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ABSTRACT whereb is a twodimensional vector calculated from the par-
We derive a new scale- and rotation-invariant feature fotial image derivatives. The tenséiis a symmetric and posi-
characterizing local neighbourhoods in images, which is aptive semi-definite 2 2-matrix, which is calculated from the
plicable in tasks such as tracking. Our approach is motispatial image gradient by
vated by the estimation of optical flow. Its least-squaréis es
mate requires the inversion of a symmetric and positive semi J— / (Df)(Df)TdQ 7/ f2 fxfy do 3)
definite 2x 2-tensor, which is computed from spatial image ~Jo Ja| iy fy2 ’
derivatives. Only if one eigenvalue of the tensor vanishes,
this tensor describes the local neighbourhood in termsief orInversion ofJ is possible if it is regular, i.e. if both its eigen-
entation. Estimating optical flow, however, requires thig t values do not vanish. This condition can also be interpreted
tensor be regular, i.e., that both its eigenvalues do naskian as follows: the image signal withi2 mustnot be character-
This indicates that the local region contains more than oni&ed by a single orientation — the mattlxis the very same
orientation. entity which is also known astructure tensarand which
Double-orientation neighbourhoods (like X junctions orcan be used to estimate the local spatial orientation as the
corners) are especially suited for tracking or optical floweigenvector ol corresponding to the smallest (ideally: zero)
estimation, but the two underlying orientations cannot begigenvalue [3, 7, 2].
extracted from the standard structure tensor. Therefore, If one eigenvalue is close to zero, the signal is oriented
we extend this tensor such that it can characterize doubl@nd we can determine this orientation — but a unique optical
orientation neighbourhoods. From this extended tensor, w#ow estimation is prevented by the aperture problem. On
derive a rotation- and scale-invariant feature which dbesr  the other hand, if no eigenvalues are close to zero, we can
the orientation structure of the local regions, and anaigze estimate optical flow, but the corresponding eigenvectors d
performance. not represent orientations, e.g. if the signal is a supéipns
of two (single-)oriented signals.
1. INTRODUCTION We therefore describe an appropriately extended tensor

. . . , ) which can capture two orientations of, e.g., a corner. The
In this paper, we derive a rotation- and scale-invariarttiea eigensystem analysis of this tensor, however, does not di-

for the description of local image neighbourhoods, whichyectly yield the sought orientations, rather, it providesoa
may be applied in tasks such as object tracking. The featurgy||ed mixed-orientation parameter (MOP) vector, which im
is based on the analysis of the orientation structure of thgicitly encodes both sought orientations, and is thus aet r
image signal in local regions by tensors, which are formedyiion invariant. Instead of decomposing the MOP vector
from spatial derivatives. Though thus aimed at motion analyjnig the sought orientations, we discuss here how to derive
sis by feature matching rather than differential estimmd 5 feature from it which unambiguously characterizes the lo-
motion, let us motivate our approach by the 3d|fferent|al €Stal orientation structure, and is invariant to rotation adl as
timation of optical flow. Letf(x,t), with f : R® — R, de- {4 certain scalings of the coordinate axes and intensitystMo
note a grey-level image sequence, where: (x,y)" € R  of our discussion will, for ease of notation, be developed fo
is the spatial coordinate vector, and R is time (addition-  pjvariate image data. We will also, however, show how to
ally, we assume that is differentiable). The fundamen- extend the framework towards higher-variate data, such as

tal constraint for estimating the optical flow fietd(x,t) = tomograms.

(Wy(x,1), Wy (x,t)), w : R® — R?, is formed by setting the

total temporal derivative of to zero [6, 8, 14]: 2. DOUBLE ORIENTATIONS
Ef(xﬁ) (O w4 =0 . 1y 21 Bivariatelmages

dt Let us now consider a bivariate imagex), with f : R — R,
Here,Of = (f, fy) is the spatial gradient of the image signal, to be additively composed within a local regi@nfrom two
while fy, fy and f; are the partial derivatives df(x,t) with ~ oriented subimages by [12, 13, 1]
respect tax, y andt. Practically, the flow field is assumed
to be constant within a small spatial regiéhc R2. The f(x) = fi(x)+ f2(x), fi(x), fa(x) 1 RZ—=R . (4)

least-squares solution fev(x,t) Vx € Q then obeys . L . . .
q (e,t) ¥x 4 Subimagefi (x) is oriented alond@ with the orientation vec-

Jw=b=w=J1b, (2) tor u= (cosf,sind)" = (uy,uy)T, while fo(x) is oriented



along y with the orientation vectow = (cosy,siny)" =  double orientation neighbourhoods in the sense of Egs. (4)

