V1 · V2, otherwise

(12)

and the combined directional vesselness stamp is defined as the directional stamp from Eq. (7) additionally
weighted with the vesselness V, such that it reads

S = G · V · g (13)

Fig. 2 shows an example of a gray level image and the corresponding vesselness image. Additionally, it depicts
the process of the directional vesselness stamp generation. Fig. 3 shows the segmentation results for an adenoma
(left column) and a hyperplasia (right column).

3.2 Phase Symmetry

The phase symmetry measure is based on a local spatial frequency and phase analysis of the image. The fact
that symmetric structures exhibit a characteristic distribution of phase information is then exploited to identify
blood vessel candidates.

In Fig. 4 the main idea of phase symmetry is depicted. At the top, an example of a gray level profile through
a blood vessel is shown and at the bottom there is its Fourier decomposition. One can observe that the symmetry
axis of the profile is also the symmetry axis of the Fourier decomposition. Moreover, all base functions exhibit
local extrema, i. e. they are all even-symmetric functions with a phase difference of 180 degrees. This feature
of phase symmetry (dominance of even-symmetric Fourier components) characterizes symmetric structures like
blood vessels.

In the following, only a short summary of the computation of phase symmetry is given. For a comprehensive
presentation of phase symmetry, Kovesi’s papers12,15 are highly recommended.

The local phase analysis is carried out using a set of quadrature wavelet pairs. Here, Log Gabor wavelets
are used. If the even and odd symmetric wavelets at scale n are denoted by Me

n and Mo
n, respectively, the filter

response vector can be expressed as
(

en(~x)
on(~x)

)

=

(

g(~x) ∗ Me
n

g(~x) ∗ Mo
n

)

(14)



(a) Source image (adenoma) (b) Source image (hyperplasia)

(c) Directional vesselness stamping (d) Directional vesselness stamping

(e) Result (f) Result

Figure 3. Example of vessel detection using directional vesselness stamping. Left column: adenoma. Right column:
hyperplasia.
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Figure 4. Top: Example of a gray value profile through a blood vessel. Bottom: Fourier analysis of the blood vessel
profile. One can observe that the phase difference of the different base function in the middle of the blood vessel is 180
degrees. The symmetry axis of the vessel is also the symmetry axis for all Fourier components.

where en and on are the even and odd filter responses at scale n, respectively. The corresponding amplitude is
given by

An(~x) =
√

en(~x)2 + on(~x)2 (15)

and the phase is given by
Φn(~x) = atan2(en(~x), on(~x)) (16)

The phase symmetry can now be computed by

sym(~x) =

∑

n ⌊|en(~x)| − |on(~x)| − T ⌋
∑

n An(~x) + ǫ
. (17)

As stated earlier, the dominance of even-symmetric components characterizes symmetric structures. In Eq. (17),
the absolute values of the even-symmetric components are summed up, whereas the absolute values of the odd-
symmetric components are subtracted. Therefore, the numerator is large if the even-symmetric components
outweigh the odd-symmetric ones. The parameter T is a threshold which accounts for image noise and the
operator ⌊.⌋ is defined as

⌊x⌋ =

{

x, if x > 0
0, otherwise

(18)

The denominator in Eq. (17) normalizes to the sum of all spectral amplitudes and the term ǫ prevents divisions
by zero.

The results of the phase symmetry measure can be seen in Figs. 5(c) and 5(d) for an adenoma and a
hyperplasia, respectively. As evidently not the whole vessel lumen is segmented, it is necessary to take further
steps to achieve this goal. To this end, the results were first skeletonized16,17 and these pixel locations were
handed to a region growing algorithm as seed points. As region growing algorithm we chose Sethian’s fast
marching algorithm.13,18 Since the region is expanded in directions which cause the lowest cost, a cost function
has to be defined and handed over to the fast marching algorithm. As cost function we chose

cost(~x) = s(g(~x)) − ϕ · sym(~x). (19)

where s is a sigmoidal function for enhancement of contrast between vessels and background and ϕ is a weighting
factor. With this cost function, the cost in dark blood vessels is lower than in the bright surroundings. The cost
in blood vessels is further reduced by the subtraction of the weighted phase symmetry measure. The results of
this step can be seen in the last row of Fig. 5.



(a) Source image (adenoma) (b) Source image (hyperplasia)

(c) Result phase symmetry (d) Result phase symmetry

(e) Result fast marching (f) Result fast marching

Figure 5. Example of vessel segmentation using phase symmetry. Left column: adenoma. Right column: hyperplasia.



