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Abstract

The paper describes the key component of the Multimodal Cell Analysis approach,
a novel cytologic evaluation method for early cancer detection. The approach is
based on repeated staining of a cell smear. The correlation of features and data
extracted from the different stains, and related to relocated individual cells, may
yield a dramatic increase of diagnostic reliability.

In order to utilise the technique, fully automatic, adaptive image preprocessing
techniques need to be applied, which are described in this article: coregistration of
multimodal images, segmentation, and classification of cell nuclei. The presented
feasibility study shows both efficiency and robustness of all steps being high regard-
ing medical image material, and it strongly supports clinical application.

Key words: cytopathology, cancer diagnostics, cell microscopy, multimodal
coregistration, image segmentation, active contour models, classification.

1 Introduction

Different approaches to cancer diagnostics may be distinguished according to
the order of magnification at which diagnostic information is retrieved:

Macroscopic Pathology

Morphologic as well as functional studies, sometimes with additional tissue
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characterisation, can be performed non-invasively by means of modern diag-
nostic imaging modalities such as CT, MR, fMR, PET, SPECT or sonography.
Tumours must have grown up to a considerable size, however, to be recognised.

Histopathology

The widely applied histologic investigations can detect cancer on a microscopic
level and thus earlier. But they require tissue specimens and therefore neces-
sitate more elaborate invasive procedures. If not acquired in the course of an
ongoing operation, a biopsy has to be performed, which is bloody, painful and
expensive.

Cytopathology

In contrast, cytopathologic investigations only require cells, which will be ob-
tained non-invasively and without discomfort for the patient. Sediments from
diverse body fluids, smears from mucosal surfaces or fine needle aspirates
from different organs mostly contain enough cells to establish valid cancer
diagnoses. Thus the compliance of the patient is higher than for histopatho-
logical investigations. Furthermore, an investigation of cells, as opposed to
tissue, often allows an earlier diagnosis of cancer. Hence the promotion of cy-
topathology offers the opportunity to detect various types of cancer at early
stages, thus increasing the probability of a successful therapy. Yet, the appli-
cation of cytopathologic cancer diagnosis on a large scale is so far faced with
two problems: the subjective microscopic evaluation of cytologic specimens is
rather time-consuming, and mere morphologic inspection of cells does often
not offer enough information to achieve sufficient diagnostic accuracy.