(vx, W) T. Therefore fi(x) and f,(x) obey or (7), the lowest eigenvalug vanishes, i.e. rarfll’) = 2.
The MOP vector implicitly encodes the orientation vec-
a(0)f(x) = Ul fi(x)=0 VxeQ (5) torsuandv. Methods to decomposeinto u andv are de-
T scribed in [12, 13, 1, 9]. Here, we seek to extract a rotation-
a(y)fa(x) =v' -Ofz(x) =0 VxeQ (6)  invariant feature froma without decomposing it first. To-

N L wards this end, we consider its degrees of freedom (DoF):
wherea (6) denotes the directional derivative operator along, ¢ jiscussed aboves obeys the homogeneous equation

6. Alternatively, we consider the superposition of subim—Ta — Jsa— 0, and can only be determined up to scale and

agers] Wh]lCh oEc][ude eaﬁhl other [10]. Iln SOTS m;lrt: Q. sign. The MOP vector therefore is an element of a projec-

we havef (x) = f1(x), while in its complemen®, f(x) = e space, where two vectors are equivalent when theyrdiffe

f2(x). Our model then is only in norm and sign [5]. We may therefore constraito
f(x) ¥xeQ length one, doing so reduces its DoF from three to two. This

f(x) = { fl x VX € Ql (7) number is equal to the number of parameters, @iandy,
2(x) Vx€Qp specifying two orientations in an image. Deriving the rota-
ot ot tion invariant feature from implies the loss of one DoF. Our

with % =0VxeQy, % =0VxeQrandQiUQy,=  feature therefore will only exhibit one DoF, i.e., it is saal

Q, Q1N Q, = 0. In both cases, applying the operatar®)  Intuitively, the sought feature is then given by the diffece

anda (y) sequentially to the composite imaféx) yieldsthe  angleB between the orientatiorsyr by functions of3, such

constraint as|cosB3|. From the MOP vector entries b, c defined in
21(x) Eq. (10), the latter can be directly computed according to
X
a(@a(y)f(x)=—55-=0 vxeQ. (8) _ la+c 15
|cos| = ———= - (15)
(a—c)?+b?

(We neglect here that, in the occluding case, this constrain
may be violated on the bordéQ, between the subregions Note that this result remains unchanged when scaling

Q1 andQy). We rewrite this constraint as the inner product  |n the following, we generalize this approach to tri- and
T higher-variate input data, and prove that indeed all séatar
a df(x)=0vxeQ (9)  variants off (x) encoded in the MOP vectarare generated
by the angle3.

where the three-dimensional vectois given by

2.2 Tri-and Higher-Variate Data

Let f(x), x = (X1,X2,...,Xp)T, f : RP — R now denote g-
variate mapping. Within the local regidd C RP, let f(x)
consist of the additive or occluding superposition of tpro

T
a = (UXVXa UXVy+ UyVX, UyVy)

= (cosBcosy, sin(6 + y), sinfsiny) = (a, b, ¢) (10)

e variate signalsf;(x) and f(x), each of which be oriented
df(x) = (fax, fxy, fyy) " - (12) along a line. Hence,
d d

The components of are the so-called mixed orientation pa-

rameters (MOP) resulting from the concatenation of two di- du
rectional derivatives. The least-squares solution foM@P  Constraint (8) then expands to
vectora then minimizes

T¢12 T T 0% (x) _ 0 9 d 9 f
Q(a):/g[a dfj’dQ=a'Ta=0, a'a>0 (12) dudv i;UIE.JZlVJ;j .

Z t(x)=0. (16)

whereT is the 3x 3-tensor P J
ajfij =0 (17
2,2,

T= / (df)(df)TdQ
JQ where fjj is the partial derivative of with respect tog and
fxzx fuxfxy  Txxfyy Xj, while u;, vj, i,j =1,..., p are the components af and
= fxx fxy fxzy fryfyy | dQ . (13) V. The MOPsa;j are given by
Q

2
fxxfyy fxyfyy fyy a = { ujv;j fori=j (18)
| = .

Minimizing Q(a) subject toa"a > 0 implies thata is the Uivj +Ujvi else

eigenvector of th&' corresponding to its smallest eigenvalue

Aa Gathering they; into the MOP vecton = [a”-]jTSi and with

the vectod f = [fj; ]J-TSi of second derivatives, we obtain from
Ta=Aa, aa=1. (14)

1 More precisely, it is the paif8,180 — ). Note that both angles share
; ; ; ; ; e same absolute value of the cosine; a negative sign comlepo an an-
The elgens¥stem analysis determ.lnes. only the dlrecplon ddhle greater than 90 while cog8 > 0 means3 < 90°. Therefore, restrict-
a. Settinga’'a=1as done above 'mP“eS that the estimat€ng cosB to non-negative values by taking the absolute value aufoailgt
is only known up to an unknown scaling fact@r In ideal  chooses themallerangle of the pai(,180° — 3).



