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ABSTRACT

The potential of cytopathologic diagnoses to detect can-

cer of a variety of types non-invasively, cost-efficiently and

up to three years ahead of conventional histopathologic di-

agnoses can be increased by the application of adjuvant meth-

ods, i.e. the combination of different stainings. For further

improvement of cytopathology we introduced Multimodal

Cell Analysis (MMCA) which combines specific informa-

tion about identical cells in different stainings successively

applied to the same microscope slide. This requires a pre-

cise relocation and coregistration of individual cells under

scrutiny. As a precondition for application in daily routine

and screening settings the crucial relocation of cells has to

be automated.

The paper describes a method for an automatic retrieval

of images of cells which have already been selected and

recorded in a preceding staining together with their coor-

dinates. Due to inevitable mechanical inaccuracies the ge-

ometric match is insufficient. The comparison of nuclear

constellations based on segmentations in both stains facili-

tates an automatic correction of the position even if there is

a sub-scene matching only. The process furthermore gener-

ates the initial guess for the succeeding coregistration which

thereby gains robustness. The success rate of the method

described is about 85%.

1. INTRODUCTION

Routine cancer diagnoses are nowadays based on histopatho-

logic investigations of tissue specimens which are acquired

in the course of an operation or biopsy. The tumour, how-

ever, must have reached a state in which it is already macro-

scopically visible. Non-invasively obtained single cells can

be the clue to detect cancer in a much earlier state at lower

cost [1]. A recent approach to automate and enhance the di-

agnostic process is the Multimodal Cell Analysis (MMCA),
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which utilises specimen (for example smears) on micro-

scope slides for repetitive staining. The combination of

specific information about identical cells in different stains

yields multivariate statistics, which allow a further increase

of diagnostic accuracy [2].

In order to relocate the cells after the specimen has been

re-stained the images are stored in a database along with

their positions. Due to mechanical tolerances in the gears

of the microscope stage and because of inaccurate slide in-

sertion, the multimodal image sets are not aligned prop-

erly. After the correction of the position with a global trans-

lation vector the displacement is still between 10 and 30

µm, corresponding to about 1-6 nuclei diameters. This dis-

placement shall be corrected automatically. For the use of

MMCA this is necessary to be done routinely. Hence it has

to be robust as well as fast. In a first step scene knowledge

is extracted from each image by a pre-segmentation. In a

second step these scenes are compared and matched. If two

scenes overlap only partially, the position is corrected re-

spectively by moving the microscope stage, and the scenes

are compared again.

2. STATE OF THE ART

The problem of multimodal scene matching is quite dif-

ferent from the well known problem of image registration.

First of all, not necessarily all cell nuclei from the previ-

ously captured image lie directly in the current field of view

(FOV). Hence sub-scenes have to be analysed and matched

at runtime. The images have a rather homogeneous back-

ground, and a pixel based registration leads to local extrema

and thus to false results. A content based approach can pre-

vent this. The different appearance of identical scenes in

different stains makes the registration of the images very

difficult if the initial position is too far from the global max-

imum, even with the use of mutual information. A scene

comparison can provide this initialisation for the final reg-

istration of the two images, which is necessary for a match

with sub-pixel accuracy. A solution for these problems has

not been found in literature.
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Fig. 1. Different steps of pre-segmentation: (a) Greyscaled source image, (b) Background masked out, (c) Plasma masked

out, (d) Binary image, (e) After closing and flood filling, (f) Mask image, (g) AND-relation of (e) and (f), (h) Inverted distance

transformed image, (i) Obtained scene

3. EXPERIMENTAL SETUP AND MATERIAL

The microscope workstation consists of a Leica DMLA light

microscope, a 63x objective (Oil imm., NA 1.32), a 3-chip

CCD RGB camera (JAI CV-M90, 768x576 px, 3x8 bit) and

a PC for microscope control (xyz stage, etc.), image cap-

ture and analysis. The edge length of a pixel is 0.0992 µm
and thus the FOV is 76.2x57.1 µm2. The automatic im-

age retrieval by means of scene comparison was applied to

eight different samples (serous effusions) of both inflam-

matory and tumourous smears. For each sample about 200

reference images were available in a database in one or two

of the following cytological stains: May-Grünwald-Giemsa

(MGG), Feulgen (FEU) and Silver (SIL). Each reference

image contained 12 nuclei on the average. Based on these

existing images, overall 12 series with 2014 new images

were retrieved in a subsequent stain. (6 series FEU refer-

ring to MGG, 3 series SIL ref. to FEU, 3 series SIL ref. to

MGG).

4. METHODS

To retrieve the cell nuclei of the reference image in the cur-

rent sample, the stage is repositioned according to the orig-

inal coordinates. Then a global correction vector is applied

to compensate for the overall displacement. After autofo-

cus, a pre-segmentation is performed to detect the nuclei

followed by a scene comparison for matching the scenes.

If the result of the scene comparison is negative, the search

is expanded to the surrounding area. Pre-segmentation and

scene comparison are described in detail below.

4.1. PRE-SEGMENTATION

Since the segmentation takes place at runtime and because

the succeeding scene comparison applies to the scene as a

whole, a fast, not necessarily exact segmentation of the nu-

clei is used which will be called pre-segmentation.