3.3 Experiments and Results

As determining whether or not a pixel belongs to a blood vessel is very difficult even for an experienced physician,
we decided to use a gold standard that allows a range of possible correct segmentations. Fig. 6(a) shows a section
of an adenoma surface. In Figs. 6(b) and 6(c) two different gold standard segmentations are shown, which were
carried out by our research group’s specialists in endoscopic colon examination. In Fig. 6(b) all pixels were
marked which definitely belong to blood vessels whereas in Fig. 6(c) all pixels were marked which most probably
belong to blood vessels. In the evaluation of the segmentation, the result is regarded as correct if at least all
pixels from the gold standard with low sensitivity (Fig. 6(b)) but not more pixels than the pixels in the gold
standard with high sensitivity (Fig. 6(c)) are segmented. In Figs. 6(f), 6(g) and 6(h) the original image, the gold
standard segmentation with low sensitivity and the gold standard segmentation with high sensitivity are shown
for a hyperplasia, respectively.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 6. Top row: (a) green color channel of an adenoma’s surface, (b) gold standard segmentation with low sensitivity,
(c) gold standard segmentation with high sensitivity, (d) result of automatic segmentation using phase symmetry and fast
marching, (e) result of automatic segmentation using directional vesselness stamping. Bottom row: respective images of
a hyperplasia.

Figs. 6(d) and 6(i) show exemplary results of the combination of the phase symmetry filter and the fast marching
algorithm whereas Figs. 6(e) and 6(j) show the result of directional vesselness stamping. Evidently, the directional
vesselness stamping is still too sensitive for a reliable blood vessel detection.

Table 1. Results of automatic vessel segmentation using directional vesselness stamping and phase symmetry combined
with fast marching. The phase symmetry based algorithm clearly delivers superior results.

Directional vesselness stamping Phase symmetry + fast marching
Adenoma Hyperplasia Adenoma Hyperplasia

#vessel pixels 5287 151 5287 151
#non-vessel pixels 30901 32761 30901 32761
#false positives 7447 9696 587 833
#false negatives 175 0 402 0
#true negatives 20027 22914 26887 31777
#true positives 1685 0 1458 0
absolute error 7662 9696 989 833
relative error 35.1% 42.3% 3.5% 2.6%



For a quantitative analysis of the segmentation results, five polyps were segmented manually by the experts and,
subsequently, the algorithms were applied to these images. Tab. 1 summarizes the results of this experiment.
The relative errors of directional vesselness stamping were 35.1% and 45.3% for the adenomas and hyperplasias,
respectively. The errors for the combination of phase symmetry and fast marching, however, were only 3.5% and
2.6% for adenomas and hyperplasias, respectively. For this reason, the combination of phase symmetry and fast
marching was used in the following for vessel segmentation.

4. CLASSIFICATION AND RESULTS

For the classification of polyps, discriminative features for classification had to be chosen. To this end, two
specialists in endoscopic colon examination in our research group defined a set of features which was then
evaluated. The feature set contained the features which the physicians regarded as most important. These were
vessel length, area, and contrast. Further features were circumference, branching factor and the mean brightness
value at detected vessel positions.

Our dataset consisted of 56 polyps (37 adenomas and 19 hyperplasias). Each polyp was imaged using NBI
and removed from the patient’s colon. Then, the polyp tissue was analyzed histologically such that a reliable
ground truth was available.

In our first classification experiment, three features (mean gray value at detected vessel locations, vessel
length and mean vessel circumference) were chosen together with a linear classifier - namely a decision plane in
the three dimensional feature space. The plane’s normal was defined to point along the connection line between
the adenoma and hyperplasia cluster centers. The plane’s position was varied until the best possible result was
reached. As only very limited data was available, we decided to carry out leave-one-out tests. That means
the decision plane was defined using 55 polyps and the remaining one was then classified. With this setup we
achieved a correct classification rate of 89.2%. This corresponds to a sensitivity of 91.9% and a specificity of
84.2%.

In a second experiment, we defined the optimal decision plane manually to evaluate how good both classes
can be separated under optimal conditions. In this case, a correct classification rate of 94.6% could be achieved
which corresponds to a sensitivity of 100% and a specificity of again 84.2%.

A visualization of the feature space with the optimal decision plane is presented in Fig. 7. The polyps
marked with boxes are misclassified as being adenomas. The removal of these polyps might unnecessarily cause
complications like bleedings or performation. In these cases, however, the consequences for the patients are less
critical than in case of wronlgy classifying an adenoma as being a hyperplasia. In this case, the patient would
run the risk of developing cancer.
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Figure 7. Visualization of the three dimensional feature space with an optimal decision plane. Using the mean gray value
at detected vessel locations, the vessel length and the mean circumference as features, a classification rate of approximately
94% can be achieved using a linear classifier.



5. SUMMARY AND CONCLUSION

We have described a multi-stage system for the automatic feature extraction and classification of colon polyps.
During preprocessing of the analyzed image data, specular reflections were detected and excluded from later
analysis. Furthermore, as illumination in endoscopic images can heavily change, a normalization of image
brightness was subsequently carried out.

Vessel segmentation was a critical component and, therefore, two different vessel segmentation algorithms -
the directional vesselness stamping and a combination of phase symmetry and fast marching - were implemented
and evaluated. During the evaluation, we found that the combination of phase symmetry and fast marching gave
the best results.

Segmentations achieved with this combination were used to compute several vascularization features. The
most promising ones (vessel length, mean gray level at vessel centerlines and mean vessel circumference) were
used in leave-one-out classification experiments. On our polyp database (56 polyps with histological ground
truth), we achieved a correct classification rate of approximately 90%, which corresponds to a sensitivity of
91.9% and a specificity of 84.2%.
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