Eq. (17)  Calculate co$ from the eigenvalues: Since the vector
T _ and hence the tensex are only known up to a scalin
df(x)=0VvxeQ 19 y p g
a df(x) x (19) factorR, Eqn. (23) and (24) changeda +A_ = Rcosf3
which is structurally similar to Eq. (9). The sumin Eqg. (17) andA; —A_ =R, yielding for co$3
consists ok = p(p+ 1)/2 components. With the symmetric

k x k-tensor cosB = 2* +27 . (27)
T— [ (@h@dnTde (20) _ )
Q As both numerator and denominator are positive, the same

holds for co$ and it follows3 < 90° (see also footnote 1;
the identification of a “positive” and a “negative” eigerval
here is equivalent to taking the absolute value in Eq. (15))

the MOP vecton satisfiesa'’ Ta=0, a'a= 1. As above,
a is a homogeneous vector, we thus mayzset = 1.

Let us now consider another tensArwhich is formed
from the (as yet unknown) orientation vectors By = 53 Scaling I nvariances
$(uvT +vuT"). The rank ofA is two, thus,A has two non-

- . . We now briefly discuss invariances of the rotation-invarian
vanishing eigenvalues, andA_. These eigenvalues are eas- Y

measure|cosf3| as calculated from Eq. (27) with respect

ily derived to to intensity scaling and scaling of the coordinate axes. Let
1 B f =cgf 4 Co, Cg,Co € R, ¢g # 0, denote the intensity-scaled
Ay = Z[l+u'v]=cogZ >0 (21) version off. In the tensofT, this results in a multiplication
2 2 of each entry b)cé. The eigenvectad, though, remains un-
) }[ Tv—1=—sir? B <0, (22) changed, and so does, consequentigsB|. Similarly, scal-
2 2 ing each component, i = 1,...,p, of the space vectot by

where we have used that the inner product of the unit orient4l€ Same factots € R, ¢s 0, yieldsf (x) = f(cs-x). Each

tion vectorsu andv yields the cosine of the difference angle €Nty Of T is then multiplied by the same factef, again
B,i.e.u’v = cosB. Therefore leaving the MOP vectos unchanged.

Ai+A = cosB (23) 3. RESULTS
Ab—A = 1. (24)  To evaluate the invariance properties of our feature, we gen
erated various synthetic image sequences with known ground

With Eq. (18), this tensor can also be computed from thdruths. Fig. 1 shows four subimages with additively superim
MOPs by settindA]j; = ajj, and[A];; = %a”_’ i £ j. We are posed orientations in noise, which were rotated from frame

now able to state which scalar invariant features ©f) are to frame by 5°. Fig. 2 showsos| as calculated according

encoded in the MOP vectar. The rotation of the content of
the imagef (x) in Q causes a rotation of the vectarsand

v. This can be described as a multiplication with the rotation
matrix M

#1

a=M-u, v=M-v (25) B

) cos(B) 0 0.7071 0.9239
and yields a rotated tensor

Fig. 1: First frame of a sequence showing four subimages

i1 T T (71x 71 pixel each) with additively superimposed oriented
A=3 (Mu- (Mv)" +Mv- (Mu)') patterns in white Gaussian noise (PSNR 28dB), wherre
1 T TN aT T varies from 90° to 22.5°. The structure in each subimage
= M§ (uv! +vu')M' =MAM' . (26)  was rotated from one frame to the next by 5°.

Since rotation is an orthogonal similarity transform, thet0 EQ. (27) vs. rotation angle for each subimage. The ratatio
eigenvalues ofA are identical to those oA. All scalar in-  covered in total 175¢, corresponding to 35 frames. The cal-
variants under local orthogonal similarity transformstiares ~ culation was based on a local regi@rof size 27x 27 pixel
generated by, andA_ or, from Eq. (23), by the ang|8 be- placed in the image centre. For each curve, Fig. 2 also pro-
tween the orientations. vides standard deviation and mean of our feature as estimate
The algorithm for calculating the featureosB| is there- over all frames. Despite the presence of noise, the estmati
fore as follows: error corresponds to less than 0.5°. Clearly, the sertyithi
i . . ourfeature to rotation is very low, as expected.
» CalculateT from the second-order image derivatives Fig. 3 depicts occluding superpositions of similar pat-

overQ. _ _ terns. Again, the feature calculation was performed wighin
+ Estimate the MOP vector as the eigenvector belonging t@ycal region of size 2% 27 pixel placed in the image centre,
the lowest eigenvalug; of T. thus always containing the occluding boundary. The plots of
» Form the tensoA from the entries oA. our feature over rotation angle are very similar to those in

