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Abstract. We describe a technique to detect and localize features on
checkerboard calibration charts with high accuracy. Our approach is
based on a model representing the sought features by a multiplicative
combination of two edge functions, which, to allow for perspective dis-
tortions, can be arbitrarily oriented.

First, candidate regions are identified by an eigenvalue analysis of the
structure tensor. Within these regions, the sought checkerboard features
are then detected by matched filtering. To efficiently account for the
double-oriented nature of the sought features, we develop an extended
version of steerable filters, viz., multi-steerable filters. The design of our
filters is carried out by a Fourier series approximation. Multi-steerable
filtering provides both the unknown orientations and the positions of
the checkerboard features, the latter with pixel accuracy. In the last
step, the feature positions are refined to subpixel accuracy by fitting a
paraboloid. Rigorous comparisons show that our approach outperforms
existing feature localization algorithms by a factor of about three.

1 Introduction

Accurate camera calibration is a basic prerequisite for many image process-
ing and computer vision algorithms. Jean-Yves Bouguet’s camera calibration
toolbox (http://www.vision.caltech.edu/bouguetj/calib_doc/) [1, 2] has
become a de-facto standard for this problem, mainly for three reasons: simple
usage, high estimation quality and free availability as Matlab and C code. Ad-
ditionally, its C version is part of the OpenCV library distributed by Intel.

Camera calibration from a set of M input images can be divided into two
steps: first extract some feature points, for instance on a checkerboard grid,
and then use these points to estimate internal and external camera parameters,
see fig. 1. The second step is the actual calibration, where the camera model
parameters are estimated. Recent papers focus on this part, e.g., by introducing
advanced distortion models [3]. Here, however, we will improve the first step
of the complete procedure. Evidently, the estimation quality of any calibration
scheme can only be as accurate as the quality of the feature points which are
used as input for the parameter estimation step.
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Fig. 1: Camera calibration from images is a two-step procedure: first, a set of point
correspondences between world and image coordinates has to be extracted in the input
images and then, these points are the input for a non-linear optimization of the sought
camera parameters.

Any type of camera calibration requires some visual features on a calibration
object which can be detected in its images as robustly and accurately as possible.
Common choices for feature points are centers of gravity (of circles or squares),
intersections of a line grid, corners, or patterns like the checkerboard pattern.
However, centers of gravity are not invariant to perspective distortions, line-
based approaches can lead to problems due to varying line thicknesses, and
corner-based approaches suffer from biased estimates (see e.g. [4] for a discussion
of fitting parametric models to corners). Checkerboard-based approaches, on
the contrary, avoid localization bias due to their symmetry and have therefore
become the most widely used choice for (2D) calibration patterns recently.

Bouguet’s toolbox uses a sub-pixel extension of the famous Harris corner de-
tector [5] which finds prominent regions in the following way: Let f(x, y) denote
an image signal and let g = ∇f denote its gradient. Then

S =
∫
Ω

ggT , (1)

where Ω is an area of local integration, defines the so-called structure tensor
[6]. Its two eigenvalues λ1 and λ2 characterize the image region centered at
x = (x, y)T : two small eigenvalues indicate a homogeneous regions, one small
and one large eigenvalue indicate a linear feature and two large values finally
denote features which usually allow exact localization. If the image is known to
contain features such as corners or checkerboard crossings, one can safely assume
that the corresponding regions can be found by looking for two large eigenvalues.
Harris therefore introduced the following measurement for corner strength:

Mc = λ1λ2 − κ(λ1 + λ2)2 . (2)

The tuning parameter κ penalizes regions where the sum but not the product is
high, i.e., it penalizes lines or edges. Reasonable values are in the range 0.1±0.05.