Multimodal Cell Analysis

In an interdisciplinary research project we introduced the new approach of
Multimodal Cell Analysis (MMCA), which overcomes the limitations of cur-
rent evaluation methods. The applied fixation of cells on microscope slides
allows for repetitive staining of a smear. The set of multimodal images of
the cells of interest thus produced unfolds diagnostic correlations, which are
of diagnostic relevance but could not be exploited until now: Combining the
specific information from different stains for each individual cell yields multi-
variate statistics, which lead to a considerable increase in diagnostic accuracy.
The approach merges in particular a high sensitivity with a high specificity
and typing accuracy. A valid diagnosis may be based on a very small number
of cells.
While the basis of the diagnostic procedure is still a morphologic stain like
May-Grünwald-Giemsa (MGG) or Papanicolaou (PAP), other so-called ad-
juvant methods are added, like DNA measurements, immunocytochemical
marker demonstrations or AgNOR analyses [1][2]. So far three stains have
been incorporated into the test environment (figure 1): MGG (or PAP) shows
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both nuclei and cytoplasm and only serves for inspection of morphology. The
Feulgen stain (FEU) dyes DNA stoichiometrically and hence serves for ploidy
measurement [3], which indicates the fraction of mitotic cells and possible
aneuploidy. The silver stain (SIL) dyes less specifically, but it stains active
nucleolar organising regions (AgNORs). Their number and area allows con-
clusions on the intensity of protein synthesis [4]. Moreover, only a combination
of the results of FEU and SIL for each individual cell allows an estimation of
cell proliferation on a methodological basis.
In detail the method works as follows: a specimen is fixed on a slide and is
stained for a first time. Digital images of relevant cells are retrieved under
the microscope, whereat their positions are stored. The slides is then removed
from the microscope, and a solvent is applied in order to remove the cover
glass, after which the specimen is dyed again by the next stain. Then images
of the second stain are taken at the positions previously stored, and so forth.
This way images from identical cells but different stains are sequentially ac-
quired.
Due to mechanical tolerances in the gear of the microscope stage, the multi-
modal image sets are not sufficiently aligned for further analysis. For a precise
morphologic fit the application of a coregistration algorithm is demanded. At
this stage, new insights about the correlation of morphology and the respec-
tive cell physiology can already be gained by visual inspection of a cross-fading
animation of corresponding images.
The following preprocessing steps, namely the segmentation of cell nuclei and a
classification regarding the cell type, which may employ all previously aligned
images of a multimodal set, are needed as a precondition for the subsequent
evaluation of stain-specific features, such as DNA content or AgNOR features.
These can finally be combined for each cell in order to gain a multivariate
statistic, offering a considerable add-on to the diagnostic process, which is the
method’s main goal.
The overview of the whole framework of MMCA is given in [5]. The algorithms
for the actual diagnostic feature extraction are currently being developed.
In this article we describe the image preprocessing that preceeds the evalua-
tions of stains and the multivariate result output. It includes adaptive colour
space transformation, automatic coregistration, segmentation, and classifica-
tion of multimodal image sets. Since the preprocessing is a key factor for a
clinical application of the MMCA approach, a feasibility study on a represen-
tative set of specimens was undertaken, which shall also be addressed here.
Its first objective was to determine the accuracy and robustness in order to
estimate the method’s potential for clinical routine application. Furthermore,
a supporting effect of multimodal image information to segmentation and clas-
sification was to be explored.
Below, after a short introduction to the study’s design, each preprocessing
step will be dealt with in the order of the given problem, the solution offered
and the results. At last, results will be summarised and a future perspective
will be drawn.
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2 Experimental Design

Seven series, each of 11 to 20 images per stain, i.e. image triples, were cap-
tured. Specimens were derived from serous effusion. Two slides contained cells
from pleurisy due to chronic lymphocytic inflammation, two due to malignant
pleural mesothelioma and three slides due to metastatic adenocarcinoma. Al-
together 108 multimodal image triples showing a total of 693 nuclei were
digitised using a Sony DXC 3-chip CCD camera mounted on a Zeiss Axio-
scope. Image size was 768 * 568 pixels with an x/y pixel resolution of 0.165
µm, which meant 127 × 94 µm on the slide. Colour depth was 24 bit. First
the images of the FEU stain were captured. Their counterparts in MGG and
SIL were then retrieved manually. This procedure has so far been automatised
using a digitally controllable microscope.
Image processing routines were written in C++ using the Intel r© Image Pro-
cessing Library (IPL) [6] and the Open Source Computer Vision Library
(OpenCV) [7]. They were run on standard PC equipment.
The software was designed to run unsupervised from the first to the last pre-
processing step.
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(a) May-Grünwald-Giemsa

(b) Feulgen

(c) Silver

Figure 1. Multimodal image set of two mesothelial cells and one neutrophilic gran-
ulocyte from a serous effusion: intensity of cytoplasm and of erythrocytes around
the cells varies between the stains.

5



3 Adaptive Colour Space Transformation

Before coregistration it is inevitable to preprocess the multimodal image triples
in order to neutralise the differences in stain characteristics.
All stains show different colours but are nearly monochromatic, since informa-
tion is carried merely in the staining intensity. Therefore an adaptive colour
space transformation from RGB to grey scale is appropriate.