 Calculate the non-zero eigenvaluks > 0 andA_ <0  Fig. 2, we therefore only give standard deviations, mean val
of A, and confirm that all other eigenvalues, if any, areues and mean difference to each true value in Tab. 1. Again,
(close to) zero. the observed sensitivity to both rotation and noise is vany |
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Fig. 2: Invariance featurgcosf3| over frame number for the
patterns in Fig. 1. Also given are the standard deviation

Fig. 5: Results for the rotating junctions in Fig. 4.
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Fig. 3: Occluding patterns in noise, PSNR 28 dB.

no. o u Au

#1 | 0.0136 0.0154 0.0154
#2 | 0.0203 0.4027 0.0200
#3 | 0.0087 0.7197 0.0126
#4 | 0.0046 0.8799 -0.0440

Tab. 1:

Results for the occluding patterns in Fig. 3.

the curves in Fig. 5.

To evaluate the influence of the remaining fluctuations of the
feature value over rotation, let us assume that each of the T
and Y junctions in Fig. 4 shall be tracked by matching the
features measured in a reference frame to those measured in
its predecessor. The reliability of this matching process c

be assessed by describing the feature fluctuations for each
junction by a Gaussian distribution with mean and standard
deviation as in Tab. 2. Fig. 6 shows these distributions to-
gether with the decision thresholds for optimal separation
the sense of minimum confusion error (equal a priori proba-
bilities for the occurrence of each junction are assumed). A
one would expect from Fig. 5, the overlap is largest between
the distributions belonging to junctions #3 and #4. Stiik t
probability of an erroneous match is only 0.70%. Simply
assigning each observed feature to the reference class with

#1 #2 #3 #4
TY
90° 67.5° 45° 22.5°
cos(B 0.3827 0.7071 0.9239

Fig. 4: T, Y and X junctions in noise, PSNR 28 dB.

Fig. 4 shows several junctions exhibiting double orientai

in noise. As above, the feature calculation was carried out
in a region of 27 27 pixel centred around each junction.
The results of the feature values over rotation angle aengiv

in Fig. 5, and the corresponding estimates of standard de-
viations, mean values and mean differences are provided in
Tab. 2. The results show that such junctions pose a greater
challenge than the textures above - probably because the ac-
tual orientation information covers only a minor part of the

analysis regiorQ. This holds in particular for the Y junc- Fig. 6: Estimates of probability density functions for T and
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nearest mean would lead to an error of 0.86%.
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tion with the lowest angl@ (junction #4 in the upper row of Y junctions from the parameters in Tab. 2.

Fig. 4).



4. CONCLUSION multiple local orientations in image signaBroc. IEEE

We have derived a new invariant feature for the descriptfon o ICA,S§P'200'4” 553-556, Montregl, May. 17_2,1 2004.
double oriented local image neighbourhoods. The derinatiol2] J- Biglin and G. H. Granlund. Optimal orientation detec-
was partly motivated by what is known as the aperture prob-  tion of linear symmetry. IrProceedings IEEE First In-
lem in the estimation of optical flow: the matrix involved in  teérnational Conference on Computer Visj@ages 433
estimating optical flow describes an important local featur 438, London, June 1987.

viz. orientation, but only if it is singular - in which case it [3] S. Di Zenzo. A note on the gradient of a multi-
cannot be used to estimate optical flow. Vice versa, if regu- image.Computer Vision, Graphics, and Image Process-

lar, the matrix permits estimation of optical flow, but it istn ing, 33:116-125, 1986.
able to capture a local feature such as orientation any morgs] M. Elad, P. Teo, and Y. Hel-Or. On the design of optimal
To characterize the underlying local image signal in thieca filters for gradient-based motiorinternational Journal

we have developed two superposition models assuming ad- of Computer Visionpage submitted, 2002.

ditively or occludingly superimposed and individually -ori .

ented subsignals. Based on these models, an extended teng’(lrg' A. ForhS)I/Dth and J.ﬁ(i{wﬁé:ompéjt%rd\lﬁsg)_n. A%%%ern
was discussed which is able to reflect the double orientation pproach Prentice-Hall, Upper Saddle |ve.zr,- "
property. The eigenvector belonging the lowest eigenvalut] B. K. P. Horn and B. G. Schunck. Determining optical
of this extended tensor is the so-called MOP vector, which ~ flow. Artificial Intelligence 17:185-203, 1981.