The almost monochromatic images are transformed to

greyscale images (see Fig. 1 (a)) using stain-specific, em-
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Fig. 2. Source images and overlaid mask images of successful scene comparisons: (a) MGG, (b) FEU, (d) FEU, (e) SIL, (g)

MGG, (h) SIL, (c, f, i) Overlays, common foreground in yellow (resp. light grey), different foreground in green and red (resp.

grey and dark grey)

pirically determined linear combinations of the colour chan-

nels. For MGG and SIL stains the background is masked

out (see Fig. 1 (b)) using a threshold according to Otsu [3]

(simplified as described in [4]), and a second application

splits the nuclei from the plasma Fig. 1 (c). An example

of a resulting binary image is shown in Fig. 1 (d). Since

FEU does not stain the plasma a single threshold using the

triangle algorithm [5] is sufficient.

A morphological closing (disc radius: 4px for MGG,

3px for FEU, 5px for SIL) followed by a flood filling is ap-

plied to close coves in the nuclei boundaries (see Fig. 1

(e)). For removal of small artefacts as well as long but thin

filament-like objects without further morphological damage

of the shape of the nuclei, a mask is generated using an

opening (disc-radius: 15px). To include the nuclei bound-

aries a dilation (disc-radius: 5px) of the mask has to follow

(see Fig. 1 (f)). The mask is then AND-related with the

prior binary image. The result is shown in Fig. 1 (g).

Finally shape criteria are used to separate overlapping

and tangent nuclei. Single nuclei are convex while clusters

mostly have concave spots. Therefore a distance transfor-

mation is used, which calculates the distance to the back-

ground for each pixel. This results in an image with dark

spots at the center of each nucleus 1 (h) (inverted image).

Applying the watershed transformation to this image sep-

arates clusters of nuclei to a satisfying degree. The back-

ground is masked out from the resulting image using 1 (g).

Fig. 1 (i) shows the result in which two connected nuclei

have been successfully separated.

4.2. Scene Comparison and Matching

The goal of the scene comparison is to determine a possible

(partial) matching of the two scenes and thus to get the cor-

responding translation vector. This is achieved by matching

the mask images of the nuclei. The best match of two scenes

is found, whether or not the scenes are identical. The deci-

sion about identity of the two matched scenes is made by

the succeeding image comparison.



Matching the masks: Each nucleus of mask g1 is su-

perimposed on each one of mask g2 using their centres of

mass. This full search is not time-critical due to the low nu-

clei count in each image. For each pair the quality measure

Q1 is computed as follows:

Q1 =
Asmall

Abig

·
∑

x,y

(g1(x, y) AND g2(x, y)), (1)

where Asmall is the area of the smaller nucleus and Abig the

area of the bigger one. The sum is a criterion for the total

overlap of both masks, while the quotient Asmall over Abig

gives a local measure for the fit. The displacement vector

is derived from the pair with the highest quality. If at least

one nucleus in each stain is segmented with satisfying ac-

curacy, the proper matching is found. All further operations

are performed within the common image sections according

to the match. A fine adjustment of the match is done by reg-

istering the greyscale images of the scenes using the mutual

information criterion [6]. Since a translation vector is found

even if the images contain different scenes the identity of

the two scenes has to be tested as follows.

Image comparison: The identity test is based on a re-

finement of the pre-segmentation which exploits the corre-

spondencies in different stains. The number of foreground

pixels of the stain which on the average yields the superior

pre-segmentation is used to get a better segmentation of the

more problematic stain. This is achieved simply by vary-

ing the threshold of the latter towards reaching equal pixel

counts in both stains. In the case of identity of the objects

the segmented images are very similar, otherwise they ap-

pear different.

From the two binary images a further quality measure

Q2 is obtained as follows:

Q2 =

∑
x,y(g1(x, y) AND g2(x, y))

∑
x,y(g1(x, y) OR g2(x, y))

(2)

A perfect match will result in a value of 1. Examples

for the image comparisons are shown in Fig. 2. The value

of Q2 is compared with an empirically acquired limit to de-

cide whether the scenes are identical. If they are, the stage

position is corrected according to the translation vector and

the image is grabbed. Otherwise the surrounding area is

sampled with a search strategy for the sought-after scene.

5. RESULTS

To relocate scenes with an accuracy of about 1 µm an aver-

age of 1.6 iterations of scene comparison and correction of

the position was necessary. Two of the eight slides showed

unexplainable inconsistencies in the stored coordinates and

could not be evaluated. The success rate of the other slides

was 85.4% (1328/1556 scenes). This incorporates 7% of

cases in which the search had to be extended to the sur-

rounding area. 14.3% of the scenes could not be matched

and no image was retrieved. 0.3% of the images were re-

trieved by mistake and showed different scenes. This occurs

mostly in images which show only a single nucleus. Three

examples of successful scene comparisons are shown in Fig.

2.

6. SUMMARY AND DISCUSSION

It could be shown that it is possible to automate the relo-

cation process of re-stained cell samples which is required

for multimodal cell analysis. The described scene com-

parison leads to satisfying results even if there are over-

lapping cells or if plasma is segmented by mistake. The

0.3% of wrongly matched scenes can be ascribed to images

which show only a single nucleus in most cases. This fail-

ure rate can be further reduced by enlarging the FOV. Cause

of the 14.3% unrelocated scenes is predominantly an insuf-

ficient pre-segmentation leading to inaccurate scene infor-

mation. The success rate can potentially be improved by an

enhanced pre-segmentation which makes better use of the

local information of the images.
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