Other advanced general feature detectors exist, for instance in the SIFT [7]
algorithm, but for camera calibration, their use remains limited. In contrast to
applications like motion detection, tracking, panorama stitching, 3D modelling
or object recognition, we do not have to consider general objects – there is no
need to extract every possible bit of information regardless of form or scale.
Instead, we have a pretty good model of what the image of a known calibration
pattern should look like. Our novel approach to corner detection is therefore
based on designing filters specifically for images of the widely used checkerboard
calibration patterns.
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Fig. 2: A synthetic checkerboard image (left), the same image with added Gaussian
noise (center; SNR = 10 dB), and a region of interest around a crossing (right). It can
be seen that checkerboard crossings are characterized by two independent edges.

An existing signal model directly calls for a correlation-based feature detec-
tion approach, but what exactly is our signal model? Due to perspective distor-
tions, images of checkerboard crossings are black-and-white patterns character-
ized by two independently varying local orientations, see fig. 2, which generate
a large family of possible patterns. For any correlation-based approach, this is
problematic: Assuming that each angle shall be sampled in 5 degree steps, we
would need 722/2 = 2592 checkerboard templates (the 2 in the denominator is
due to the symmetry of the checkerboard pattern). The resulting computational
load would be absolutely prohibitive.

As a solution, we present a novel feature detection approach which is based
on an extension of the concept of steerable filters [8] to multi-steerability. Steer-
able filters have been used in [9] to detect edges and lines. Unfortunately, these
linear feature never allow an exact feature localization; only the component or-
thogonal to the orientation direction can be determined (aperture problem, [10]).
Therefore, steerable filters have not been used in exact feature localization yet.
In this paper, we will show how to extend the steerable filter concept to a multi-
steerable detector which allows high precision feature localization.

2 Design of Double-Steerable Filters for Modelling
Checkerboard Patterns

Let f(x) denote an image within which we seek a feature which can be modelled
as a template f0(x). Then filtering the image with a filter h(x) = f0(−x) yields
an output image measuring how strong the feature is present at each location x.
This principle is known as matched filter [11]. Its application to the detection of
a family of features is, in general, computationally inefficient, but for one special
class of filters, namely rotated versions of some given template, the steerable filter
approach introduced by Freeman and Adelson in [8] offers a convenient solution:
by limiting the class of possible (unrotated) templates to those templates which
can be represented in polar coordinates in the form

h(r, φ) =
P∑

p=−P
ap(r) exp(jpφ) , (3)

one can represent any rotated version of h(r, φ) as a linear combination of ν
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Fig. 3: The steerable filter concept: applying differently rotated filters for arbitrary
rotation angles (left) is computationally expensive, while limiting oneself to a class of
steerable filters allows a very fast implementation: compute some weights and sum up
precomputed filter results.

base filters, where the minimum number for ν is given as the number of non-zero
Fourier coefficients in (3). (Note that, in slight abuse of notation, we will always
denote an image template as h, regardless whether it is represented in Cartesian
or polar coordinates.) Following the notation of Freeman & Adelson and others,
let us define a rotation operator: hα(r, φ) = h(r, φ − α). Different variants for
designing steerable filters exist, but they all have in common that rotation can
be expressed as linear combination of a set of base templates:

hα(r, φ) =
ν∑
a=1

wa(α)ha(r, φ) . (4)

Here, ha denote the set of base filters. Evidently, the whole dependency on
the steering angle is encapsulated in the weight coefficients wa. The linearity of
steerable filters allows to exchange the order of filtering and summation, see fig. 3,
thus allowing to precompute a set of filtered images and obtain the correlation
between image and template for any given position and angle by a weighted sum
of filtered images. Hence, the computational load for correlation-based feature
detection is reduced considerably.

In [9], Jacob and Unser applied this rotated matched filter approach to the
detection of edges and lines in images. Unfortunately, steerable filters are lim-
ited to features which are characterized by a single steering parameter, viz.,
the orientation angle of the linear feature. Perspectively distorted checkerboard
patterns, however, are characterized by two independently varying orientations.

