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Robust High-Speed Melt Pool Measurements
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Sputter Detection Capability
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Alexander Olowinsky2, and Til Aach1

1Institute of Imaging & Computer Vision,
RWTH Aachen University, 52056 Aachen, Germany

2Fraunhofer Institute for Laser Technology, Steinbachstr. 15, 52074 Aachen, Germany

Abstract. Although lasers are widely used for welding in precision engi-
neering industry, it is still a challenge to achieve high accuracy in creating
and positioning welding spots at extremely high processing speed.
Towards this end, we propose a system for monitoring the welding pro-
cess in order to ensure good quality of the welding spots. Our technology
enables high speed image acquisition confocally to the laser beam with a
direct view onto the melt. This innovative system permits accurate esti-
mation of the melt pool’s position and radius, which, however, must be
performed at framerates above 200 fps. We therefore employ fast correla-
tion based approaches for sampling the melt pool’s contour and robustly
fitting a circle to it. In addition, the approaches enable sputter detection
via outlier classification.
To assess the performance of each presented method, extensive experi-
ments are conducted. The proposed paradigms can furthermore be con-
veniently adapted to a variety of problems dealing with rapid shape
estimation in noisy environments.

1 Introduction

Lasers permit to create narrow but deep weldings and they offer contact free
assembling at highest processing speed – among others, these advantages have
resulted in an increased use of lasers in the precision engineering industry [1].
However, a profitable use of laser welding, especially in this branch of industry,
requires the generation of welding spots at high speed and with high accuracy
in size and position. To meet these requirements in industrial environments, it
is indispensable to monitor the laser welding process to detect flaws as early as
possible. We therefore observe directly the evolution of the pool of melt caused
by the laser while the laser pulse is applied. To this end, we employ a confocal
laser welding system, which provides a special extension for high speed image
acquisition.
The thus acquired image sequences show welding processes of copper and steel
performed with a Nd:YAG laser. An additional laser is used for illuminating the
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scene, which allows a direct view onto the generated melt pool without any in-
fluence of laser induced plasma. In contrast to plasma monitoring (see Fig. 1a),
our direct approach dramatically improves the melt pool estimation (see Fig. 1b)
and facilitates further assessment, such as sputter detection, due to the increased
amount of relevant details in the images.
The images are captured with a frame rate of 5000 fps using a high-speed CMOS
camera, since the welding processes last only 10 ms to 20 ms. However, the
throughput of the image processing system, which is predetermined by the cycle
time of the welding system (i.e. the time slot between two laser spots), has to be
at least 200 fps to prevent the welding machine from stalling. At this rate the
parameters, viz. radius and position of the melt pool, have to be estimated in a
manner resistant to noise or sputters of the melt.
We therefore present approaches to rapidly estimate these parameters and to
detect flaws via robustly fitting a circle to the melt pool’s contour and perform
basic error classification. For contour estimation, we utilize a novel contour sam-
pling method via correlation of radial profiles with step edge prototypes. To infer
the desired parameters from the thus sampled contour, four approaches are ap-
plied and compared. The approaches are: a completely newly designed method,
adapted types of the Hough Transform, Least Median of Squares regression, and
RANSAC (RANdom SAmple Consensus).
Recent experiments have shown that the main ideas presented here can be conve-
niently adapted to various estimation problems such as fast position recognition
of bearings in industrial vision and cell recognition for early cancer diagnosis.
The paper is organized as follows: First, our welding and image acquisition sys-
tem is described. Second, the algorithms for melt pool parameter estimation are
introduced. Then, the results of extensive experiments are presented and com-
parisons of the algorithms are made. The paper concludes with a discussion and
an outlook for ongoing work.

