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A Theory of Multiple Orientation Estimation

Matthias Mühlich and Til Aach

RWTH Aachen University, 52056 Aachen, Germany
{matthias.muehlich,til.aach}@lfb.rwth-aachen.de

Abstract. Estimation of local orientations in multivariate signals (in-
cluding optical flow estimation as special case of orientation in space-
time-volumes) is an important problem in image processing and com-
puter vision. Modelling a signal using only a single orientation is often
too restrictive, since occlusions and transparency happen frequently, thus
necessitating the modelling and analysis of multiple orientations.
In this paper, we therefore develop a unifying mathematical model for
multiple orientations: beyond describing an arbitrary number of orien-
tations in multivariate vector-valued image data such as color image se-
quences, it allows the unified treatment of transparently and occludingly
superimposed oriented structures. Based on this model, we derive novel
estimation schemes for an arbitrary number of superimposed orientations
in bivariate images as well as for double orientations in signals of arbi-
trary signal dimensionality. The estimated orientations themselves, but
also features like the number of local orientations or the angles between
multiple orientations (which are invariant under rotation) can be used
for various inspection, tracking and segmentation problems. We evaluate
the performance of our framework on both synthetic and real data.

1 Introduction: (Single) Orientation Estimation

Local orientations are an important low level feature for analyzing and under-
standing multivariate data. The basis for the concept of orientations is the impor-
tant observation that signal gradients usually vary much slower than the signal
itself. However, fast variations of gradients do appear in signals, for instance at
corners in image data. In this paper, we want to promote the perspective that
limitations of the orientation concept can be overcome by considering multiple
signal orientations, thus making the concept of orientations even more funda-
mental for signal analysis. But first, let us review single orientation estimation.

1.1 The structure tensor

Let x ∈ RN be a vector in N -dimensional space. Then a function of x, e.g. s(x),
defines a multivariate1 signal. Such a signal is called locally oriented in some
1 The signal s is scalar-valued and therefore one-dimensional. But it depends on a mul-

tidimensional vector and is therefore correctly called a multivariate (here: N -variate)
signal. Multidimensional signals also exist in the orientation estimation context, for
instance color images (which are three-dimensional and bivariate).
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region Ω if it is constant along parallel lines, i.e.

s(x + λu) = s(x) for all λ ∈ R and x,x + λu ∈ Ω (1)

with some unit vector u denoting the orientation direction.
A given signal is locally constant with respect to some unit vector u, if its

directional derivative ∂s
∂u = 〈g,u〉, i.e. the scalar product between signal gradient

g and u, is zero for all gradients computed in some local neighborhood Ω. The
gradients span a subspace in which the signal is not oriented and consequently,
the orthogonal complement of this subspace is the sought orientation (which is
uniquely determined if we can find N − 1 linearly independent gradients).

The introduction given so far is one out of several possible approaches leading
to the so-called structure-tensor approach for orientation estimation which can
be found in pioneering work of Förstner [1], Bigün et al [2] and others. For
bivariate image data (N = 2; generalization to arbitrary N is straightforward),
we first compute the discrete derivative of the signal with respect to x and y
using convolution with filters fx and fy: sx = fx ∗ s and sy = fy ∗ s. With the
image gradient g = (sx, sy)T , we now define the (standard) structure tensor S(1)

as local integration over the outer product of the gradient:

S(1) = f ′ ∗ (ggT ) (2)

where f ′ is some averaging filter. (Widely used choices for fx, fy, and f ′ are
(directional derivative of) Gaussian filters.) If (1) is only valid for a single ori-
entation in general N -variate signals, then the structure tensor S(1) has one
zero eigenvalue and the corresponding eigenvector is the sought orientation. For
noisy data or model violations, the eigenvector corresponding to the smallest
eigenvalue defines the orientation in which the signal is “most constant”.