The key idea of our approach now is the following: can we combine two edges
in such a way that they represent a checkerboard and, furthermore, the result is
steerable again – but now with two steering angles? In mathematical form, this
can be expressed as

hα,βcheck = hαedge ◦ h
β
edge (5)

where ◦ is some operator, and we now have to examine whether we can find
a mathematical function that fulfills this requirement. Evidently, the sought
operator must work for every point in the template individually, i.e.,

hout = h1 ◦ h2 ⇔ hout(x) = h1(x) ◦ h2(x) for all x ∈ Ω (6)
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Fig. 4: Creation of a checkerboard pattern as product of two individually rotated ideal-
ized edges. If black corresponds to −1 and white to 1, this construction principle does
not only hold for α = 0° and β = 90° (left), but also for arbitrary angles like α = 20°
and β = 130° (right).

where Ω is the size of the templates. The graphical representation in fig. 4
visualizes that the desired steering properties automatically follow if we ‘only’
find a mathematical representation for four equations:

white ◦ white = white white ◦ black = black

black ◦ white = black black ◦ black = white .

A solution is easily found by identifying white with 1, black with -1, and ◦ with
(point-by-point) multiplication. Note also that these four equations show that
the sought operator must be non-linear. Having defined the scaling of black and
white, we now multiply two steerable filters:

hα(r, φ) · hβ(r, φ) =
ν∑
a=1

ν∑
b=1

wa(α)wb(β)︸ ︷︷ ︸
w∗

a,b(α,β)

ha(r, φ) · hb(r, φ)︸ ︷︷ ︸
h∗a,b(r,φ)

. (7)

The result can again be represented as a linear combination of base functions
h∗a,b which can be computed as point-by-point products of the base functions for
the standard steerable filter. In a similar way, the new weight coefficients w∗a,b are
found as products of the individual weights; therefore, they now depend on two
angles, i.e., we have thus introduced a novel double-steerable filter. Extension to
multi-steerability is straightforward.

Generating checkerboard patterns with two arbitrary orientations from (5)
now implies replacing idealized edges with approximated steerable edge functions.
Different approaches for this problem exist: Jacob and Unser [9] used a linear
combination of derivatives of the Gaussian function; this has the big advantage
of always yielding Cartesian-separable filters. Other authors [12] are interested
in phase-invariant behavior [13] which means that the filter response should not
depend on the signal orthogonal to some orientation; most importantly, lines
and edges should lead to the same energy of the filter response. To comply
with our needs of multi-steerable edge function approximation, we will propose
a novel design concept. This concept is based on the observation that an edge is
polar-separable which directly allows a Fourier series expansion. We set

h(r, φ) = q(r)hang(φ) (8)

with radial function

q(r) =
{

1 r ≤ rmax

0 else (9)
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(a) P = 1 (b) P = 5 (c) P = 9 (d) P = 13 (e) hcheck(x)

Fig. 5: Checkerboard patterns created by two steerable Fourier expansions of edge-
functions for Fourier coefficients p = 1, 3, . . . , P . The higher P is chosen, the better the
steerable filter approximates the idealized template shown in (e). A radial weighting
can be added if desired.

and idealized angular edge function

hideal
ang (φ) =

{
1 0 ≤ φ < π
−1 −π ≤ φ < 0 . (10)

Note that the radial function q(r) can be designed separately since it does not
influence steerability; the disc chosen in (9) is mainly used because of its simplic-
ity. The Fourier approximation of (odd) order P to the angular function hideal

ang (φ)
rotated by α then is

hαang(φ) =
4
π

P∑
p=1,3,...

1
p

sin(p(φ− α)) . (11)

Multiplying with radial function (9) yields the (single-)steerable template (8).
This template has P+1 non-zero Fourier coefficients; therefore, we need ν = P+1
base filters ha(r, φ) which can be chosen exactly in the same way as in Freeman’s
paper: the approximated edge is rotated to P+1 equidistant angles in the interval
[0◦, 180◦). Consequently, the weights wa(α) can be computed as in Freeman’s
work. One advantage of this Fourier approach (in comparison to other known
steerable filter design concepts) is that increasing the approximation order P
allows to increase the approximation quality at the price of higher computational
complexity. Fig. 5 shows how the pattern converges to the idealized checkerboard
when increasing P .

