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ABSTRACT

Silver staining of cytopathologic specimens offers advantages

in cancer diagnostics. A difficulty with such stained cell spec-

imens is the very high dynamic range needed by the imag-

ing system to appropriately cover the varying stain intensi-

ties. Beside those images of cell nuclei that can be used for

the diagnostic interpretation, there are nuclei that appear too

dark to observe their relevant properties, the so-called argy-

rophilic nucleolar organizer regions (AgNORs), which appear

as spot-like areas darker than their immediate surroundings.

We therefore show how high dynamic range images of nuclei

can help to correctly segment the AgNORs. To this end, we

acquire a sequence of differently exposed images, which are

then combined into a high dynamic range image. Based on the

dynamic range of the image signal within the segmented cell

area, we compute another image which provides optimal con-

trast over this area of interest. To further increase the contrast

for dark objects, a suitable nonlinear point transform is simul-

taneously applied. We provide examples of the thus generated

images and their corresponding segmentations.

1. INTRODUCTION

The earlier cancer is detected, the larger is the chance for suc-

cessful treatment. Moreover, the curative costs are mostly

lower, if a tumor is diagnosed earlier. Both requires an early

cancer diagnosis. We therefore seek to diagnose cancer be-

fore macroscopically visible symptoms appear. In addition,

the methods used in such an early screening must not subject

patients to stress and thus have to be noninvasive.

Since cancer starts from single cells, cytopathological and

molecular cell analyses are the methods of choice. Cytopatho-

logic specimens can be taken, e.g., with tiny brushes from mu-

cosae or by Fine Needle Aspiration Biopsies (FNABs), from

different organs. This provides specimens without hurting

surrounding tissue. Based on the cells in these specimens it

is possible to detect cancer earlier, painless and without stress

for the patient [1].

The project is supported by the Viktor and Mirka Pollak Fund for

Biomedical Engineering.

(a) ”Light” stained nucleus (b) ”Normal” stained nucleus

(c) ”Normal” stained nucleus (d) ”Dark” stained nucleus

Fig. 1. Images of differently intensive stained cell nuclei of

pleura effusion from the same specimen, i.e., from one slide.

Within the cell nuclei of the images (a), (b), and (c) the Ag-

NORs, which appear as dark spots, can be observed quite eas-

ily. In the nucleus of image (d) the contrast is very low and

therefore the AgNORs are nearly undetectable.

For cancer diagnostics based on cells many methods have

been developed, e.g., confocal laserscanning microscopy, flu-

orescence microscopy, and DNA flowcytometry [2, 3]. In our

case we employ visible-light brightfield microscopy, i.e., the

cells must be stained. Different stains reveal different infor-

mation of the cells under scrutiny. Stains like Papanicolaou or

May-Grünwald-Giemsa reveal the cell morphology, whereas

Feulgen stains the DNA of the cell stoichiometrically, which

is used for DNA Image Cytometry. We focus in this paper on

the silver stain.

Silver staining of cells has been shown to be useful for

cancer diagnostics [4, 5]. Silvernitrate stains the nucleolar
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organizer regions (AgNORs) of the cells, which then appear

as dark spots within the cell nucleus (see figure 1). Each

cell contains at least one AgNOR, which are conventionally

counted. Recently it could be shown that measuring the area

of the AgNORs further improves the diagnostic accuracy [6],

for instance to preoperatively distinguish malignant carcinoma

of the thyroid gland from benign adenoma.

A challenge for automatic AgNOR segmentation is the

low homogeneity of the staining results, which leads to strong

variations in the staining intensities of different cells. This

effect can even be observed within one slide (see figure 1).

From an imaging and image processing point of view, the

staining process leads to cell specimens requiring a larger dy-

namic range than existing digital cameras are able to provide.

Simply increasing the amount of light delivered from the mi-

croscope lamp or increasing the exposure time of the camera

might make the very dark stained cells accessible to the diag-

nostic interpretation. The lighter stained cells, however, are

then lost for the diagnosis because of saturation of the cam-

era. We therefore propose to use high dynamic range images,

which require the acquisition of differently exposed images

from the cells to be analyzed.

The images were acquired with a JAI CV-M90 3CCD cam-

era mounted on top of a Leica DMLA microscope. A 63x

objective lens with numerical aperture NA = 1.32 has been

used for the acquisition of the images. The resulting pixelsize

is ∆x ≈ 0.1µm.