2 Welding and Image Acquisition System

Unlike other approaches, which use the radiation of the laser induced plasma for
process monitoring with a spatially integrating photo detector (often a photo
diode), we employ a special setup which allows the acquisition of 2D images
confocally with the laser. This setup is known as Coaxial Process Control -system
(CPC-system) [4], [5]. Compared to a photo diode system, the CPC-system,
when equipped with a high speed camera, provides image data with much more
relevant information for the welding process, and a strongly increased resolution.
To obtain melt pool images without being disturbed by plasma radiation, we
extended the basic CPC-system, which is composed of a Nd:YAG laser, a dichroit
and a camera, see Fig. 2. As illustrated, the Nd:YAG laser partly shares its
optical path with the camera. This is implemented via the dichroit, which reflects
the laser wavelength but is transparent for the wavelengths the camera should
capture. With only this basic CPC setup, however, the camera would capture
the radiation of the laser induced plasma, which prevents a direct view onto the
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(a) (b)

Fig. 1. Frames of a welding sequence:
(a) Meltpool without additional illumi-
nation (b) with additional illumination
– direct view onto the melt pool.
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Fig. 2. Welding system with extension for
image acquisition and additional illumina-
tion [5].

melt.
To cope with this problem, we extended the setup by using a second beam
splitter in front of the camera, which introduces an additional illumination from
a diode laser with a wavelength of 830 nm. Additionally, we place an appropriate
bandpass filter in front of the camera. The passband of this bandpass is tuned
to a small band around 830 nm, where the radiation emitted by the plasma is
close to zero. This means, in turn, that the plasma is translucent in this small
band and, therefore, we obtain the desired direct view onto the melt pool shown
in Fig. 1b).

3 Parameter Estimation

This section describes several techniques for estimating the radii and positions
of the melt pools in the image sequences. We concentrate on approaches which
use information about the melt pool’s contour and fit a circle to estimate radius
and position. The advantage of this contour-based method over blob based ap-
proaches and derivatives based on matching of entire melt pool frames with sets
of prototypes [7], is the higher achievable throughput and the possibility for local-
izing defects such as sputters in the contour. Conventional approaches, working
on entire images, such as the standard Hough Transform [3] are computationally
far too expensive. In contrast to the Hough Transform, high throughput can
be obtained with the computationally inexpensive fast boundary point analysis
in [7] but the robustness of this method to outliers is weak.
To comply with both throughput and robustness constraints, we first estimate
contour points, and then robustly fit a circle to these points. Since there are vari-
ous approaches for robust fitting [6], [3], [8], a rigorous comparison, as mentioned
in the introduction, is made.
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3.1 Contour Point Estimation

The starting point for the algorithms – except for the Hough Transform, which
operates on correlation values – are the points extracted from the melt pool’s
contour. To estimate these points with low computational effort, we consider
n radial profiles of the melt pool images and correlate each profile with a pre-
computed set of step edges. The positions of the radial profiles for n = 8 are
highlighted in Fig. 3.
Before the correlations are computed, both the step edges and the profiles have

Fig. 3. Melpool with highlighted
positions of eight radial profiles.
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Fig. 4. Radial profile of the top left corner with
estimated step edge referring to the sought con-
tour point. Dotted line: Offset which has to be
compensated with a gray value shift.

to be freed from their offsets which results in a shift of the gray values. With
this operation, the gray values corresponding to the melt pool pixels become
negative and the background values become positive. It is important that the
symmetry of these values in the radial profile is roughly identical with the sym-
metry in the precomputed step edges to yield a high accuracy in estimating the
edge’s position. This leads to a normalization by subtracting the gray value off-
set. Normalization is followed by correlation computation, which we conveniently
implemented as a matrix multiplication. This is similar to linear convolution via
multiplication with a Toeplitz matrix and can be described as

y = H · x , (1)

where y denotes the correlation vector, H is the Toeplitz-Matrix, which is com-
posed of the precomputed step edge prototypes and x represents the gray values
of the radial profile. An example with idealized x is

2
4
2
0
−2


︸ ︷︷ ︸

y

=


1 1 1 1

−1 1 1 1
−1 −1 1 1
−1 −1 −1 1
−1 −1 −1 −1


︸ ︷︷ ︸

H

·


−1
1
1
1


︸ ︷︷ ︸

x

. (2)



5

As can be seen, the precomputed step prototypes are stacked in H, which, with
these ideal models, degenerates to a triangular matrix. Obviously, the second line
in H fits best to x – consequently, the second entry in y exhibits the maximum
value. The corresponding contour point can now be determined via the position
of the maximum value in y.
The challenge in estimating contour points this way is to accurately estimate the
gray value offset for normalization because its value varies from frame to frame.
We therefore implemented a normalization method by computing the offsets as
the mean values of the profiles and the step edges. Thus, these offsets adapt to
brightness variations and are insensitive to noise e.g. resulting from bad pixels
in the camera’s sensor. However, the increased adaptivity and robustness result
in the loss of the triangular form of H.