Having defined the checkerboard pattern as a double-steerable filter, we can
now define the principle of multiply rotated matched filtering : A multi-oriented
feature has M independent orientation angles φ1, . . . , φM and is represented by
a template fφ1,...,φM

multi (x). A measure of how strong this feature is present in an
image f(x) at a fixed position x0 is Bmax(x0):

Bmax(x0) = max
φ1,...,φM

f ~ fφ1,...,φM

check

∣∣∣
x=x0

= max
φ1,...,φM

f ∗ hφ1,...,φM

check

∣∣∣
x=x0

(12)

where ~ and ∗ denote correlation and convolution, respectively. In analogy to
(single) rotated matched filtering, we define hφ1,...,φM

multi (x) = fφ1,...,φM

multi (−x) to be
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the corresponding filter kernel and maximize the cross-correlation of the image
patch centered at x0 and the multiply rotated template, thus assigning estimated
orientation angles φ̂1(x0), . . . , φ̂M (x0) to each image point x0. In contrast to the
detection of linear structures in [9], we are not limited by the aperture problem
anymore; this generalized approach also allows exact localization of the sought
features in addition to the estimation of orientation angles.

So far, this approach allows to detect checkerboard pattern at pixel accuracy.
Next, we discuss how to extend the approach to sub-pixel accuracy, and how to
increase computational efficiency.

3 Finding Checkerboard Crossings with Sub-Pixel
Accuracy

Our algorithm consists of three steps: we first determine a list of candidate
points, then apply our double-steerable filter (DSF) at these candidate positions
to estimate the correlation strengths and, third, fit a paraboloid to each local
maximum. The apex of this paraboloid is taken as feature location.

Our double-steerable filter makes correlation-based checkerboard crossing de-
tection feasible, but nevertheless, the angle optimization in it remains the costly
part of the procedure. To reduce the computational load, we therefore preprocess
with the aim of applying the DSF only where crossings are likely to be found.
Over the entire image, we compute the standard structure tensor S, and subse-
quently only consider those points which are both sufficiently textured and do
not represent linear structures, i.e., where the structure tensor exhibits two large
eigenvalues. This can be tested using trace and determinant only, i.e., without
computing eigenvalues:

tr S > t1 and
det S
tr S

> t2 . (13)

Usually at most a few percent of all pixels qualify as candidate points, unless
low resolution images or images with many checkerboard tiles are used. Only
for the image points fulfilling these criteria, we compute the double-orientation
structure tensor [14] (occluding model) and solve for two orientations. For every
candidate point, these two orientations are then used as initial values for a
Levenberg-Marquardt optimization of the two DSF angles α and β.

Having found the best fitting double steerable filter, we find the local maxima
of the correlation and fit a paraboloid to the 9 correlation values in a 3 × 3-
neighborhood around each local maximum. Its apex is taken as the final feature
location. If not all 8 neighbors of a maximum at pixel resolution were classified as
candidates before (unlikely, but it can happen), then some values are missing in
the paraboloid fitting step. In such rare cases, the DSF is applied to the missing
pixels before carrying out the sub-pixel fitting step.

We do not optimize for angles and crossing position simultaneously because
it would require an interpolation step to generate a pseudo-continuous image
function. On the other hand, the correlation values around the true sub-pixel
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maximum could be approximated extremely well with a second-order Taylor
expansion, so fitting a paraboloid to the available correlation values at integer
positions near maxima is mathematically justified – and also yields very good
results.

4 Results

We tested our algorithm on both synthetic and real data. Experiments on syn-
thetic data with known ground truth enable measuring the root mean square
(RMS) error of the localization over varying signal-to-noise ratios (SNRs). This
also allows a comparison to the corner finder from Bouguet’s calibration toolbox.
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Fig. 6: Left: RMS angular error for our approach over varying SNR. Right: RMS local-
ization error over SNR of our approach (dark) and Bouguet’s corner finder (light).