3.1 General Approach

Each stain is treated individually. For each series an accumulated RGB his-
togram of all images is built. Then a cluster analysis is performed on the
histogram returning a foreground and background colour distribution. These
are passed on to the Fisher discriminant algorithm [8], which provides for a
transformation to grey scale with maximal contrast between two colour pop-
ulations, given a mean and a covariance matrix each. This way colour space
transformation is adaptive to differences in individual staining results or im-
age capture settings, which may vary between the image series. The only fixed
parameters are the start values of the distributions for cluster analysis, which
are robust, because of the small number of distributions and the well-known
characteristics of the stains.

3.2 Results

As the algorithm is robust, its efficiency regarding the grey level contrast
achieved should be compared with standard transformation methods. For this
purpose the contrast between nuclei and background was measured because
it is the most important feature for segmentation. Anticipating the result of
the segmentation step, contours found by the snake method could serve as
reference contours. The average underlying image edge strength of a contour
was evaluated using the values of the derivated Gaussian of its normals (see
5.2), returning negative values for the nucleus-to-background contrast as can
be seen in table 1 for the example of the Feulgen stain. Results of the Fisher
discriminant were compared with other methods such as mean RGB value or
channel extraction from both RGB and HSV models. The minimal, average
and maximal values refer to whole image series.
The result of the Fisher discriminant surpasses most other methods by far;
only hue channel extraction shows similar contrast. However, the adaptivity
of the combination of of histogram clustering and Fisher discriminant ensures
constantly high contrasts and compensates for intra-stain differences due to
variable staining conditions.

6



Table 1
Comparison of Colour Space Transformation Methods (Feulgen stain)

Transformation Method Average Enhancement by Fisher Discriminant [%]
Contrast min φ max

1
3 (red + green + blue) -19.1 23 38 62

red channel -4.7 365 457 639
green channel -23.6 00 12 30

blue channel -16.5 38 60 101

hue -25.8 -8 2 15

saturation -7.4 122 255 634

value -13.1 76 101 139

Fisher discriminant -26.4 0 0 0

4 Coregistration

If only mechanically retrieved, the images are not sufficiently aligned to allow
further multimodal processing. While the nuclei have diameters from about
10 to 20 µm, other structures of interest lie in the order of 1 µm (e.g. Ag-
NORs). Therefore an alignment of subpixel accuracy should be reached. Initial
misalignment was up to 30 µm of translation and up to 3◦ of rotation.

4.1 General Approach

Alignment is a precondition to multimodal segmentation. Segmentation is nec-
essary to understand the image scene (e.g. positions of the cell nuclei). Conse-
quently the bare images have to be taken as a whole for the alignment process.
A common method for coregistering two images [9] is to construct a function
F from the following two components: one image is chosen as the reference
image R (here: FEU), the other as the object image O (MGG resp. SIL),
which is passed through an affine transformation T (p, O) with parameter vec-
tor p in the first step. Second the reference image and the transformed object
image are compared by means of a real function C called the cost function
that measures their dissimilarity. It should be sensitive to misalignments while
insensitive to other differences. Here a scaled variant of the pixelwise L2 norm
is utilised. Be R(x, y) and O(x, y) pixel intensities of an X ×Y sized reference
resp. object image, the cost function is

C(R, O) =
1

XY

∑
x,y(R(x, y) − O(x, y))2

1
XY

∑
x,y (O(x, y))2

(1)
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The overall function is

F (p) = C(R, T (p, O)) (2)

where T (p, O) is the transformed object image and T, in our case, a 2D rigid
body transformation. F is minimised in order to obtain the parameter set
p resulting in the smallest dissimilarity between reference and transformed
object. Interpolation is bilinear. F is minimised using the Powell algorithm
[10].

4.2 Avoiding Local Minima

This method is wide-spread in fMRI-realignment applications [9], i.e. the re-
alignment of brain images, which contain only one large object. In contrast to
that task, here an image contains several small objects, the nuclei, and large
areas of uniform background. The function F of two brain images looks more
or less like a single parabola, while here it is a constant, interrupted by local
minima where any pair of objects overlap. The global minimum is reached at
the overlap of corresponding objects. Local minima are a major obstacle to
numerical function minimisation.

