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NOISE IN HIGH DYNAMIC RANGE IMAGING

André A. Bell, Claude Seiler, Jens N. Kaftan and Til Aach

Institute of Imaging & Computer Vision, RWTH Aachen University, 52056 Aachen, Germany
E-Mail: andre.bell@lfb.rwth-aachen.de

ABSTRACT

High dynamic range (HDR) imaging is more and more widely

used to increase the limited dynamic range of digital cam-

eras and, in turn, to cover the dynamic range of the acquired

scene. This image acquisition process can be subdivided into

two steps. The first step is the measurement or estimation of

the mostly non-linear camera transfer function (CTF). This is

followed by the second step, the combination of a set of differ-

ently exposed images of the same scene into one HDR image

after linearization with the inverse CTF. Each of the individual

images in such an exposure set contains noise from the image

acquisition process. Consequently, the calculated HDR im-

age will as well contain noise, which fortunately is reduced

by the weighted average of the images from the exposure set.

We analyze the achieved gain in SNR for different weighting

functions proposed in the literature and compare these with a

plain average. Although these functions are based on reason-

able intuitions, we show that the highest SNRgain is achieved

with the plain average.

Index Terms— high dynamic range imaging, noise, noise

reduction

1. INTRODUCTION

Natural scenes often cover a high dynamic range (HDR),

which in general can not be acquired with a digital camera

in a single image. For example, consider the situation of tak-

ing a photograph that contains the inside of a room and some

exterior scene visible through a window. In most cases, the

exterior scene will be bright due to the direct illumination by

the sun, while the interior illumination is far darker. Hence,

one will acquire an image, which shows properly exposed de-

tails in the room and a saturated window, in which all details

of the exterior scene are lost. Alternatively, the exterior scene

is properly exposed, but all details of the room are lost in the

underexposed (dark) areas of that image.

To overcome this limitation, several methods have been de-

veloped that combine two or more differently exposed images

into one image of greater dynamic extent, i.e., a HDR image.

To this end, the mostly nonlinear camera transfer function

(CTF) f has to be measured or estimated. Chart-based mea-

surements [1] and radiometric measurements [2] have been

applied to measure the CTF. Several methods have been pro-

posed to estimate the CTF from a set of differently exposed

images of the same scene. These are model-based estimates

by fitting, e.g., a gamma curve [3], a polynomial [4], para-

metric functions [5, 6, 7], or a constrained piecewise linear

model [8, 9], to the CTF. Alternatively, a smoothness con-

straint [10] has been applied to estimate the CTF. The influ-

ence of noise on the recovery of f has been briefly discussed

in [4, 5].

Once the CTF f is known, i.e., measured or estimated, the

differently exposed images can be aligned in range and com-

bined into one HDR image. In general, the single images do

partially overlap in the range domain, and will be combined

by a weighted average into the resulting HDR image. This

weighted average reduces noise in the resulting HDR image

as compared to the noise in each single low dynamic range in-

put image. Therefore, we will experimentally investigate this

implicit noise reduction behavior of HDR imaging.

Hence, in this paper we will analyze the overall noise re-

duction behavior of HDR imaging. To this end, we first de-

scribe the imaging chain and the different noise sources in

Section 2. Next, we summarize different weighting functions

in Section 3, which are used to combine the images of an

exposure set into a HDR image. Then we explain our experi-

ments in Section 4, present the results in Section 5, and finally

conclude in Section 6.

2. THE IMAGING CHAIN

Radiance from light sources or reflected by objects passes

through the camera optics, resulting in an irradiance

E(x, y, λ) incident on the imaging sensor. This irradiance

is filtered by the spectral curves of Nτ color filters τ(λ), e.g.,

τR, τG, and τB in case of the R-,G-, and B-filters of the Bayer

pattern, in front of the sensor and by the spectral sensitivity

R(λ) of the sensor itself. The quantum efficiency η(λ) of the

sensor can, without loss of generality, be incorporated into the

spectral sensitivity of the sensor. Integrated over the area A of

the sensor element this results in an amount of radiant power

φm,n incident on the sensor element at pixel position (m, n)

φm,n =
∫∫ m+Δx,n+Δy

x=m,y=n

E∗(x, y) dA (1)
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with

E∗(x, y) =
∫ ∞

λ=0

E(x, y, λ)τ(λ)R(λ) dλ (2)

yielding the radiant energy Qm,n = t · φm,n collected in the

sensor element during the exposure time t. In the presence

of noise nQ, e.g., thermal noise, read out noise, or quantum

noise, this radiant energy is altered. Next, the nonlinear be-

havior of the imaging system, e.g., the nonlinear sensor sensi-

tivity near the noise floor and the full well capacity, or nonlin-

earities in the electronics, change the sensor response. These

nonlinearities are reflected in the camera transfer function f .