1.2 Related approaches

The structure tensor S(1) is not the only possibility to analyse single-oriented
structures. As pointed out in [3], higher order directional derivatives also vanish
in the orientation direction:

∂s

∂u
= 0 and

∂2s

∂u2
= 0 and

∂3s

∂u3
= 0 and · · · (3)

which allows to design a wide class of approaches based on combinations of dif-
ferent order derivatives. This freedom can be used for filter design. For instance,
the book of Granlund and Knutsson [4] gives a slightly different definition of
the orientation concept: the invariance requirement states that an entity which
characterizes orientation must not depend on the signal variations orthogonal to
the sought orientation. This defines a much stronger concept of orientation than
the one defined in (1). For instance in bivariate signals (i.e. images), it forces us
to design an orientation estimator such that it makes no distinction between two
especially important types of oriented 1D structures: “lines” (variation on two
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sides; also called “ridges”) and “edges” (variation only on one side). A detector
that reacts uniformly on these two types of structures is called phase invariant
and can be realized with quadrature filters [4] and a bandpass prefilter.

If, on the contrary, we are interested in detecting line structures only (and
not edges), the second order directional derivative defines a popular filter; this
can be traced back to [5]. A recent PAMI paper [6] also discusses line-specific
and edge-specific orientation estimation in the context of steerable filters.

Two generalizations of the structure tensor to phase-invariant feature detec-
tors are the 2D energy tensor defined by Felsberg and Granlund in [7] and the
boundary tensor proposed by Köthe in [8]. The connections between energy ten-
sor and boundary tensor are analyzed recently by both authors in a joint paper
[9]. All these approaches are based on higher (up to fourth) order derivatives.

Summarizing this section, we emphasize that the standard structure tensor
approach can be extended with combinations of higher order derivatives in order
to obtain advantageous properties. Odd order filters can be optimized for edge
detection, even order filters for lines, and mixed order filters for phase invariant
behaviour.

2 Modelling and Estimation of Multiple Orientations

Higher order derivatives in the context of orientation estimation also appear
in a different line of research: the analysis of multiple orientations. In spite of
characterizing many important low level image features like lines or edges, the
underlying single orientation signal model is much too restrictive for many real
signals. For instance, the presence of two oriented textures in a region Ω calls for
an extended mathematical model. This observation led to the study of double-
oriented signals (we will denote the multiplicity of orientations by M , so double
orientations estimation means M = 2).

For image sequences, double orientation estimation means the study of two
independent optical flows; this is the area where double orientation estimation
appeared first in the beginning of the 90s in pioneering work of Shizawa/Mase
[10,11] (additive superposition model, grey value image sequences), followed by
Shizawa/Iso [12] (additive superposition, grey value images, connection to steer-
able filters). More recent results can be found in [13,14] (additive model, im-
ages; multispectral signals in the second reference; first theoretical steps towards
higher multiplicity of signals beyond double orientations) and [15] (occluding
model, multispectral images). However, present day algorithms are still limited
to the estimation of double orientations (M = 2) in image or volume data
(N ≤ 3). Summarizing the previous work, we emphasize that model (additive or
occluding), signal dimensionality (grey value or multispectral), N -variate signals
(bivariate images, volumes, N > 3), and multiplicity M (double orientations or
M > 2) define four ‘orthogonal’ directions for extensions of the early multiple
orientations estimation work. First steps in all directions have been made, but
the unifying theory is still missing. Most importantly, no experiments for triple
or more orientations (M ≥ 3) can be found anywhere in literature.
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2.1 Transparent and occluding orientations

Two different ways of combining two or more oriented signals si (with i =
1, . . . ,M) to form a new signal s can be found in literature. The occluding ori-
entations model (OOM) and the transparent orientations model (TOM):

Multiple orientation models:

(OOM:) s(x) = si(x) ∀x ∈ Ωi (TOM:) s(x) =
M∑
i=1

αi si(x) .
(4)

The first model states that we take the first oriented signal if the point x is in
some region Ω1 and so on (obviously, all regions must be distinct and add up to
the whole analysis region Ω). For instance, this model is applicable with M = 2
if the region Ω1 corresponds to some object which occludes another object (Ω2:
background), provided that both objects can be modelled reasonably well as
single-oriented structures.

The second model, TOM, assumes that all basic signals are present in the
whole signal and we observe a superposition of them, weighted with some con-
stants αi.2 Computing directional derivatives, we obtain the constraints:

Multiple orientation constraints, derivative forms:

(OOM:)
M∏
i=1

∂s

∂ui
= 0 (TOM:)

∂Ms

∂u1 · · · ∂uM
= 0 .