3.2 Robust Fitting Algorithms

The contour sampling described above is highly robust to noise because always
entire profiles are correlated. However, the obtained contour points are still influ-
enced by sputters or bright reflections in the melt, which should not degrade the
melt pool parameter estimation. Therefore, a robust fitting of the circle model
with these detected points is vital. We address this challenging task by develop-
ing a new approach called “Least Distances (L. Dist.)” and by adapting three
widely used paradigms for robust regression to the problem at hand.

Least Distances (“L. Dist.”) Compared to the techniques, to be introduced
in the following, this approach is closest tailored to the problem stated above,
since it uses the highest degree of prior knowledge about the welding process for
fitting and rejecting outliers.
Our algorithm is based on the fact that the material to be welded melts contin-
uously. Consequently, the melt pool’s radius increases smoothly over successive
frames. Thus, undisturbed contour points are distinguished from those disturbed
by, e.g., sputter, by evaluating the distance of each contour point to the preced-
ing circle. With this approach we thus make use of the temporal dependencies
between the melt pool’s parameters of successive frames, due to the physics of
welding.
The trusted contour points, chosen by this method and used for circle fitting,
are those mt = n/2 points (n = number of contour points, n ≥ 8), which have
the smallest Euclidean distance to the preceding circle. However, to ensure that
the trusted points are reasonably distributed, the contour is divided into four
quadrants and from each quadrant, at least one point (namely the point with
the smallest distance) is selected. This procedure should help to better cope with
melt pools which are not perfectly round.
After contour point selection, the circle is fitted via Least Mean Squares to the
mt trusted points.
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Hough Transform The common ground of “L. Dist.” (and the following meth-
ods) is the attempt of fitting a circle to contour points extracted first. Thus, only
the maxima of the correlation vectors y in (1) are considered, since they repre-
sent the points where the contour most likely is to be. However, the strengths of
these maxima and the existence of secondary maxima are not considered. These
downsides can be addressed by the Hough Transform [3] for finding the circle,
whose contour points maximize the correlation in sum over all contour points.
As mentioned before, on our current platform (2.66 GHz, Intel Core2Duo PC),
the standard Hough Transform (denoted by “Hough Ext.”) can not comply with
the stringent real time constraints. Its performance is in the following therefore
provided more as a reference. However, the limited number of correlation vectors
y, the possibility to eventually shrink the Hough accumulator space by invoking
additional prior knowledge, and the possibility of further speedup via a lookup
table for the pixels to be accumulated, make it an earnest alternative candi-
date for our application. We thus implemented a trimmed-down and accelerated
version, called “Hough Ltd.” which inherently makes use of the temporal depen-
dencies described in 3.2 by utilizing the previously estimated circle parameters
as initial guess for defining a small sliding search space around these.

RANSAC The most commonly used approach for robust fitting in industrial
vision is RANSAC, introduced by Fishler and Bolles [2]. Unlike “Hough Ltd.”
or “L. Dist”, RANSAC solely uses the given shape model for outlier rejection.
For the problem at hand, we implemented RANSAC with the following steps:

1. Select a set of p = 3 contour points randomly (three points are required to
determine a circle),

2. Construct a circle through these,
3. Count the number of points which lie within an error tolerance of εmax to

the circle (so-called inliers),
4. If the number of inliers is greater than some threshold nmin, do least squares

circle fitting for all inliers, else repeat the above process, i.e. start again at 1.,
until a maximum number mmax of trials is reached.