The resulting output I further includes additional noise nf ,

e.g., quantization noise. Hence, in a set of exposures Qj with

exposure times tj ; j = 0 .. Nj −1 the sensor output intensity

Ij for exposure time tj is given by

Ij,m,n = f(Qj,m,n + nQ) + nf ; Qj,m,n = tjφm,n (3)

Without fixed pattern noise (FPN), which is accounted for by

flat field correction, the major noise influences nQ can be

modelled as Gaussian noise [11]. We can calculate an esti-

mate φ̂m,n of φm,n, which will exhibit the full dynamic range.

To this end, the partial estimates φ̂j,m,n from each individual

low dynamic range image, given by

φ̂j,m,n =
1
tj

f−1(Ij,m,n) (4)

are combined by

φ̂m,n =

∑
w(φ̂j,m,n, Ij,m,n)φ̂j,m,n∑

w(φ̂j,m,n, Ij,m,n)
(5)

with w being a weighting function that represents the reliabil-

ity of the individual estimates φ̂j,m,n.

3. THE WEIGHTING FUNCTION

Different weighting functions have been proposed in the lit-

erature, obviously having influence on the noise reduction

through the weighted average in the calculation of a HDR im-

age. Therefore, we will now briefly outline three different

weighting functions that have been proposed in the literature

using the previously established notation. As a fourth alter-

native we suggest a straightforward averaging with constant

weights.

The first weighting function is based on the observation that

the output of the sensor is most reliable in areas of highest

slope of the CTF and least reliable in areas where the slope of

the CTF is lowest. Hence, the weighting function wMann has

been chosen to be the derivative of f

wMann(Q̂j) =
d

dQ̂
f(Q̂) (6)

by Mann et al. [3, 5] and consequently emphasizes ranges of

Q̂ with strongest contrast transfer.

Alternatively, a triangular function wDebevec, given by

wDebevec(Ij) =

{
I − Imin ; I ≤ 1

2 (Imin + Imax)
Imax − I ; I > 1

2 (Imin + Imax)
(7)

has been proposed by Debevec et al. [10]. This function

weights pixel values near the black or white level as unreli-

able and gray values centered between Imin and Imax are con-

sidered most reliable.

Mitsunaga et al. [4] introduced a weighting function

wMitsunaga, which is given by the estimated amplitude signal

to noise ratio SNRamplitude

SNRamplitude =
Q̂

σQ
=

f−1(Ij)
σI

d
dI f−1(Ij)

(8)

with σQ being the standard deviation of the noise nQ, σI be-

ing the standard deviation of the noise in the image, which is

used to estimate the standard deviation σQ by local lineariza-

tion. If σI is independent of the measurement value Ij the

weighting function is given by

wMitsunaga(Ij) =
f−1(Ij)
d
dI f−1(Ij)

(9)

Applying the rule for the derivative of the inverse this can be

rewritten as

wMitsunaga(Qj) = Q̂j
d

dQ̂
f(Q̂) (10)

which is the weighting function wMann multiplied by a linear

function.

A fourth alternative wMean is the uniform weight of pixels

by one, i.e., the average

wMean = 1 (11)

which rates all estimates Q̂j as equally certain.

Common to all of these weighting functions is that they are

set to 0 for pixels, which are either underexposed or saturated.

That is, the weighted average is calculated only over those

pixels that fall between the shoulder regions of the CTF.