(5)

The directional derivative is defined as

〈g,ui〉 =
∂s

∂ui
= 〈∇s,ui〉 =

N∑
j=1

∂s

∂xj
(ui)j (6)

and inserting in the left hand side of (5) yields

M∏
i=1

 N∑
j=1

∂s

∂xj
(ui)j

 =
N∑

k1,...,kM=1

(O)k1···kM
(U)k1···kM

= 〈O,U〉 = 0 (7)

where we have rewritten a product of M factors (which are sums consisting
of N summands each) as a large sum of NM summands and then as scalar
product of two tensors (i.e. sum over all element-by-element products). The
whole dependency on the sought orientations is encapsulated in the tensor

U = u1 ⊗ · · · ⊗ uN (8)
2 It is also possible to define the weights αi as functions of x (instead of constants).

Then, the OOM is a subset of the (generalized) TOM. Therefore, the TOM-approach
can also be used for estimation under the OOM, though at the expense of needing
higher order derivatives.
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where “⊗” denotes the tensor product operator. We now can state the multiple
orientation constraints for both models. We first obtain the

Multiple occluding orientations constraint:

〈O,U〉 = 0 with (O)k1···kM
=

M∏
i=1

∂s

∂xki

.
(9)

Each point in Ω yields one data tensor O and from all these tensors, we have
to estimate the sought orientation tensor U which is orthogonal (i.e. has scalar
product zero) to the given data tensors. Both O and U are N × · · · ×N tensors
(all indices ki with i = 1, . . . ,M run from 1 to N). For instance, in image
sequences (trivariate data, N = 3), O contains all possible products of M first
order derivates w.r.t. x, y and t coordinates. Analogously, we find the

Multiple transparent orientations constraint:

〈T ,U〉 = 0 with (T )k1···kM
=

∂Ms

∂xk1 · · · ∂xkM

.
(10)

At the end of this subsection, we want to stress the structural similarity of both
models: the tensors constructed from signal derivatives are different (product of
first derivatives in O versus higher order derivatives in T ), but once we have
constructed the data tensor, the computation of the sought orientations (the
estimation and decomposition of the orientation tensor U) is exactly the same.

2.2 Symmetry properties of the data tensors

The commutativity in the definitions of (9) and (10) is the key to the under-
standing of multiple orientations. The data tensors are invariant against any
arbitrary permutation of indices and therefore have some very pronounced sym-
metry properties. For M = 2, the data tensors O and T are symmetric N ×N
matrices, but for higher M , we cannot rely on concepts from matrix algebra
anymore. We therefore define the space of fully symmetric M -tensors3 as

RN×···×N
⊕ =

{
T ∈ RN×···×N

∣∣∣∣(T )i1···iM
= (T )P (i1···iM )

}
(11)

with P (i1 · · · iM ) denoting any arbitrary permutation of the indices i1 · · · iM .
Whereas the data tensors are fully symmetric, the orientation tensor U =

u1 ⊗ · · · ⊗ uM is clearly not. But the symmetry of the left operand in some
scalar product (like 〈T ,U〉) always means that the value of the scalar product
does not change if the same symmetry transformations are applied to the second
operand (here: U). Hence, if 〈T ,U〉 = 0, then 〈T ,U ′〉 = 0 with U ′ denoting any
arbitrary permutation of the order of orientations in the tensor product U .4 As a
3 Fully symmetric in order to allow the term symmetric also for invariance against

special permutations only, for instance the exchange of indices 1 and 2.
4 Geometric interpretation: we can only estimate a set of M orientations and cannot

identify them as “first”, “second”, “M -th” orientation; they are interchangeable.
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consequence, the original tensor U cannot be recovered uniquely and any linear
combination of permuted tensors solves the problem.

However, it is possible to describe a set of M orientations with a unique order-
M tensor. The key is symmetrization: among all possible orientation tensors U
which are orthogonal to T (i.e. 〈T ,U〉 = 0), there is only a single fully symmetric
one (up to a non-zero scale factor): the sum over all possible permutations with
equal weights. This means that we have to estimate the orientation tensor subject
to U ∈ RN×···×N

⊕ in order to obtain a unique solution.
All tensor scalar products can be converted to standard scalar products by

stacking the tensor elements to form a long vector. But now, the symmetry
properties of both operands call for a slightly modified version of vectorization.
Our fully symmetric tensors have

k =
(

N + M − 1
M

)
(12)

different elements (≡ degrees of freedom, DOF). Therefore, the space RN×···×N
⊕

can be mapped to Rk. We now define

Definition 1. Let A ∈ RN×···×N
⊕ denote a fully symmetric tensor of order M .