Least Median of Squares Slightly different to RANSAC, but as well solely
based on the shape model, is Least Median of Squares Regression (LMedS),
which solves the nonlinear minimization problem

min med
i
r2i , (3)

where r2i denotes the squared residual, i.e. the squared distance of the remaining
contour points to the fitted circle. Although (3) looks very similar to Least Mean
Squares regression, a closed form solution of this expression is not available.
Thus, LMedS has to perform a search in the space of possible estimates generated
from data. The procedure we implemented for n given points is composed of the
following steps [8]:
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1. Draw m random subsamples of p = 3 different points,
2. Construct circles through the points of the subsamples,
3. Determine the median of the squared residuals for each circle,
4. Pick the circle yielding the smallest median,
5. Consider the distance of all points to the picked circle and reject points with

distances > t,
6. Fit a circle via least mean squares with the remaining points.

In contrast to Least Mean Squares, LMedS can resist the effect of 50% of gross
outliers in data. Step 5 and 6 help to compensate the poor efficiency of LMedS
in the presence of Gaussian noise. According to Rousseeuw in [6], t calculates to

t = M

(
3.7065 +

18.5325
n− p

)2

, (4)

where M denotes the minimal median.

4 Results

This section presents the performances and error rates of the described algo-
rithms compared with a hand selected ground truth. The algorithms were coded
in Matlab and executed on a standard PC (Intel Core2Duo, 2.66 GHz, 2 GB
RAM). The database for evaluation contains approximately 1020 frames (and
the corresponding ground truths) taken from 12 different welding sequences of
copper and steel. As mentioned in the introduction, these sequences are recorded
with a high-speed camera with 128 × 128 pixels at 5000 fps. The welding is per-
formed with a Nd:YAG Laser (1064 nm wavelength) and the scene is confocally
illuminated with a diode laser (830 nm wavelength). All the presented images
exhibit a field of view of 0.8 × 0.8 mm2.
To assess the algorithms for both sequences with well-behaved melt pools and
sequences with high defect rates (due to sputters and reflections, see Fig. 6)
separately, each of these is split into two parts. The first part typically exhibits
well-behaved melt pools and the second part exhibits higher defect rates – it
can be observed that the defect rate increases with the radius, which in turn
increases with the frame number and time, see Fig. 6.
For comparison, the error rates ε1, ε2, and ε are computed from the areas in
pixels, which are correctly or incorrectly classified by the algorithms compared
with ground truths. More specifically, ε1 is the probability of background pixels
which are misclassified as melt pool pixels (“false positive rate”), ε2 is the prob-
ability of the melt pool pixels being misclassified as background (“false negative
rate”), and ε is the total error rate.
The settings of the algorithms, used for obtaining the following results, are listed
in Tab. 1. All settings are carefully chosen to yield reasonable results with the
algorithms. In case of LMedS, m is specified to ensure that the probability of
drawing at least one completely undisturbed combination is 99% in the presence
of 50% disturbed contour points. The results obtained with these settings are
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depicted in Tab. 2 and Fig. 5.
As can be observed, the two approaches, viz. “L. Dist.” and “Hough Ltd.”,
exploiting temporal dependencies due to the continuity in melt pool changes,
perform better than the other approaches and yield moderate error rates. How-
ever, among these two, “L. Dist.” exhibits higher throughput while “Hough Ltd.”
is slightly better in total error rate ε. The error rates depicted in Tab. 2 might,
however, be further improved by optimizing the normalization described in sec-
tion 3.1, because the algorithms tend to overestimate the size of the melt pools
(ε1 is greater than ε2 – see Tab. 2).

Global setting n = 16 number of radial profiles

RANSAC

p = 3 initial set of points
εmax = 4 pix. error tolerance for inliers
nmin = 4 minimum number of inliers
mmax = 80 maximum number of trials

LMedS
p = 3 initial set of points
m = 44 number of initial subsamples

L. Dist. mt = 8 number of trusted points

Hough Ext. s(y, x, r) = 64
+8
−8 , 64

+8
−8 , 5

+72
0 search space in y, x, r direction

Hough Ltd.
s(y, x, r) = i

+2
−2
y , i

+2
−2
x , i

+5
−5
r search space

iy, ix, ir parameters of preceding circle
(first initialized with: 64, 64, 15)

Table 1. Global settings for the different robust fitting algorithms.