The problem is solved by means of a Gaussian pyramid [11], a multi-resolution
technique. The resolution of the images is repeatedly decimated by a factor of
two in order to reduce the level of detail and bring distant structures closer
together. The effect on the cost function can be seen in figure 2. The global
minimum of the cost function in 2(b) is surrounded by local ones. As indicated
by the arrows, they originate from the overlap of non-corresponding nuclei.
These local minima nearly vanish on the 6th level of the pyramid (2(c)). At
this level the algorithm starts and passes the resulting parameters down to
the next more detailed level to start with. This procedure is repeated down
to the original image level.
Though converted into grey scale, the characteristics of the different stains still
differ: the Feulgen stain dyes only nuclei (cf. fig. 1) while MGG also displays
cytoplasm and, with less contrast, erythrocytes. SIL is least specific and dyes
both erythrocytes and cytoplasm nearly as intensely as nuclei. It is necessary
to roughly remove those structures in order to align MGG and SIL images with
FEU images. Otherwise the probability of local minima is unnecessarily high,
e.g. because of an overlap of nuclei and erythrocytes. besides, F becomes less
sensitive to changes of alignment, which leads to a broader global minimum
(see figure 3(a)). To remove them, a pre-segmentation of nuclei in the FEU
images is performed using the cluster analysis of the RGB histogram from 3.
The resulting foreground colour distribution is selected in order to determine
the sum of corresponding image pixels. To all other images of the triple a
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(a) (b)

(c)

Figure 2. Avoidance of local minima of a cost function using a Gaussian pyramid:
2(a) FEU image in grey-scale, 2(b) cost function of 2(a) and the corresponding SIL
image showing translations of ±250 pixels, 2(c) same cost function, but at the 6th
level of a Gaussian pyramid.

thresholded is applied in order to adapt their numbers of nonzero pixels to the
latter. Coregistration is performed on the processed images. The improvement
of the cost function can be seen in figure 3.

4.3 Results

The results were evaluated visually using RGB overlay images of all three
stains. Figure 4 shows an example image before and after coregistration. The
whitish appearance of nuclei without any coloured margins in the final im-
age demonstrates the correctness of coregistration. For each image triple two
coregistrations were needed (FEU-MGG and FEU-SIL). In total 215 of 216
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(a) (b)

Figure 3. Refining the sensitivity of a cost function: 3(a) FEU-SIL cost function
within translations of ± 15 pixels around the global minimum, illustrated with
contour lines, 3(b) Cost function of the same images, but after foreground pixel
equalisation.

(a) (b)

Figure 4. Overlay visualisation of an image triple: FEU red, MGG green, SIL blue,
4(a) before coregistration, 4(b) after coregistration.

coregistrations succeeded, allowing multimodal processing of 107 of the 108
images triples (99.1%). The cause of the failure was an SIL image with nuclei
hardly standing out of the cytoplasm. In this condition, the global minimum
of the cost function is blurred.

5 Segmentation

Automatic segmentation of cell nuclei is the most demanding step of the pre-
processing cascade. Manual corrections are tedious and are therefore out of the
question in large scale clinical use. Prior works in this area mostly made use of
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threshold based or morphologic segmentation methods such as the watershed
algorithm. But these do not take object shape into consideration, so retrieved
contours tend to have irregular notches. Furthermore, automatic separation
of touching nuclei is not facilitated.
Active Contours result in smooth, plausible outlines, but, according to their
reputation, at the cost of high dependency on initialisation, lack of adaptive-
ness, and finally imprecise segmentation results, especially of concave objects.
This shall be disproved.