Then we define the mapping VecSymm (·) : RN×···×N
⊕ → Rk with k defined in

(12) as stacking all independent elements under each other in some arbitrary but
fixed order. Furthermore, we define VecSymmN (·) : RN×···×N

⊕ → Nk as counting
the number of appearances (index permutations) of each element.

Note that the VecSymmN (·) operation only depends on the dimensionality of
the argument, not on the entries. Thus, every element of RN×···×N

⊕ produces the
same VecSymmN (·) result. Applying these definitions to (9) and (10) now allows
to generalize the single orientation constraint 〈g,u〉 = 0 (gradient orthogonal to
sought orientation) to 〈g̃, ũ〉 = 0 with mixed orientations gradient vector

(OOM:) g̃ = VecSymm (O) resp. (TOM:) g̃ = VecSymm (T ) (13)

and mixed orientation parameters (MOP) vector

ũ = VecSymmN (U) · VecSymm (U) (14)

with “·” indicating element-by-element multiplication. The vectors g̃ are the
multiple orientations equivalent of the gradients. In analogy to single orientation
estimation, we can therefore define the double [triple, M -] orientation structure
tensor S(M) as spatial integration (i.e. convolution with averaging filter f ′) over
the outer product of g̃ with itself

S(M) = f ′ ∗ (g̃g̃T ) (15)

and the eigenvector of S(M) corresponding to the smallest eigenvalue will then
yield the MOP vector for M orientations. But unfortunately, we cannot claim
that this already solves the multiple orientation estimation problem because
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a) the MOP vector has clearly too many DOF: k is a polynomial with leading
term NM , whereas M unit vectors only have M(N − 1) DOF, and

b) no general way exists in literature how to decompose it into its underlying
orientations,5

i.e. what we have solved by now is just an intermediate step towards the sought
set of orientation vectors.

2.3 Vector-valued signals

Based on early work by Di Zenzo [16] and Förstner [17], who first studied gradi-
ents of multi-band images, it is possible to derive multiple orientations structure
tensors also for vector-valued signals s(x) ∈ RP (for instance color images).
Orientation estimation is also possible in such P -dimensional data, but notation
gets much more complex. We therefore deferred discussion of multi-dimensional
signals to this point where the generalized gradients g̃ have become available.

In principle, for every derivative, we now have to choose between P signal
bands. In the transparent model, each component of g̃ is a single M -th order
derivative; hence for general P , it gets vector-valued and for the structure tensor,
we have to perform an additional contraction over this index, turning the outer
product g̃g̃T into a matrix of scalar products.6 For instance, multi-dimensional
TOM orientation estimation for N = 2 and M = 2 means

S(2) = f ′ ∗

 〈sxx, sxx〉 〈sxx, sxy〉 〈sxx, syy〉
〈sxx, sxy〉 〈sxy, sxy〉 〈sxy, syy〉
〈sxx, syy〉 〈sxy, syy〉 〈syy, syy〉

 . (16)

Under the occlusion model (M first-order derivatives), every element of the
mixed orientations gradient becomes a P × · · · ×P tensor (M factors) and com-
puting the structure tensor means contraction over all M signal band indices.
Fortunately, all elements are outer products which turns the structure tensor
elements from products of 2M scalar values (for P = 1) to M scalar products
of two P -vectors. Considering N = 2 and M = 2 for arbitrary P again yields
g̃ = (sx ⊗ sx, 1

2sx ⊗ sy + 1
2sy ⊗ sx, sy ⊗ sy)T (symbolic notation!) and then

S(2) = f ′ ∗

 〈sx, sx〉2 〈sx, sx〉〈sx, sy〉 〈sx, sy〉2
〈sx, sx〉〈sx, sy〉 1

2 〈sx, sx〉〈sy, sy〉+ 1
2 〈sx, sy〉2 〈sx, sy〉〈sy, sy〉

〈sx, sy〉2 〈sx, sy〉〈sy, sy〉 〈sy, sy〉2


(17)

(this equation was also derived in [15]). We can thus finally compute structure
tensors for an arbitrary number M of orientations, either occludingly or trans-
parently superposed, in arbitrary P -dimensional and N -variate signals.
5 In principle, the MOP vector itself (i.e. without decomposition into underlying ori-

entations) could be used for applications like texture classification or tracking. How-
ever, the distance between two vectors in an highly overparameterized space is clearly
suboptimal without previous projection onto the space of “valid MOP vectors”.