encodes the orientations of both subsignals. In bivartate i [7] M. Kass and A. Witkin.  Analyzing oriented pat-
ages, the MOP vector has three components but, as a unit terns. Computer Vision, Graphics, and Image Process-
vector, it possesses only two DoF. Since invariance to rota- ing, 37:362-385, 1987.

tion involves the loss of another DoF, the sought featuretmuets] B. Lucas and T. Kanade. An iterative image registration
be a scalar, and was intuitively found as the differenceeangl| technique with an application to stereo vision. 7th

B between the orientations or a function of it, such@sp|. International Joint Conference on Atrtificial Intelligence
We have shown how to calculate this feature directly from the pages 674-679, Vancouver, 1981.

MOP vector, without explicitly determining the orientai L
We also extended the approach to tri- and higher-variate dat[g] Cf' MO}&." IT' A‘."‘Ch' . Stul_<e, anld_ 5: Barth. Elstl_maulon
and provided a proof thatindeed all scalar invariants eadod of muttiple or|er_1tat|(|)rés |rf1 multi-dimensional signals.
in the MOP vector are produced Ifly In all cases, we have '?(:':IEDEE Interngg%ga 2622 eregce oglljmg%eMEr?é:g%&gg
used the absolute value of gdss feature, which could be (7803)’8%%%8?[ Si ~ ,gn 202 57 5004 \EEE B
directly calculated from the MOP vector components. We 8 —1, Singapore, Oct. 24— ' 3
intentionally abstained from calculating itself by invert-  [10] C. Mota, I. Stuke, T. Aach, and E. Barth. Estima-
ing the cosine, since this involves a transcendental fancti ~ tion of multiple orientations at corners and junctions. In
the nonlinearities of which would amplify the error noise of ~ DAGMO04: 26th Pattern Recognition Symposjyrages
the estimate. In addition, it could also be shown straight- 163-170, Tuebingen, Aug. 30 — Sept. 1 2004. German
forwardly that the feature is invariant with respect to éine Association for Pattern Recognition, Springer Verlag:
intensity scalings and the scale of the local image region. LNCS 3175.

Our experiments conducted so far with this feature conf11] H. Scharr and B. Jahne. Optimization of spatio-
firmed the expected invariant behaviour of the feature, wher  temporal filter families for fast and accurate motion esti-
we focussed on rotation of both double-oriented texturéd pa  mation. Inimage Sequence Analysis to Investigate Dy-
terns and junctions. Though the results are quite promis- namic Processes, Lecture Notes in Computer Science
ing, the development of this feature is not yet complete, and  Springer, 2003.
considerable research efforts remain to be carried out; firS;1 21 . Shizawa and T. Iso. Direct representation and de-
our derivations are all based on a spatially continuous@nag - “tection of multi-scale, multi-orientation fields using lo-
model. In our spatially discrete implementations, we used ¢4 gifferentiation filters. INIEEEE Computer Society
standard filters, such as finite-difference approximatfons Conference on Computer Vision and Pattern Recogni-

the differentiation, which were not optimized in any way for 51, (cvPR'93 508-514. Piscat J 1993
the task at hand. The benefit of using optimized filters, such ﬁggé_ ypages » Fiscataway, June '

as the ones in [4, 11], remains to be investigated, as do .
the comparison to other rotation- and scale invariant featu TES]stpSetrlijrl:l%oZ.edA%?ig 'nItEe. dBﬁgPe,rﬁgdGIﬁllll\Eﬂgéa.S (;Al\Jr:ﬁ\IIEI/eSISr:g

such as the SIFT [15]. Another open point is the effects ) ) .
Symposium on Image Analysis and Interpretatimages

of sampling on the invariance with respect to scale of the
neighbourhood since, as the size of local structure becomes 133-137, Lake Tahoe, NV, March 28-30 2004. IEEE
Computer Society.

smaller, calculation of, e.g., the derivatives will becamare
inaccurate. Finally, let us mention that the extension ef th[14] E. Trucco and A. Verri. Introductory Techniques for
proposed approach to multispectral data, such as colour im- 3D Computer VisionPrentice-Hall, Upper Saddle River,
ages, is straightforward: similarly as done for the single o 1998.

entation tensor in [3], it suffices to calculate the extertéed  [15] D. G. Lowe. Object Recognition from Local Scale-
sor according to Eq. (20) on each spectral component, and to |nvariant Features. Imternational Conference on Com-
replaceT by the sum of these. puter Vision pages 1150-1157, Corfu, 1999. IEEE.
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