4. EXPERIMENTAL SETUP

We generated a synthetic HDR test image with a linear de-

crease in φ over the x-direction of the image. This image

exhibits a uniform histogram. Next, we calculated exposure

sets with Nj = 8 low dynamic range images from this HDR

image using four different camera transfer functions. The first

three are given by

fγ(Q) = α + βQγ (12)
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Table 1. This table gives experimental results of the mean SNRgain [dB] over 100 experiment runs for each combination of

input SNR (different amount of nQ), CTF, quantization, and weighting function. The standard deviation of all entries ranges

from σmin = 0.0399 to σmax = 0.0495 with mean σ̄ = 0.0458. Note that the SNRgain is highest in almost all cases for the

weighting function wMean. For γ = 1.0, wMean and wMann indeed are the same.

fγ farctan

SNR weighting γ = 0.5 γ = 1.0 γ = 2.0 m = 0.02
[dB] function α = −0.348, β = 2.46 α = −0.071, β = 3.57 α = −0.004, β = 11.16 M = 0.3

without with without with without with without with

quant. quant. quant. quant. quant. quant. quant. quant.

wMann 4.73 4.71 5.10 5.06 3.97 3.87 5.03 5.00

15 wDebevec 4.13 4.13 3.79 3.79 2.73 2.73 3.90 3.90

wMitsunaga 4.75 4.74 3.97 3.96 2.58 2.57 4.36 4.34

wMean 5.10 5.08 5.10 5.06 5.10 4.80 5.11 5.08

wMann 4.97 4.95 5.41 5.35 4.05 3.89 5.34 5.28

20 wDebevec 4.27 4.26 3.87 3.86 2.61 2.61 4.00 4.00

wMitsunaga 4.97 4.95 4.05 4.03 2.43 2.41 4.51 4.49

wMean 5.41 5.38 5.41 5.35 5.41 4.79 5.41 5.37

wMann 5.14 5.03 5.63 5.40 4.04 3.65 5.54 5.36

30 wDebevec 4.32 4.29 3.87 3.83 2.44 2.42 4.00 3.98

wMitsunaga 5.11 5.06 4.04 4.00 2.20 2.16 4.58 4.53

wMean 5.63 5.54 5.63 5.40 5.63 2.71 5.63 5.47

with γ = 0.5, γ = 2.0, and γ = 1.0 and parameters α and

β as given in Table 1. Note that for γ = 1.0 this is a linear

camera transfer function. A fourth camera transfer function is

given by

farctan(Q) =
4
π

arctan

(
Q−m

M −m

)
(13)

The parameters are given in Table 1. From each of these ex-

posure sets we reconstructed the HDR image using each of

the weighting functions.

To investigate the influence of the sensor noise nQ, we

added noise to the HDR image before calculation of each low

dynamic range image, resulting in exposure sets with differ-

ent SNR and independent Gaussian noise in each of the single

exposures. We then calculated the mean SNR and mean SNR

improvement, i.e., the SNRgain in the recovered HDR images

for each of these experiment setups over 100 runs (see Ta-

ble 1).

To analyze the influence of the quantization alone, we cal-

culated the SNR in the recovered HDR images for each com-

bination of CTF and weighting function, using nQ = 0 and

8 bit quantization for the low dynamic range images. This

results in an upper bound for the SNR of the recovered HDR

image (see Table 2). We then repeated the experiments now

with both noise nQ at different SNR and with 8 bit quantiza-

tion for each of the low dynamic range images, 100 times and

once again calculated each mean SNRgain (see Table 1).

5. RESULTS

Table 1 gives numerical results obtained from these experi-

ments for different input SNR, all combinations of weighting

function and CTF, and, with and without quantization step

for the low dynamic range images. One would expect the

SNRgain to be SNRgain = 0 dB in case of no overlap of the

images in the range domain, i.e., disjoint parts of the scene

input dynamic range are observed by always only one low

dynamic range image with a particular exposure setting. Fur-

thermore, one would expect the SNRgain to be smaller than

SNRgain = 10 log10 k in case of k images having the same

exposure, i.e., a simple average of k images without increase

of the dynamic range. In our experimental setup, with eight

exposures in an exposure set, at average each individual pixel

is observed in k = 4 images. Hence, the expected SNRgain is

SNRgain = 10 log10 4 ≈ 6 dB. This is a good match for the

experimental results given in the table. Remarkably, in almost

all cases the SNRgain obtained from the weighted average is

highest with the weighting function wMean.