6 As summation and convolution commute, we can alternatively sum the P structure
tensors computed for each individual signal band.
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3 Solving the Decomposition Problem

Once an estimate ˆ̃u for the MOP vector is computed, we first reverse (14) by
dividing each component by the corresponding number of permutations. Then
the mapping itself can be reversed, thus producing an estimate Û which is a fully
symmetric tensor, i.e. an element of RN×···×N

⊕ . However, this tensor is in general
not an element of

RN×···×N
~ =

{ ∑
P (i1···iM )

ui1 ⊗ · · · ⊗ uiM

∣∣∣∣ui1 , . . . ,uiM
∈ RN \ {0}

}
, (18)

the space of symmetrized outer products, which we will call the space of minimal
fully symmetric tensors from now on. Therefore, our estimate does not represent
a valid set of M orientations in general. Going back to vector space, we see that
the space of valid MOP vectors is a subset of Rk, and only in tensor space,
we have the means to define both spaces properly: any estimated tensor is a
fully symmetric tensor (i.e. an element of RN×···×N

⊕ ), but valid tensors have to
be restricted to the subspace RN×···×N

~ . For single orientation estimation, this
novel perspective on (multiple) orientation estimation coincides with the known
definitions (order-1 tensors are vectors), but in general, only a tensor approach
is suited to handle the symmetry constraints properly.

3.1 Multiple orientation estimation for images

For bivariate images (i.e. N = 2), we find that k =
(
2+M−1

M

)
=

(
M+1

M

)
= M + 1.

Subtracting 1 for undefined scale, we obtain M which is the same number as
M(N − 1) (DOF for M unit vectors in N -dimensional space) for N = 2. There-
fore, the problem of overdetermined MOP vectors does not appear in images.
This means that we have to qualify the last sentence of the previous paragraph:
for images (and only for images!), the MOP vector is in fact a minimal de-
scription of the sought parameters. In images, derivatives are only possible with
respect to two coordinates, say x and y. For instance, M = 3 yields

(ũ)1 = (u1)x(u2)x(u3)x

(ũ)2 = (u1)x(u2)x(u3)y + (u1)x(u2)y(u3)x + (u1)y(u2)x(u3)x

(ũ)3 = (u1)x(u2)y(u3)y + (u1)y(u2)x(u3)y + (u1)y(u2)y(u3)x

(ũ)4 = (u1)y(u2)y(u3)y ;

generalization to arbitrary M is straightforward. Every orientation vector con-
sists of two unknowns (ui)x and (ui)y with the constraint ((ui)x)2+((ui)y)2 = 1
(it must be a unit vector). However, this problem can be reformulated as an
unconstrained problem easily: If (ũ)1 = 0, then at least one of the sought orien-
tations is (0, 1)T . Without loss of generality, we therefore can define (uM )x = 0
and (uM )y = 1, thus reducing the degree of the problem by 1. Otherwise, we
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divide by (ũ)1 and obtain the equation system

p1 = x1 + x2 + x3

p2 = x1x2 + x1x3 + x2x3

p3 = x1x2x3

with given values pi := (ũ)i+1
(ũ)1

and the new unknowns xi := (ui)y

(ui)x
. The set of M

values for xi (which can be interpreted as slope of the orientation vectors) are
easily found as roots of the polynomial

M∑
i=0

(−1)i (ũ)i+1 xM−i = 0 . (19)

By combining the vertical orientation vectors with the normalized version of
all (1, xi)T vectors, we successfully solved the multiple orientations estimation
problem for images.

3.2 Double orientation estimation in multivariate signals

For double orientation estimation, all tensors can be interpreted as matrices.
Matrix algebra offers a convenient interpretation of the difference between fully
symmetric tensors (RN×N

⊕ ) and its subset RN×N
~ . While the first space is the

space of symmetric N × N matrices, the latter space is the space of matrices
formed by u1 ⊗ u2 + u2 ⊗ u1, i.e. the space of symmetric rank-2 matrices.