Algorithm Part ε1 ε2 ε fps

RANSAC
1 8.2 1.5 6.1 446.3
2 12.5 2.2 8.3 442.9

LMedS
1 6.8 0.7 4.9 220.9
2 10.8 1.1 6.8 221.0

L. Dist.
1 5.0 2.0 4.1 1084.3
2 8.3 1.8 5.7 1084.2

Hough Ext.
1 5.2 0.7 3.8 39.6
2 10.3 0.9 6.3 39.6

Hough Ltd.
1 5.0 4.8 4.2 867.5
2 8.6 0.7 5.5 867.7

Table 2. Results for the different ro-
bust fitting algorithms (‘Part’ refers to
the splitting of the sequences into two
parts, ε1 = false positive rate in %, ε2 =
false negative rate in %, ε = total error
rate in %, fps = frames per second with a
2.66 GHz Core2Duo, Matlab code).

2 4 6 8 10 12

Hough Ltd. 2

Hough Ext. 2

L. Dist. 2

LMedS 2

RANSAC 2

Hough Ltd. 1

Hough Ext. 1

L. Dist. 1

LMedS 1

RANSAC 1

ε in %

Fig. 5. Boxplot of the total error rate for
both sequence parts (“RANSAC 1” e.g.
indicates the error rates for part 1 of the
sequences, obtained with RANSAC). The
lines in the boxes mark the medians, the
boxes encompass the two inner quartiles
of the quantity of results, whereas the
“whiskers” and crosses mark the two re-
maining outer quartiles.
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4.1 Edge model improvement and sputter detection

In case of severe disturbances due to reflections in the melt, the edge model offers
the possibility for further improvement. Fig. 6, row a) shows detected contour
points with the standard edge model – it can be observed that some contour
points are disturbed by reflections in the melt. However, most of these reflec-
tions arise in the inner parts and not on the periphery of the melt pools. Conse-
quently, a small (dark) rim of molten material between reflection and background
remains. This can be exploited by adapting the precomputed edge prototypes,
which is straightforwardly done by inserting stripes of zeros, which cover the
inner melt pool region, into the prototypes. As a consequence, the inner parts of
the melt pool no longer count for correlation and thus, reflections in these parts
no longer disturb the melt pool estimation (see Fig. 6 row b)).
In addition to melt pool estimation, the contour based approach offers the ben-
efit for sputter detection without major effort. A sputter is simply recognized
as a contour point lying beyond a threshold distance dt outside the fitted circle.
Fig. 6 (see sputter points) shows an example for melt pool estimation with “L.
Dist.” and sputter detection (dt ≥ 4 pixels like in RANSAC). The accuracy of
sputter detection may be increased by detecting more contour points, which of
course decreases the detection rate. However, “L. Dist.” still yields a throughput
of 338 fps with n = 60 radial profiles.

trusted point rejected point sputter pointLegend:

a)

b)

Frame: 15 17 31 53

Fig. 6. Melt pool evolution during a welding process of copper. The contour points and
circles are obtained with “L. Dist.”. Row a): contour points obtained with idealized
edge prototypes, row b): contour points and circles obtained with an initial additional
stripe of zeros in the edge prototypes.
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5 Conclusions

We presented approaches for process monitoring in laser welding via high speed
and robust estimation of melt pool parameters. To this end, we employed a
special setup with confocal illumination and a bandpass filter in front of the
camera to acquire images without influence of plasma radiation. The obtained
images thus allow the desired parameter estimation.
All approaches presented in this contribution are based on contour sampling
via correlation of step edge prototypes with radial profiles of the images. This
sampling is followed by parameter estimation, where two approaches, which use
process-pertinent knowledge achieve the best performance. The main ideas of
these algorithms can be easily adapted to other industrial and medical vision
tasks as recent experiments have shown.
Our ongoing work is on the extension of the algorithms towards an increased
robustness to discontinuities in the background e.g. caused by adjacent melt
pools which, in turn, paves the way for monitoring of welding seams.
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