Our database contains 42 specimens of pleura effusions,

63 specimens of Fine Needle Aspiration Biopsies of the thy-

roid gland and 40 specimens of the oral mucosa. For each

specimen, images of cells under suspicion have been acquired

in Papanicolaou or May-Grünwald-Giemsa stain for morpho-

logical review. These specimens were destained and stained

again according to Feulgen to obtain DNA-measurements of

the same cells after relocation [7]. Finally these specimens

were once more destained and stained with silvernitrate. This

sums up to 69, 038 images or about 116, 466 cells verified by

our medical partner. Of these images 16, 918 were captured in

silver stain. The AgNORs within 12, 911 cells were manually

counted by our medical partner. This will be complemented

in our current work by manual segmentation of AgNORs as a

goldstandard for validation.

2. HIGH-DYNAMIC-RANGE IMAGING AND
SEGMENTATION

In a series of differently exposed images of the same scene,

each image reveals different details (see figure 2). These im-

ages are mappings from the quantity of light q, incident on the

imaging sensor, onto the gray- or colorvalues in the image, by

a mostly nonlinear camera transfer function (CTF) denoted

by f . To combine these images into one high dynamic range

(HDR) image, one first has to apply the inverse f−1 of f to

each image to undo the nonlinearities of f .

(a) Exposure: 1/500s (b) Exposure: 1/250s

(c) Exposure: 1/100s (d) Exposure: 1/50s

Fig. 2. Four images of the same nucleus differing only in

exposure. Only the red-channel of the color-images is shown,

since the AgNORs can be observed best in that channel.

Different methods [8, 9, 10, 11] have been published to

estimate f and tonally align such images into a high dynamic

range image. The function

f(q) = α + βqγ (1)

is a good model for the CTF of a JAI CV-M90 3CCD cam-

era [12]. From [8] it follows that for each image fi, acquired

with a different exposure setting ki, an estimate for the quan-

tity of light q̂i incident on the imaging sensor is given by

q̂i =
1
ki

f̂−1(fi) (2)

where α and γ, and thus f̂−1, were estimated from the differ-

ently exposed images fi as described in [8]. The parameter β
is a scaling factor which can be chosen arbitrarily. It has been

shown that, using this method, the parameters α and γ can

be estimated accurately for this camera [12]. The exposure

series is now combined into one estimate for the quantity of

light falling on the imaging sensor by

q̂ =
∑

i ĉiq̂i∑
i ĉi

(3)

where ĉi is a certainty function used for weighting the esti-

mates q̂i with respect to the accuracy of the ranges represented

within the different images fi. Since the quantization noise

is low and consequently the accuracy high for those ranges

where the slope of the CTF is high, we have chosen this func-

tion to be the derivative of the CTF [8].
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What is the difference between this high dynamic range

image and the set of images with different exposure settings?

Depending on the camera and microscope setup, the images

fi are arbitrary large ”windows” of the dynamic range of the

scene, while quantities of light greater than this window are

represented as saturated pixels. As an example, see figure 2.

Since the dynamic range of the AgNORs varies heavily de-

pending on the staining process, the optimal camera setting,

which reproduces the contrast of the region of interest best,

is unknown. In addition blooming effects might compromise

the region of interest. The blooming effect of the CCD sensor

partially erodes the border areas of those regions which are

close to saturated pixels. This effect is partially removed in

the combined HDR image, since the certainty function drops

to zero for saturated pixels.

The best image for the detection of the AgNORs is that

one where the dynamic range from the lowest to the highest

quantity of light within the cell nucleus is represented by the

full range of values of our image (here: 8bit). Towards this

end, we exploit the fact that within our system, a segmentation

of the cell nucleus is available from the analysis of another

stain (usually Feulgen), which is readily coregistered to the

image [7]. Let us denote the minimum and maximum quantity

of light within the nucleus by qmin and qmax respectively.

We now seek to find parameters α, β and γ for the camera

transfer function (1) of a virtual camera fvirt that maps the

range Rin = [qmin; qmax] of the HDR-image to the range

Rout = [0; 255] = [gmin; gmax] of a windowed image.

For a given γ this means

fvirt(qmax) = gmax = α + βqmax
γ (4)

fvirt(qmin) = gmin = α + βqmin
γ (5)

yielding

β =
gmax − gmin

qmax
γ − qmin

γ
∧ α = gmin − βqmin

γ (6)

Choosing γ = 1 will give a linear mapping of the range Rin

onto the range Rout. Since we are interested in dark spots, we

can increase their contrast even further by setting γ ∈ (0, 1.0),
e.g., γ = 0.5. This consequently expands the lower values

and compresses the higher values.