This allows to define a very simple strategy for double-orientation estimation
in general N -variate signals. We estimate the MOP vector ũ and map it to the
space of fully symmetric tensors (here: symmetric matrices), taking care not to
forget the division by the permutation count, see (14). Let U denote the result
of this operation; we now have to find the two unit vectors u1 and u2 which
fulfill

U = c(u1 ⊗ u2 + u2 ⊗ u1) (20)

for some scaling factor c. From

Uu1 = c(c′ u1 + u2) and Uu2 = c(u1 + c′ u2) (21)

(with c′ = 〈u1,u2〉 denoting the cosine of the angle between u1 and u2) follows

U(u1 +u2) = c(c′+1)(u1 +u2) and U(u1−u2) = c(c′−1)(u1−u2) , (22)

i.e. u1−u2 and u1+u2 are eigenvectors of U. Being a rank-2 matrix, U only has
two non-zero eigenvalues and because |〈u1,u2〉| < 1 for u1 6= u2, one of them
is positive and one is negative. Let λ+, λ− denote the eigenvalues and x+,x−
the corresponding eigenvectors of U (+ for positive eigenvalue, − for negative
eigenvalue). Then the sought orientations can be found by normalizing

u1 =
√

λ+ x+ +
√
−λ− x− and u2 =

√
λ+ x+ −

√
−λ− x− . (23)
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Fig. 1. The GUI which we use for experimentation with synthetic data.

Given some noisy estimate for U, we can apply exactly the same strategy, now
silently ignoring all intermediate eigenvalues which are close to zero (instead
of being exactly zero); this yields the closest minimal fully symmetric matrix in
terms of the Frobenius norm. Our scheme closely resembles to a method proposed
by Shizawa and Mase for trivariate signals (N = 3) in [10]. The difference to our
scheme is that U was corrected to the space of 3× 3-matrices having rank 2 by
subtracting λ2 times the identity matrix with λ2 denoting the (only) intermediate
eigenvalue. In contrast to our scheme, this method cannot be generalized to
N > 3 because it only works for a single intermediate eigenvalue.

Summarizing this section, we have presented multiple orientation estimation
schemes for (a) N = 2 and arbitrary M and (b) M = 2 and arbitrary N .
Again we stress that the decomposition schemes can be applied for both models
(occluded and transparent) and for either grey value or multispectral data.

4 Experiments

We tested our algorithms on synthetic and real data. Synthetic data allow a
thorough examination of the performance of an algorithm with known ground
truth (under some assumed model), while testing with real data gives evidence
that this modelling is accurate (at least for specific situations). Both types com-
plement one another.
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Fig. 2. Estimation of 2 transparent orien-
tations (SNR = 6 dB).
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Fig. 3. Estimation of 3 occluding orienta-
tions (SNR = 6 dB).

Fig. 4. An image of a house. Different tex-
tures can be characterized by a different
number of local orientations.

Fig. 5. Number of orientations (0–3) en-
coded in four different gray levels. The re-
gions in white were rejected by our orien-
tation model.

Fig. 6. Image (left) and estimated orientations (right) for each pixel at the part of the
image where the two roof parts meet. We can see that the rooftiles are modelled well
with three local orientations, and the two textures / roofs lead to two different sets of
orientation estimates.
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For multiple orientation estimation, the amount of parameters which can be
modified is huge: the number M of superposed signals, the basic signals them-
selves, their orientations, their respective weight functions in the combination
process, the filters used for computing the discrete derivatives, the filter used for
spatial integration of the structure tensors, and the level and type of added noise.
In our opinion, a thorough examination and testing of an algorithm is only pos-
sible with synthetic data and a graphical user interface (GUI) which allows easy
modification of the individual input parameters and immediate feedback on the
consequences it has for the estimate. Fig. 1 shows our GUI tool which we used
to “explore the parameter space”. It is enclosed on the electronic version of the
proceedings and it is also available for download at www.lfb.rwth-aachen.de.

We found that orientation estimation under the models discussed above be-
haves rather robust under added noise. Figs. 2 and 3 show two examples for
the combination of two transparent resp. three occluding orientations, both for
added Gaussian noise with SNR of 6 dB. Thick lines: true orientations; darker
thin lines: estimated orientations.

For our next experiment, we used the image of a house (fig. 4) and tested the
ratio s between smallest and second-smallest eigenvalue of S(M) against some
predefined thresholds. This allows a hierarchical testing of orientedness: if the
texture (norm of image gradient) is high enough, then set M = 1 and

1. compute structure tensor S(M) and significance value s
2. if s is lower than some threshold cM , then compute orientation vectors for

M orientations model
3. otherwise increase M by one and go to first step (provided that M is smaller

or equal than some maximum value Mmax).