5.1 General Approach

A contour-based approach was preferred in contrast to region-based segmen-
tation. Cubic B-splines (CBS) [12] were chosen as an object representation
model for segmentation. Both description and modification of closed curves
can be handled with CBS fairly easy. This holds also for other parameters like
the first and second derivative of the contour, which are needed to evaluate
object features for classification (cf. section 6). This advantage is lost when
objects have sharp notches, but this is not the case for smooth membranes
like those of cell nuclei. A segmentation method that lets a contour model it-
eratively converge toward an underlying image feature is called active contour
or snake [13]. Movement is driven by external image forces, usually derived
from image edges, and internal forces that model features like stiffness or ten-
sibility. Because of these simulated physical features the method is known to
be robust against noisy or partially missing image information.
Forces act on and between points distributed along the snake, which are here
called knots. Both their number and the fraction of image forces versus the
inner forces make for the degree of freedom of the snake movements. They
need to be balanced in order to make the contour model both flexible enough
to enclose the image contour and stiff enough not to be partially distracted
by other image structures, which is not trivial, particularly if the variance in
object appearance is high, as with cell nuclei.
These characteristics of a snake may also be intrinsic to the contour model:
When using B-Snakes [14][15], based on B-splines [16], the stiffness of the con-
tour is solely induced by the dependency of the knot positions due to the spline
polynomials, rendering explicit inner forces unnecessary. Stiffness is modeled
by the density of knots and the number of sampling points between them.
The latter assure a fine sampling of the image; they influence movements of
their neighbouring knots but do not increase the degree of freedom of contour
movements. This method results in a much smaller number of knots and re-
duction in computational cost. Furthermore, the adjustment of the stiffness
parameter becomes more intuitive (cf. 5.4).
In every iteration the snake is moved within a defined neighbourhood driven
by the image forces or in other words, reducing its potential energy. Evaluat-

11



ing new positions for the k knots of a snake during an iteration can be seen
as a k-dimensional function minimisation. In this work a sufficiently robust
greedy algorithm is utilised, which moves each knot along its contour normal,
here called the scan line.
External forces of different kinds, each applied on an arbitrary modality, can
easily be incorporated into the snake model. Here they are summed up using
weight factors.

5.2 Image Forces

The most common kind of image forces for snakes are derived from image
edges.

These are usually implemented by means of common image edge filters that
assign high pixel values to edges. The thereby induced loss of information on
the edge direction disables snakes to differentiate between neighbouring ob-
jects (figure 5(b)), a major cause to the regularly criticised high dependency
of snakes on initialisation. In this work contour normals are convolved by a
derivated Gaussian, preserving the edge direction and thus such differentiation
(figure 5(c)). This way also the expected edge direction is optimally taken into
account at each iteration of the snake. As a side-effect, image normals can be
made longer without the risk of attraction by other objects, facilitating the
segmentation of concave objects (fig. 6(a)). The filtering must be recomputed
every time a knot is moved. However, it consists in a fast 1D convolution.

A drawback of using solely edge forces is that only information on image
discontinuity is used, not on continuity, i.e. region information. Therefore,
grey scale values themselves were added for the discrimination between several
kinds of edges, such as

(1) edges of structures within a nucleus,
(2) nucleus-to-cytoplasm or nucleus-to-background edges,
(3) cytoplasm-to-background edges,
(4) background-to-background edges induced by artefacts.

Nucleus segmentation should obviously only be sensitive to the second kind
of edges.
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(a) (b) (c)

Figure 5. Scan lines and the impact of directed edge filtering: 5(a) multimodal
profiles of a nucleus using the scan line model (rear grey, front white) and the iden-
tity function, 5(b) conventional edge profile as identity function on an edge-filtered
image; all edges are maxima, 5(c) edge filtering along the scan discriminates be-
tween foreground-background edges (minima) and background-foreground edges
(maxima).