We now have obtained images that make use of the full

dynamic range of 8 bit for the imaging of the cell nucleus.

Simultaneously the darker parts of the image are represented

by more quantization steps. As an example, figure 3 (a) shows

the red-channel of three high dynamic range images after this

mapping.

These windowed images can now be segmented. Our seg-

mentation uses the mean shift algorithm [13] which provides

consistently good results in a variety of applications, includ-

ing clustering, segmentation and filtering [14, 15].

The mean shift technique, a nonparametric density esti-

mation, is based on a kernel density estimator, known as the

(a) (b) (c)

Fig. 3. Column (a) shows the red channel of the windowed

images. In column (b) the mean-shift segmented images are

shown. The color of each segment is defined by the color of

the corresponing mode of this region. Column (c) shows the

segment boundaries. The first cell is taken from the thyroid

gland while the others are taken from pleura effusions. The

falsely detected non-AgNOR segments can be easily removed

by comparing their mean values to the mean of the nucleus

background.

Parzen Density Estimate [13]:

f̂(x) =
1

Nhd

N∑
i=1

K
(x − xi

h

)
(7)

Here, N equals the number of d-dimensional vectors x1..xn.

The parameter h is the window radius of the used kernel K.

It can be shown that the gradient of the Parzen Density

Estimate using, e.g., an Epanechnikov kernel,

KE(x) =

{
1
2c−1

d (d + 2)(1 − ‖x‖2) ‖x‖ ≤ 1
0 otherwise

(8)

becomes

∇̂f(x) =
Nx(d + 2)
Ncdhd+2

mh(x), mh(x) =
1

Nx

∑
xi∈Sh(x)

(xi − x)

where Nx is the number of data vectors xi within the window

Sh. The constant cd ensures that the kernel KE integrates to

1, and mh(x) is the mean shift vector which is proportional to

the normalized gradient density estimate [13, 15]. The mean

shift vector thus always points towards the direction of max-

imum increase in the density. By iteratively calculating the
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mean shift vector for one position with given radius h and

afterwards shifting the kernel window by this vector, this pro-

cedure will converge to a point with zero gradient [15], i.e., to

a mode corresponding to the initial position. The mean shift

procedure is hence an effective algorithm for mode seeking in

a density distribution without prior calculation of this distri-

bution.

For a segmentation application the data vectors xi are

composed of the spatial and the color information of each

pixel. In this case it is reasonable to choose an anisotropic

kernel window, which differs in size in spatial domain and

range domain, i.e., color space. Using a radius hs in spatial

and hr in the range domain, the anisotropic kernel becomes:

Khs,hr (x) =
C

h2
sh

p
r

k

(∥∥∥∥xs

hs

∥∥∥∥
2
)

k

(∥∥∥∥xr

hr

∥∥∥∥
2
)

(9)

where xs is the spatial and xr the range part of a data vec-

tor of dimension d = p + 2, and k(·) the common kernel-

profile [14, 15]. Since color-images normally exhibit three

color-channels it follows that p = 3 and p = 1 for grayscale-

images, respectively. For segmentation, the mean shift pro-

cedure is first performed for each pixel of the input image.

Afterwards the corresponding modes, which are closer than

hs and hr to each other are grouped together to one segment.

Regions smaller than a certain size might be eliminated [15].

3. RESULTS AND DISCUSSION

AgNORs are dark spots within the cell nuclei and their seg-

mentation is a useful tool for early cancer diagnosis. Based

on the observation that single-exposure images do not provide

sufficient dynamic range, we acquire exposure series from

which high dynamic range images are computed. In our setup

the nucleus segmentation is known from prior steps, which

enables the definition of a virtual camera which maps the re-

gion of interest into one image using the complete available

dynamic range. The mapping is based on an analysis of the

intensity range within the areas relevant for diagnosis, i.e., the

cell nucleus.

The thus obtained images can be used as a basis for auto-

matic detection of the nucleolar organizer regions of the cells.

Performing the segmentation on these images is superior to

segmentation on common low dynamic range images since all

accessible information through each exposure series is com-

bined into one image. AgNOR segmentation results by mean

shift on these images are shown in figure 3 and have so far

been found satisfactory by our medical partner.

The falsely detected non-AgNOR segments can be eas-

ily removed by comparing their mean values to the mean of

the cell background. A validation of the segmentation perfor-

mance against a goldstandard will follow as soon as manual

segmentations are available.
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