However, due to the quantization noise inherent in each

individual low dynamic range image an upper bound of the

overall obtainable SNR is given in Table 2. In case the in-

put noise drops and, hence, the SNR in the input HDR image

increases, the SNR is limited by the upper bound given in Ta-

ble 2. Even the weighting will not improve the SNR beyond

these values, because the quantization noise remains as the

major noise source in the HDR image.
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Table 2. This table shows the SNR [dB] in the recovered HDR image. The input HDR image contains is given in floating

point precission and contains practically no noise, but each low dynamic range image is quantized with 8 bit, introducing a

quantization noise nf in each of the images of the exposure set. These SNR are the best SNR to be achieved with this HDR

imaging system.

weighting function fγ fγ fγ farctan

γ = 0.5 γ = 1.0 γ = 2.0
wMann 52.26 49.73 45.48 51.12

wDebevec 55.42 55.81 54.00 55.81

wMitsunaga 56.54 56.21 54.27 56.54

wMean 54.70 49.73 35.97 51.94

To verify this upper bound, we have increased the input

SNR, i.e., we reduced the noise in the input HDR image, for

the different combinations of weighting function and CTF to-

wards the values given in Table 2. As expected the SNRgain

dropped to SNRgain = 0 dB, if the SNR approaches this upper

bound.

6. CONCLUSIONS

We have experimentally investigated the noise reduction be-

havior of different weighting functions proposed in the lit-

erature for the calculation of HDR images. The weighting

functions published so far are based on reasonable intuitions,

e.g., strongest contrast transfer or SNR dependent weighting.

Our results experimentally show that indeed a straightforward

average outperforms these weighting functions. At first, one

might be surprised by this result. However, HDR images are

almost always calculated from only a few exposures of an ex-

posure set from which even fewer images overlap in the range

domain. That is, the weighted average is calculated on very

few (mostly two to four) images. If the weighting function

even further reduces the influence of some of these images to

a few percent, this can be compared to an average of fewer

images than available. The plain average not only improves

the SNRgain, but even further decreases the computational cost

of HDR imaging since no weighting function has to be evalu-

ated, although the latter is less important.

The CTF is assumed to be known exactly in these experi-

ments. In practical applications, however, the CTF contains

errors as well. This should be included in the analysis in fu-

ture work.

So far this is an experimental investigation of the influence

of the weighting function on the SNR in the recovered HDR

image. Note, that the plain average is the maximum likeli-

hood estimate of the mean of the noisy signal. Thus an an-

alytical investigation of the noise, probably in context of the

grayvalue distribution of the scene, should be carried out as

future work.

7. REFERENCES

[1] Y. C. Chang and J. F. Reid, “RGB Calibration for Color Image

Analysis in Machine Vision,” IEEE Transactions on Image
Processing, vol. 5, no. 10, pp. 1414–1422, 1996.

[2] A. A. Bell, J. N. Kaftan, D. Meyer-Ebrecht, and T. Aach, “An

Evaluation Framework for the Accuracy of Camera Transfer

Functions Estimated from Differently Exposed Images,” in 7th
Southwest Symposium on Image Analysis and Interpretation,
SSIAI 2006, 2006, pp. 168–172.

[3] S. Mann and R. W. Picard, “Being ‘undigital’ with digital

cameras: Extending Dynamic Range by Combining Differ-

ently Exposed Pictures,” Tech. Rep. 323, M.I.T. Media Lab

Perceptual Computing Section, Boston, Massachusetts, 1994.

[4] Tomoo Mitsunaga and Shree K. Nayar, “Radiometric self cali-

bration,” in IEEE Conference on Computer Vision and Pattern
Recognition. CVPR 1999, 1999, vol. 1, pp. 374–380.

[5] Steve Mann, “Comparametric equations with practical appli-

cations in quantigraphic image processing,” IEEE Transac-
tions on Image Processing, vol. 9, no. 8, pp. 1389–1406, 2000.

[6] Y. Tsin, V. Ramesh, and T. Kanade, “Statistical calibration of

CCD imaging process,” in IEEE International Conference on
Computer Vision. ICCV 2001, 2001, vol. 1, pp. 480–487.

[7] David Hasler and Sabine Süsstrunk, “Modeling the Opto-
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