5.3 Initialisation

A major drawback of snakes is their dependency on initialisation. At this step
the result of the adaptive colour space transformation (3) can be used once
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(a) (b)

Figure 6. Two examples of B-Snakes and variable knot density: 6(a) irregular nu-
cleus, 6(b) only ten knots describe the contour, with a higher density around the
notch.

more (cf. 4.2). Let FGi be the set of foreground pixels from stain i. A minimal
set of foreground pixels is extracted combining all stains:

FG =
⋂

i

FGi (3)

This pre-segmentation method returns good initial estimates for the nuclei
while in the resulting binary image residues of other structures are broken up
into fragments that can easily be rejected according to their smaller sizes.
Next for each binary object of nucleus size a contour is extracted using a
morphological gradient (here: dilation and subsequent subtraction of the input
image). The snake is initialised on this binary contour (fig. 7).

5.4 Knot Insertion

On the one hand, the more complex a contour is, the more knots in the spline
are needed to approximate it. On the other hand, the more knots there are
along a spline, the more independent become the segments between them on
the global shape and the more likely they are attracted by other image fea-
tures than those of the nucleus contour. Furthermore, complexity may vary
along a contour. For example, a contour may be fairly smooth on most of its
outline and have only one notch. Considering these facts, a variable density
of knots along the snake is desirable (see fig. 6(b)). In our implementation the
contour model is initialised with only four knots. Every time the snake has con-
verged (i.e. the maximal knot movement has under-run a certain threshold),
the segments between knots are tested for a distance criterion according to the
image feature, and knots are inserted only where necessary using the Böhm
algorithm [12]. The average or maximal squared distance proved useful, as it
resulted in accurate segmentations while retaining the snake noise-resistant.
In case knots were inserted, the snake is started again and so forth (cf. figure
7).
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(a) (b) (c) (d)

Figure 7. Knot insertion: 7(a) convergence with four knots after 54 time steps, 7(b)
convergence with eight knots, t=119, 7(c) convergence with 15 knots, t=172, 7(d)
termination with 22 knots after 214 time steps.

(a) (b) (c)

Figure 8. Split of a snake due to distance criterion: 8(a) t=0, 8(b) detection and
split at t=29, 8(c) both segmented nuclei.

5.5 Automatic Separation

After the initialisation the snake is superimposed on the grey scale image
triple. Forces can be defined for each image and be combined so that the
resulting force is a weighted sum of arbitrary forces from all images (cf. 5.2).
The segmentation algorithm is basically the same as during the initialisation.
However, the snake occasionally encloses two or more nuclei after initialisation.
This problem is solved by two approaches. First, if the nuclei are sufficiently
far apart, the snake will move into their interspace from one or two sides
once it is superimposed on the grey scale images, so it can be automatically
separated under the condition that the distance of two sampling points is

(1) below a certain level, according to their Euclidian distance, and
(2) above a second level, according to an arc length measure (e.g. relative

knot distance) (cf. figure 8).

Second, if there is hardly any space between the nuclei, the snake will have two
opposite concavities after convergence, assuming that nuclei are approximately
circular and of similar size. The contour is then checked for concavities using
its derivatives. For each pair of them the following two features are evaluated:
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(a) (b)

(c) (d)

Figure 9. Split of a snake due to concavity criterion: 9(a) contour after segmentation,
9(b) detected concavities, 9(c) principal axes and line connecting concavities; the
angle between the line and the principal axis is near 90◦, the linear path between
concavities is relatively dark, 9(d) split contours, ready for individual segmentation.

(1) The direction of the connecting line in relation to the principal axis of
inertia of the whole object: if approximately perpendicular, the line may
separate a system of two objects (cf. figure 9). The principal axis is de-
termined using central moments of a region representation of the object.

(2) The mean grey level along the line normalised by the mean grey level of
the whole object. A dark path indicates background or marginal areas.

The decision whether to split the object or not is based on these features.