Our experimental setup was as follows: for SNRs from−5 dB to 20 dB in steps
of 2.5 dB using additive white Gaussian noise, we calculated 10 noisy realizations
for each of three different synthetic input images, resulting in 30 realizations for
each noise level. For each realization, we estimated the locations of the crossings
in an 8 × 8 tiles checkerboard, i.e., 49 inner crossings. Subsequently, the RMS
error was computed. Then the average RMS error of the 30 estimation results
was plotted against the noise level. The same was done for Bouguet’s corner
finder. Here, we even gave Bouguet’s corner finder an unfair advantage: it needs
an initial value, which we always initialized with the true optimum. The results
of both algorithms are shown in fig. 6. The pixel error of our approach is roughly
one third of Bouguet’s approach. For low noise levels, our algorithm achieves a
localization accuracy of 0.028 pixels (Bouguet: 0.084). The accuracy of the angle
estimates was approximately 1.25° for low and medium noise levels. This result
was achieved with approximation order P = 5.

Apart from its increased accuracy and robustness, another advantage of our
approach is that it needs neither initial values of approximate crossing positions
nor assumptions such as small lens distortions. The design of our double-steerable
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Fig. 7: Left: Estimated crossings in a calibration image taken with an Olympus “CF
H-180 AL” endoscope. Right: Image patch and fitted signal model in the marked region
of interest. Horizontal orientations are estimated with a slightly increased error because
of interlacing artefacts (also visible in image patch).

filters makes searching the whole image for crossings feasible. One example,
where the semi-automatic corner finder of Bouguet fails, is the calibration image
shown in fig. 7, which was acquired through a wide-angle endoscope; this im-
age exhibits extreme distortions which make (semi-)automatic detection of the
crossings difficult. For this 1100× 900 pixel image, our approach written in pure
Matlab code (i.e., no precompiled C parts) needs approximately one minute on a
3 GHz Dual Pentium computer. This is acceptable for calibration (and definitely
less tedious than clicking on all crossings by hand). Note that even the crossings
in the strongly distorted regions near the image border were found.

A small bias in the angle estimation can appear if the transition from black
to white is not symmetric around the true edge position (overexposure, under-
exposure, non-linearities). However, due to the symmetry of the checkerboard
pattern, it only rotates the estimated edges, but the positions of the crossings,
which we are primarily interested in, are not affected by this bias.

5 Conclusion and Summary

We have developed a new approach to detect and localize the crossings in checker-
board pattern charts for camera calibration. Its basis is a model characterizing
the sought features by multiplicatively combining two edges which are scaled to
the range [−1, 1]. To allow for perspective distortions, these edges may exhibit
arbitrary orientations. The key ingredient of our approach is a multisteerable fil-
ter algorithm, which permits efficient matched filtering. The filters are designed
using a Fourier series expansion, thus allowing to determine the approximation
quality to an ideal edge function by a single parameter. Multisteerable matched
filtering then provides not only feature location, but also the orientations, which
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are determined by Levenberg-Marquard optimization. In our ongoing work, these
angles will be used for, e.g.: (i) checking the plausibility of the detected crossings:
the estimated orientations must be compatible to the orientations of neighbor-
ing crossings, (ii) exploiting additional information for the optimization of the
camera parameters, (iii) speeding-up the detection by a sequential detection of
crossings: one (or more) already detected crossings plus their orientations di-
rectly tell us where to look for the neighboring crossings.

Our technique exhibits two major advantages in comparison to existing ap-
proaches. Firstly, fully automatic corner extraction is possible – as we have
shown, even in rather noisy conditions – because the whole image can be pro-
cessed at low computational cost. Secondly, the availability of a signal model en-
sures much lower feature localization errors. In comparison to the corner finder
in Bouguet’s camera calibration toolbox, the localization RMSE of our approach
is lower by a factor of three.

Matlab demonstration code for double-steerable filters can be downloaded
from www.lfb.rwth-aachen.de/en/highlights/multi_steerable_filters.
html.
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