Applying this scheme with Mmax = 3, we obtain a segmentation of the image
into areas of 1, 2, or 3 orientations, plus two classes for “not enough texture” (i.e.
image more or less constant) and “not oriented” (which is a reasonable inter-
pretation for bivariate data not fulfilling our model with M ≤ 3). Fig. 5 shows
the segmentation result which is based only on the number of found orienta-
tions. Also note that the image content (a house) is clearly visible in an image
with only 5 different values; this demonstrates the importance of (multiple) local
orientations as low level images (resp. texture) features.

For each of the regions labelled as single-, double- or triple-oriented, we also
obtain the corresponding orientation vectors. Fig. 6 shows the part of the image
where the two roof parts meet and it is clearly visible that the three estimated
orientations do not vary much within the same roof, but are considerably dif-
ferent in both halves of the image (the ‘stars’ indicating the three orientations
roughly look mirrored), thus allowing further segmentations within the regions
having the same number of local orientations.

Another important application for the low level image feature “local orienta-
tion(s)” is the definition of invariance properties. For instance, the angle between
two orientations defines a measure which is invariant to rotation. Therefore, the
theory of multiple orientation estimation is also important for the search of cor-
responding regions.
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Fig. 7. Left: An x-ray image of metal
gratings in a rubber product. Right: num-
ber of local orientations for each pixel.

Fig. 8. Left: enlarged part of fig. 7. Right:
number of local orientations again; the de-
fect is easily visible.

A third set of experiments was carried out on x-ray images within an indus-
trial inspection application. Fig. 7 shows an x-ray image of metal gratings in a
rubber product. The superposition of such gratings gives rise to single-, double-
or triple-oriented areas. This means that the theory presented in our paper can
be used to detect the number of gratings (i.e. the number of orientations) and
their respective orientations vectors.

More specifically, it also allows to detect defects where a metal wire is not
aligned properly within the grating or extends beyond the edge. Fig. 8 shows
an enlarged part of fig. 7 where such a defect is visible as model violation and
therefore increase of orientation number. In the segmentation image, the defect
is clearly visible as a blob of triple-oriented and non-oriented textures.

5 Summary and Conclusions

In this paper, we presented a theory for modelling textures composed from multi-
ple dominant orientations, thus extending the well-known structure tensor frame-
work to a unified mathematical model for M orientations in P -dimensional and
N -variate signals s(x). Generalization of the signal gradient to multiple direc-
tional derivatives leads to tensor-valued entities, and depending on the assumed
signal model, this generalization can be done either under the occluding orienta-
tions model (OOM) or under the transparent orientations model (TOM). (One
can also imagine mixed or intermediate forms which could be a topic for fu-
ture research.) After the discussion of the two ways for generating data tensors,
we have identified a suitable mathematical representation for a set of M ori-
entations, namely the space of minimal fully symmetric tensors RN×···×N

~ . We
emphasize that this tensor representation is superior to other approaches relying
on vectorization. The mixed orientation parameters (MOP) vector – which we
derived for general M , N and P – can be a highly overparameterized repre-
sentation of orientations. Based on this better mathematical understanding of
multiple orientation estimation, we presented algorithms for multiple orientation
estimation in images (the only case where the MOP vector is not overparame-
terized) and for double orientation estimation in general N -variate data. Both
algorithms are applicable also to vector-valued data, for instance color images.
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In the experimental part, we successfully applied multiple orientation esti-
mation (in contrast to previous papers: beyond double orientations) to both
synthetic and real data. Especially for image data, we showed that estimation
of superimposed orientations (here: with M = 0, . . . , 3) provides new and highly
useful low level image features which appear perfectly suited for various inspec-
tion, tracking or segmentation problems.
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LNCS 3175 (2004) 163–170

16. Di Zenzo, S.: A note on the gradient of a multi-image. Computer Vision, Graphics,
and Image Processing 33 (1986) 116–125

17. Förstner, W., Gülch, E.: A fast operator for detection and precise location of dis-
tinct points, corners and centres of circular patterns. In: Proc. ISPRS Intercomm.
Workshop. (1987) 281–305