5.6 Results

As expected, FEU came out as the most suitable stain for segmentation, since
it does not dye cytoplasm or cell types containing no DNA. FEU produced
the most consistent contrasts across the image series, too. This, on the other
hand, leads to a drawback of FEU: DNA is stoichiometrically dyed, so the
chromatin patterns, i.e. a texture of the nucleus due to the state and struc-
ture of the DNA, produces superior edges inside the boundary of the nucleus.
This can make a snake based on edge forces break into the nucleus.
Segmentation errors due to this effect could be reduced by a further modality:
a combination of FEU and MGG edge forces at a ratio of 7:3 since MGG dyes
the inner parts of nuclei more homogeneously. The additional force opened,
however, a new source of errors: where nuclei were surrounded by a rather thin
layer of cytoplasm, the snake occasionally broke out towards the cytoplasm-
to-background edge, thus partially reversing the gain.
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(a) (b)

(c)

(d)

Figure 10. Image forces and their impact on segmentation: 10(a) combination of edge
forces from FEU and MGG, 10(b) same object but with a combined edge-to-identity
force; the inner edge value is increased by the underlying image intensity information
resulting in a new global minimum at the outer edge, 10(c) segmentation according
to forces from 10(a); although the MGG fraction weakens the effect, the snake
breaks into the object because of high-contrast inner structures, 10(d) segmentation
according to 10(b); the nucleus is segmented correctly.

Finally the approach presented in section 5.2 improved the segmentation accu-
racy substantially: MGG edge information was replaced by the FEU identity
function in the force set, i.e. the grey values of FEU were added at an edge-
to-identity ratio of 4:1. The lower grey value level of nucleus-to-background
edges compared to those of chromatin patterns resulted in an tremendous sta-
bilisation when using the identity function (see figure 10).

Also the exclusion of artefacts and lysed cells by means of size and intensity
criteria worked sufficiently well.

17



(a)

(b)

(c)

Figure 11. Image triple with overlayed segmentation: 11(b) FEU, 11(a) MGG,
11(c)SIL. All nuclei resp. clusters of overlapping nuclei are correctly segmented
using FEU, despite partially strong inner edges and some nuclei nearly touching
each other. Only objects within the common area (black frame) were processed.
Very slight aberrations between segmentations and real contours can be found in
MGG and SIL. Such changes result from shrinkage of proteins due to secondary
formalin fixation.

Automatic separation of pairs of pre-segmented nuclei further reduced the
remaining amount of segmentation errors. The overall success rate yielded
92.6% (642 of 693 nuclei). An image triple with overlaid segmentations is
shown in figure 11.
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Figure 12. MGG-stained examples of the four classes, top down: mesothelial cells,
lymphocytes, granulocytes, macrophages.

6 Classification

For the automatic analysis the nuclei need to be classified into cells to be
measured and reference cells, which are used for calibration. This leads to a
classification regarding to all occuring cell types, which are in case of serous
effusions: mesothelial cells (ME), lymphocytes (LY), granulocytes (GR), and
macrophages (MA), see figure 12. They differ in various aspects such as size,
form, and texture. At this point the concept of multimodality offers a striking
advantage since the correlation of different stains delivers valuable features for
the classification.
The similar appearance of ME and MA nuclei is a challenge in this task,
making the discrimination difficult even for an instructed non-specialist. In
addition, the amount of available training data in this first study was very
small and classes were not uniformly distributed: 384 ME, 176 LY, 38 GR,
and 44 MA nuclei.

6.1 General Approach

In order to prove the feasibility of classification based on the automated seg-
mentation, a basic set of eight features was extracted: area, perimeter, mean
grey value, standard deviation of grey value, circularity, eccentricity, bending
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energy, and fraction of surrounding cytoplasm. Seven features were extracted
from FEU, while the last one indicating by what fraction around its perimeter
a cell nucleus is surrounded by cytoplasm was retrieved from MGG.
Two different classification approaches were implemented: a Bayesian classifier
based on Gaussian mixture densities and a kNN-classifier [17].

6.2 Results

Due to the small amount of data it was impossible to first generate an opti-
mal parameter set on a defined training set and to measure a valid recognition
rate using a disjoint data set. Therefore results were determined for each of
the classifiers’ parameter combinations, e.g. one, two, or four mixtures within
a mixture density for the Bayesian classification or different k-values for the
kNN classifier.
For each parameter set the recognition rate was evaluated by means of the
leaving-one-out method [17]: one image series was used for classification, while
the other provided the training data. This step was performed for all permu-
tations and the resulting recognition rates were averaged.
The optimal recognition rate of the Bayesian classifier was 86.1 %, the rate
of kNN 87.5 %. While results of the Bayesian classification showed significant
differences for different parameter settings, kNN classification changed only
marginally when increasing or decreasing the k-value. Therefore the result of
the latter can serve as a quality measure despite the restrictions mentioned
above.

7 Overall Results

The preprocessing for Multimodal Cell Analysis is a multi-level procedure.
Thus its overall efficiency must be derived from the single levels, but taking
into account also the mutual dependencies of their outcomes. Most probably,
for example, misalignments of about 1 µm after the coregistration do not im-
pact on the further steps, while imprecise segmentations may adulterate the
results of subsequent classification and, of course, diagnostic feature evalua-
tion.
Additionally the reversibility of errors at the different levels should be factored
into a quality measure: The results of the preprocessing procedure must be in-
spected visually by the pathologist in advance of the calculation of diagnostic
parameters. This allows for the manual correction of some errors. Toggling of
false classification results is acceptable, whereas manual coregistration of mis-
aligned images or segmentation of incorrectly segmented nuclei is not because
it would simply take too long.
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Hence a method of deriving ”the true” overall efficiency cannot be clearly de-
fined. Nevertheless a final quality measure shall be given. The success rates of
the individual processing steps are

• coregistration 99.1 %,
• segmentation 92.6 %,
• classification 87.5 %.

Their product, 80.3 %, may be regarded as a ”‘worst-case”’ estimation for the
overall efficiency.

8 Summary and Perspective

The first objective of the described work was to develop a fully automatic
preprocessing algorithm for MMCA and to evaluate its appropriateness for
clinical routine application. It could be stated that the results fulfilled the
given requirements. As an additional option, ”‘difficult”’ nuclei could be au-
tomatically rejected by means of uncertainty measures, as is customary in
existing applications. This would further improve the success rate.
The second objective was to find out whether the employment of multimodal
information could support the steps of segmentation and classification. As for
classification this is the case because object features were extracted from dif-
ferent stains. So far, segmentation results were best when using only the FEU
stain. Improvements through multimodality will, however, be further investi-
gated. A first point will be the choice of image forces from different stains.
Furthermore, the snake topology will need to be optimally adjusted to the
multimodal concept. So far inspections of the segmented nuclei showed tiny
irregular differences in size between the same nuclei in different stains (cf.
figure 11), which result from shrinkage of proteins due to secondary formalin
fixation. Improvements of the precision of the segmentation are expected if
such systematic deviations of the contour of the same nucleus in successive
stains will be incorporated into the snake model.
Concerning to the preprocessing steps addressed here, there are two challenges
for the near future. First, in the specimens tested the distance of nuclei was
mostly large enough to avoid interference during segmentation. The system
should, however, also be able to handle specimens with cell clusters, i.e. with
many proximate or overlapping nuclei. So far only pairs of nuclei can be sep-
arated, and overlap is not detected.
As a second challenge, the recognition rate in cell type classification has to be
improved. More features will be added and further research on the classifier
will be performed. So far a recognition rate of 87.5 % could be reached despite
the small number of cells at hand in the study. This number is being raised
from the presently investigated 642 cells to approx. 90,000 by an ongoing med-
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ical field study for diagnostic evaluation of the MMCA method.
For this purpose, a prototype of the described approach has been implemented
in a cytopathology workstation, which includes a graphical user interface and
a database for images and related data. The automatic evaluation of diag-
nostic features (DNA analysis, AgNOR count) is to be developed and will be
evaluated on the results of the mentioned field study.
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